Testing the Compatibility of the Depth of the Shower Maximum Measurements performed at Telescope Array and the Pierre Auger Observatory

Auger-TA Mass Composition Working Group Report

<u>D.R. Bergman</u>, J. Bellido, V. de Souza, R. Engel, Z. Gerber, J.H. Kim, E. Mayotte, O. Tkachenko, M. Unger, A. Yushkov for the TA and Auger collaborations

Context and History

Both TA and Auger measure the nuclear composition of UHECRs by observing the X_{max} distribution with SD/FD hybrid observations.

The conclusions and interpretations of these measurements have differed between the two experiments which has created confusion amongst outside observers.

TA and Auger employ different strategies in selecting the data sets for the measurements. Auger selects events to minimize biases in X_{max} acceptance and reconstruction, and corrects X_{max} moments for remaining biases.

TA selects all well-understood events, and models biases in MC simulations.

Direct comparison of X_{max} distributions and the moments of those distributions is hampered by this difference in strategy,

Context and History

Beginning with UHECR 2012, the Mass Composition Working Group has tried to assess the degree of agreement between Auger and TA X_{max} distribution measurements.

The minimally-biased Auger X_{max} distributions are compared to mixtures of four nuclear species (H, He, N, Fe) as produced by a high-energy interaction model. The relative fractions can be taken as representing the Auger measurement, at a given energy. This is the Auger-Mix.

Using the same high-energy interaction model, a full simulation of the TA detector and analysis is done, and the species are mixed (using "thrown" values) according to the Auger-Mix. This is taken as being what TA *would have seen* given Auger's measurements. We compare this directly to TA measurements.

Context and History

At UHECR 2014, the Auger-Mix was compared to TA MD hybrid using just $\langle X_{max} \rangle$. The result showed agreement within systematic uncertainties.

At UHECR 2016 & 2018, the Auger-Mix using the QGSJetII-04 and EPOS-LHC (by re-weighting of QGSJetII-04) high-energy interaction models was compared to TA BR/LR hybrid data, for both $\langle X_{max} \rangle$ and $\sigma(X_{max})$ (the 1st and 2nd moments of the distributions).

While QGSJetII-04 works well to simulate events in TA, it performs poorly in creating the Auger-Mix. Thus, we present a new comparison using the Sibyll 2.3d high-energy interaction model.

TA and Auger Data, mean X_{max}

TA data from ApJ-858-76. Auger data from PoS(ICRC2019)482. Comparisons will only be made for energies above 10^{18.2} eV. Statistical and systematic errors are shown.

TA and Auger Data, $\sigma(X_{max})$ (width)

TA data from ApJ-858-76. Auger data from PoS(ICRC2019)482. Comparisons will only be made for energies above $10^{18.2}$ eV. Statistical and systematic errors are shown. TA data above $10^{19.2}$ eV is not shown due to having fewer than 50 events in the bins.

The effect of different HE interaction models

The effect of using different high-energy interaction models can be seen in comparing $\langle X_{max} \rangle$ from TA to the predictions for single species depths from the models.

We also see the effect of TA acceptance and reconstruction biases. Protons, with a long deep tail in X_{max} are more strongly affected by acceptance bias

The effect of different HE interaction models

The difference between QGSJetII-04 and Sibyll 2.3d in σ (X_{max}) is much smaller.

TA reconstruction biases tend to broaden the narrow distributions.

(N.B. Sibyll 2.3d MC has considerably higher event statistics than QGSJetll-04, which affects the reconstruction of high-energy proton events.)

Finding the Auger-Mix

To find the best fractions of H, He, N and Fe to describe the Auger data, template X_{max} distributions from each species and for a given HE model are fit to the observed Auger X_{max} distribution. This is done in appropriate energy bins.

Putting together the appropriately weighted templates, should reproduce *both* the $\langle X_{max} \rangle$ and the $\sigma(X_{max})$ of the Auger data.

QGSJetII-04 (used in UHECR 2018 comparisons) can't reproduce both mean and sigma.

Problems with QGSJetII-04

QGSJetII-04 fraction-fits of Auger can reproduce $\langle X_{max} \rangle$ but cannot reproduce $\sigma(X_{max})$ at the same time. (*N.B.: QGSJetII-04 can be used to describe TA SD data very well.*)

Problems with QGSJetII-04

QGSJetII-04 fraction-fits of Auger can reproduce $\langle X_{max} \rangle$ but cannot reproduce $\sigma(X_{max})$ at the same time. (*N.B.: QGSJetII-04 can be used to describe TA SD data very well.*)

Better with Sibyll 2.3d

Sibyll 2.3d fraction-fits of Auger can reproduce $\langle X_{max} \rangle$ and $\sigma(X_{max})$ at the same time.

Generating Sibyll 2.3d MC sets for TA

Used CORSIKA (v7.74_02) to generate events:

250 events in 0.1 dex steps from 10¹⁸ to 10^{20.5} eV, and for each species (H, He, N, Fe). Zenith angle drawn from sin.cos distribution to get isotropic selection. CORSIKA particle file output is de-thinned (Stokes *et al.*, arXiv:1104.3182) and GEANT simulation "tile file" is created (TA SD response in many tiles around detector).

Tile files are multi sampled around TA detector to create isotropic dataset and with a spectrum as found by HiRes.

Fluorescence response of BR/LR also simulated using longitudinal profile from CORSIKA.

TA SD and FD response is simulated, including digitization of signals and triggering.

MC data is analyzed identically to actual TA data, with same cuts.

 X_{max} histograms are created by *weighting* species according to AugerMix fractions

Results of Comparison with Sibyll 2.3d

Now compare $< X_{max} >$ results from AugerMix@TA with TA BR/LR measurements.

Blue band includes TA systematic error with dotted lines having Auger systematic added in quadrature

Red band includes Auger systematic errors

Means of AugerMix (Sibyll 2.3d) agree well with TA BR/LR hybrid measurements

Comparing Sibyll to QGSJet

The AugerMix result using Sibyll 2.3d is very similar to the old AugerMix result with QGSJetII-04

Results of Comparison with Sibyll 2.3d

Now compare $\sigma(X_{max})$ results from AugerMix@TA with TA BR/LR measurements.

Blue band includes TA systematic uncertainty on width (*not* including aerosols)

Red band includes on Auger systematic errors

The widths of the AugerMix (Sibyll 2.3d) distributions show considerable tension with TA BR/LR hybrid measurements in the upper 10¹⁸ eV decade

Comparing Sibyll to QGSJet

The AugerMix result using Sibyll 2.3d is significantly narrower than the old AugerMix result with QGSJetII-04. This is consistent with the QGSJetII-04 AugerMix producing wider distributions than data

Shape Comparisons

Use Anderson-Darling test to compare TA data in an energy bin with the AugerMix, removing difference in mean

While many AD p-values are reasonable, some (including the energy bin with the largest difference in width) are too small to show agreement in shape (less than 5%)

18

Shape Comparisons

Use Anderson-Darling test to compare TA data in an energy bin with the AugerMix, removing difference in mean

While many AD p-values are reasonable, some (including the energy bin with the largest difference in width) are too small to show agreement in shape (less than 5%)

Smearing the AugerMix by an additional 18.9 g/cm² (to account for aerosol variation in TA data but not in the MC) makes the agreement much better

Conclusion

We have constructed a representation of Auger X_{max} measurements as would have been seen in the TA detector using the Sibyll 2.3d high-energy interaction model.

This representation agrees with TA < X_{max} > measurements well, but there is disagreement at some energies in $\sigma(X_{max})$. This disagreement is plausibly due to the handling of X_{max} resolution due to varying aerosols at TA

A robust difference between the Auger and TA X_{max} measurements **has not been** found

A journal publication from the Mass Composition Working Group is forthcoming

Back-up

Telescope Array X_{max} Distributions

Comparing AugerMix shapes to TA

Anderson-Darling Comparison of shapes

