

The depth of the shower maximum of air showers measured with AERA

Bjarni Pont For the Pierre Auger Collaboration

Postdoc Radboud University (NL)

In this talk

- **Goal:** Measure cosmic-ray mass composition (p, He, ..., Fe, ...)
- Motivation: Mass composition <-> sources of cosmic rays at transition between Galactic and extra Galactic (~10¹⁷⁻¹⁹eV)

Contents:

- Introduction: mass sensitivity & AERA
- Method: Matching air shower simulations to measured radio signals
- Results:
 - Hybrid Radio-Fluorescence measurements
 - Method resolution
 - Moments of the X_{max} distribution

- -> unique cross-check
- -> competitive technique
- -> compatible

Radboud University Introduction: Radio footprint is sensitive to mass

Radboud University Introduction: AERA at the Pierre Auger Observatory

Auger Engineering Radio Array

- 153 autonomous radio antennas
- Energy range: 10¹⁷-10¹⁹ eV
- Frequency range: 30-80 MHz

7 years of AERA data for X_{max} analysis:

- ~600 high-quality showers after anti-bias and reconstruction cuts (E=10^{17.5} to 10^{18.8} eV)
- Each also has shower energy from SD
- 53 hybrid showers with independent FD and AERA reconstructions of X_{max}

Radboud University Method: Reconstructing X_{max} from the radio footprint

- + AERA station layout + 240 additional 'star-shape' stations centered around core (for interpolation)
- + GDAS atmospheres (Global Data Assimilation System) at Auger at time of data
- + **Magnetic field** model at time of data

Radboud University Method: Reconstructing X_{max} from the radio footprint

Radboud University Method: Reconstructing X_{max} from the radio footprint

 <u>Step 2</u> – bias correction per event: Reconstruct X_{max} for each simulation with *leave-one-out cross validation*.

-> {Parabola vs MC} values of all 15+12 simulations:

Allows to correct for bias & estimate σX_{max} at any parabola-Xmax value; (KDE model)

 <u>Step 2</u> – bias correction per event: Reconstruct X_{max} for each simulation with *leave-one-out cross validation*.

-> {Parabola vs MC} values of all 15+12 simulations:

Allows to correct for bias & estimate σX_{max} at any parabola-Xmax value; (KDE model)

Bjarni Pont, for the Pierre Auger Collaboration — UHECR2022 — October 2022

Auger has unique Radio-Fluorescence setup:

- X_{max} of **53** hybrid-showers with AERA and FD; (Are independent observations!)
- No significant bias radio X_{max} w.r.t. fluorescence X_{max}.
- Provides independent checks on:
 - X_{max} reconstruction methods
 - shower physics (probe different aspects)

Radboud University Results: Measured AERA X_{max} distribution

- In agreement with Auger FD in mean and width.
- (Mixed)-light composition at $E=10^{17.5}-10^{18.5}$ eV.

PIERRE AUGER

Systematic uncertainties on the Xmax **distribution**

• Basic effects

- : hadronic model in CORSIKA, GDAS atmosphere, Auger SD energy scale
- Method specific effects : data selection (acceptance), X_{max} reconstruction
- low-number statistics
- Cross-checks

- : effects of possible outlier values and reconstruction quality cuts
- : residual bias checks with Zen/Az/core/... vs $\langle X_{max} \rangle$ and E

Take home messages

AERA X_{max} compatible with Auger Fluorescence

Independent support to our understanding of shower physics.

Extensive systematic uncertainty studies are key

What's next? The technique is ready for next-gen radio experiments (SKA, ...)

Backup

Radboud University Results: AERA vs other (radio) experiments

- No general radio-bias w.r.t Auger fluorescence (within uncertainties).
- Highlights that systematic uncertainties are key to interpret and compare.
- LOFAR-AERA differences are being investigated in a working group

