

MEASUREMENTS OF COSMIC RAY MASS COMPOSITION WITH THE ICECUBE NEUTRINO OBSERVATORY

SOUTH DAKOTA MINES

Outline

- Detector IceCube & IceTop
- Mass Composition Analysis Results

Future Detector Enhancements

Matthias Plum for the IceCube collaboration South Dakota School of Mines & Technology

> UHECR 2022 - L'Aquila October 3, 2022

Supported by U.S. National Science Foundation-EPSCoR (RII Track-2 FEC, award #2019597)

m **ICECUBE NEUTRINO** SOUTH **OBSERVATORY** DAKOTA MINES

Unique astroparticle detector at the South Pole for high energy particles

IceTop

- 1 km² air shower array
- 81 x 2 Ice Cherenkov Tanks with 2 DOMs each
- Mostly electromagnetic component and mainly GeV muons
- PeV EeV energy range

IceCube

- 1 km³ instrumented volume
- 86 strings with ~5000 DOMs
- TeV muons
- Neutrinos (indirect)

10/3/22

2

2835 m.a.s.l

1450 m

2450 m

ICETOP-ONLY RECONSTRUCTION

Lateral signal distribution in VEM:

$$S(R) = S(R_0) \left(\frac{R}{R_0}\right)^{-\beta}$$

(Double Logarithmic Parabola)

tion in VEM: $R - \kappa \log_{10}\left(\frac{R}{R_0}\right)$

- Energy reconstruction using
 maximum-likelihood procedure
- Reconstruct core position, direction and shape/normalization of LDF from the deposited charge
- Includes effects snow coverage by assuming an 'effective attenuation length' λ (range 2.10 – 2.25m)

ICETOP/ICECUBE RECONSTRUCTION

High energy muons (>500 GeV)

- Energy and mass proxy reconstruction with neural network technique
- Use best available detector simulation including snow coverage

https://arxiv.org/abs/1906.04317

- Data 2011-2013
- $Log(E/GeV) = 6.5 \dots 9.0$
- Primary elementary groups
 - H, He, CNO, Fe
- Input variables
 - IceTop
 - IceCube

- Mass spectrum divided in In(A)
- A = mass number
- Results are analyzed in mass groups corresponding to similar nuclei
- These results are highly correlated with each other
- Sum of all elementary groups must be conserved

SYSTEMATIC UNCERTAINTY

Stef, Verpost, ECRS 2022

SOUTH DAKOTA MINES

MUON MULTIPLICITY

Neural network reconstruction

Using

- RNN + Dense layers
- Inputs
 - Shower size S₁₂₅
 - Zenith θ
 - Energy loss vector
- Outputs
 - Primary energy E₀
 - Number of muons > 500 GeV in shower at surface N_{μ} 1450 1550 1650 1750

Stef, Verpost, ECRS 2022

MEASURING HE

Fe IceCube Preliminary D 6.506.758.25 7.007.75 8.00 8.50 7.257.50 $\log_{10} E_0 / \text{GeV}$

Application to experimental data

- 10% of 1 year (05/2012 05/2013)
- Compared to expectations from Sibyll 2.1

10/3/22

Systematic uncertainties

HADRONIC INTERACTION MODELS

Average muon multiplicity > 500 GeV

- Hadronic model dependent
- Compared to corresponding MC predictions
- Shaded area: total systematic uncertainty

- Additional scintillator + radio station planned to mitigate increasing snow coverage + add composition sensitivity
- Scintillator triggers similarly IceTop. Radio is passively readout in case of a surface trigger
- First production level R&D station deployed in Jan.2020

Scintillator panel

ICETOP-SOUTH DAKOTA MINES

high energy shower

INAGING AIR CHERENKOV TELESCOPES ICEACT

Low energy (10 TeV - 200 TeV) air shower particle barely reach the ground making 'classic' surface reconstruction challenging

IceAct

- measure the el.-mag. shower component inside the atmosphere
- combine with particle footprint on ground level and in-ice muon reconstruction:
 - calibration of geometry and energy
 - hybrid composition studies
 - possible veto capability
- Since 2019 two R&D telescopes are deployed at South Pole and taking data

The telescopes can only operate during the Antarctic night (roughly 4.5 month non-stop) and good atmospheric conditions

• Duty cycle ~ 20%

m **IMAGING AIR CHERENKOV TELESCOPES** SOUTH ICEACT DAKOTA MINES

- Simultaneously determines:
 - Air shower geometry
 - Energy
 - X_{max}

for vertical low energy air shower

- 50 cm Fresnel lens
- 50 cm focal length
- 61 hexagonal pixel

First approach of single telescope Graph Neural Networks reconstruction

SOUTH DAKOTA MINES

FUTURE DETECTOR

IceCube Gen2

- Larger surface area
- Bigger in-ice volume
- Better calibration

SOUTH DAKOTA MINES

SUMMARY & OUTLOOK

- IceCube Neutrino observatory is a unique cosmic ray detector
 - Mass composition is measured from PeV to EeV
 - Change in mass composition as a function of energy visible
 - Measurement of high energy muon multiplicity allows to study seasonal variations and hadronic interaction models
- Future
 - Surface enhancement with scintillation detectors, radio antennas and imaging air-Cherenkov telescopes will enable a better analysis in the future

BACKUP

18

SOUTH DAKOTA MINES

ENERGYSPECTRUM

19

SOUTH DAKOTA MINES

ENERGY RANGE

https://arxiv.org/pdf/1902.08124.pdf

m SOUTH DAKOTA MINES

SCINTILLATOR ONLY MASSCOMPOSITION

DOI: 10.22323/1.358.0332

(a) Zenith angular range: $0-27^{\circ}$

(b) Zenith angular range: $27-40^{\circ}$

- - Geometry

23