

The energy spectrum of cosmic rays above 6 PeV as measured at the Pierre Auger Observatory

Quentin Luce (), for the Pierre Auger Collaboration

UHECR 2022, L'Aquila, 3-7 October 2022

Pierre Auger Observatory

An hybrid detector in the Argentinian Pampa (~1400 m a.s.l.)

Radio detector, Muon counters...

Bjarni Pont's *talk* Tim Huege's *talk* Marina Scornavacche's *poster*

Pierre Auger Observatory

An hybrid detector in the Argentinian Pampa (~1400 m a.s.l.)

How does the Pierre Auger Collaboration reconstruct such events? How reliable is it?

Reconstruction of SD-1500m vertical events

D. Newton, J. Knapp, A.A. Watson, ApJ 26:414-419 (2007)

Reconstruction of SD-1500m vertical events

The Pierre Auger Collaboration (2020), Phys. Rev. D 102 (2020) 062005

Reconstruction of SD-750m vertical events

The Pierre Auger Collaboration (2021), Eur. Phys. J. C 81 (2021) 966

Reconstruction of SD-1500m inclined events

Muon density: approximately universal for a for a given shower direction and only the **normalisation of the muon distribution density depends on the energy of the shower**

 $\rho_{\mu}(\vec{r}) = N_{19}\rho_{\mu,19(\vec{r};\theta,\phi)}$

N₁₉ = measurement of the shower size

The Pierre Auger Collaboration (2014), *JCAP 08 (2014) 019* The Pierre Auger Collaboration (2015), *JCAP 08 (2015) 049*

Hybrid reconstruction

slant depth [g/cm2]

Cherenkov dominated FD-Events

HEAT + Coihueco site telescopes:

No SD counterpart at these energies, so the geometry of the shower has to be determined with a constraint on the profile

(Profile Constained Geometry Fit)

Statistics at 6 PeV increased with minimum bias events

 $\rightarrow\,$ Events not passing the final FD trigger selection

 \rightarrow 10% of them are randomly stored

SD-Calibration in energy

Estimator of the energy of the surface detector calibrated with a subset of **hybrid measurements reconstructed** *independently* by the SD and FD

data-driven estimation of the energy

$$E_{
m FD} = AS^B_{38}$$

E > 10^{18.4} eV
 σ (E) : 22% - 7%

$$E_{
m FD} = AN_{19}^B$$

E > 10^{18.6} eV
 σ (E) ~ 19%

Energy scale and energy resolution

Both energy scale and energy resolution of the Pierre Auger Observatory are obtained using hybrid events

Systematic uncert. in energy scale	
Fluorescence yield	3.6%
Atmosphere	3.4% - 6.2%
FD calibration	9.9%
FD profile recon.	6.5% - 5.6%
Invisible energy	3% - 1.5%
Energy scale stability	5%
TOTAL	14%

SD-1500m, energy systematics

The Pierre Auger Collaboration (2020), Phys. Rev. D 102 (2020) 062005

Exposure of the detectors

Surface Detectors: above energy threshold, it reduces to a geometrical problem \rightarrow count of active hexagon cells and independent of energy

Fluorescence Detectors: exposure from detailed MC simulation of FD events including the status of atmosphere and detector \rightarrow **increase with energy**

Spectrum systematics

The Pierre Auger Collaboration (2021), Eur. Phys. J. C 81 (2021) 966 The Pierre Auger Collaboration (2020), Phys. Rev. D 102 (2020) 062005

Unfolding procedure applied to account for the detector effects Energy spectra consistent within the systematic uncertainties after rescaling E³ [eV² km⁻² sr¹ yr¹] 10³⁸ Normalisation shifts after PRELIMINARY combination of all spectra: <1% SD-1500 m vertical +5% SD-1500 m inclined SD 1500 vertical* -2% SD-750 m 10³⁷ SD 1500 inclined <1% Hybrid SD 750⁺ +7% Cherenkov hybrid Cherenkov 19.5 20 20.5 16 16.517.518 18.5 19 17 $\log_{10}(E/eV)$

Combination performed considering, for each data-sets, **adjustable shifts in exposure and energy within uncorrelated uncertainties**

Combined spectrum

V. Novotný (2021), PoS(ICRC2021)691

A glimpse into the (near?) future

A denser array: **SD-433 m** \rightarrow **E > 50 PeV** (θ < 45°) \rightarrow reinforcements of the measurements of the **second knee** with a 6th **spectrum**

G. Silli (2021), PoS(ICRC2021)224

Upgrade of SD (addition of scintillators on top of the WCD) + muon detectors:

 \rightarrow spectrum for different mass primaries

Interpretation of the observed spectral features using the **mass composition data**

Eleonora Guido's talk

+ arrival direction data

Teresa Bister's talk

Trugarez !*

* Thank you!

Back-up

Exposure of Cherenkov dominated FD-Events

Mass composition uncertainties:

Fiducial volume cuts on shower geometry:

SD-750m, spectrum systematics

SD-1500m, declination dependency

Systematics uncertainties on combined spectrum

Comparison with other experiments

