Diffusive shock acceleration in galactic wind bubbles

Enrico Peretti

Co-financed by the Connecting Europe Facility of the European Union

Outline

- Wind bubbles: structure and evolution
- Model for particle acceleration in wind bubbles
 - Solution: radial distribution and spectra
 - Ultra Fast Outflows

Outline

• Wind bubbles: structure and evolution

• Model for particle acceleration in wind bubbles

• Solution: radial distribution and spectra

• Ultra Fast Outflows

Wind Bubbles

• Cavity in the ISM excavated by the activity of a source blowing a steady wind with high velocity and large opening angle

Wind Bubbles

- Cavity in the ISM excavated by the activity of a source blowing a steady wind with high velocity and large opening angle
- Main macroscopic parameters:
 - 1. Terminal wind speed: V_{∞}
 - 2. Mass loss rate: \dot{M}

$$u_1 \gg c_s$$

Collision with ISM \rightarrow wind shock

1. The outflow is launched - t_0

2. Free expansion phase - t_1

1. The outflow is launched - t_0

2. Free expansion phase - t_1

3. Deceleration phase - $t > t_1$

 Rapid fall of acceleration efficiency in time

Mach number dependent on the external medium 2. Free expansion phase - t_1

3. Deceleration phase - $t > t_1$

WR31a- Image credit: ESA/Hubble & NASA Acknowledgement: Judy Schmidt

> Westerlund 2 - Image credit: NASA / ESA / Hubble Heritage Team / STSci / AURA / A. Nota / Westerlund 2 Science Team

NGC7635- Image credit: NASA Goddard Space Flight Center from Greenbelt, MD, USA **NGC3079 - Image credit:** X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

M82 - Image credit: Daniel Nobre

 $\frac{\text{Massive stars:}}{V_{\infty} \approx 10^2 - 10^3 \text{km/s}}$ $\dot{M} \lesssim 10^{-5} M_{\odot}/\text{yr}$ $R \approx 1 - 10 \text{ pc}$

WR31a- Image credit: ESA/Hubble & NASA Acknowledgement: Judy Schmidt

> Westerlund 2 - Image credit: NASA / ESA / Hubble Heritage Team / STScl / AURA / A. Nota / Westerlund 2 Science Team

NGC7635- Image credit: NASA Goddard Space Flight Center from Greenbelt, MD, USA **NGC3079 - Image credit:** X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

M82 - Image credit: Daniel Nobre

 $\frac{\text{Massive stars:}}{V_{\infty} \approx 10^2 - 10^3 \text{km/s}}$ $\dot{M} \lesssim 10^{-5} M_{\odot}/\text{yr}$ $R \approx 1 - 10 \text{ pc}$

WR31a- Image credit: ESA/Hubble & NASA Acknowledgement: Judy Schmidt

 $\frac{\text{Star clusters:}}{V_{\infty} \approx 10^{3} \text{km/s}}$ $\dot{M} \approx 10^{-4} M_{\odot}/\text{yr}$ $R \approx 10 - 10^{2} pc$

age credit: NASA / ESA / Hubble Heritage A / A. Nota / Westerlund 2 Science Team

NGC3079 - Image credit: X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

NGC7635- Image credit: NASA Goddard Space Flight Center from Greenbelt, MD, USA

Starbursts:

 $V_{\infty} \approx 10^3$ km/s

 $\dot{M} \approx 10^{-2} - 10^2 M_{\odot}/{
m yr}$

 $R \approx 1 - 10 \, kpc$

 $\frac{\text{Massive stars:}}{V_{\infty} \approx 10^2 - 10^3 \text{km/s}}$ $\dot{M} \lesssim 10^{-5} M_{\odot}/\text{yr}$ $R \approx 1 - 10 \text{ pc}$

WR31a- Image credit: ESA/Hubble & NASA Acknowledgement: Judy Schmidt

 $\frac{\text{Star clusters:}}{V_{\infty} \approx 10^{3} \text{km/s}}$ $\dot{M} \approx 10^{-4} M_{\odot}/\text{yr}$ $R \approx 10 - 10^{2} pc$

age credit: NASA / ESA / Hubble Heritage A / A. Nota / Westerlund 2 Science Team NGC3079 - Image credit: X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

M82 - Image credit: Daniel Nobre

NGC7635- Image credit: NASA Goddard Space Flight Center from Greenbelt, MD, USA

 $\frac{\text{Massive stars:}}{V_{\infty} \approx 10^2 - 10^3 \text{km/s}}$ $\dot{M} \lesssim 10^{-5} M_{\odot}/\text{yr}$ $R \approx 1 - 10 \text{ pc}$

 $\frac{\text{Starbursts:}}{V_{\infty} \approx 10^{3} \text{km/s}}$ $\dot{M} \approx 10^{-2} - 10^{2} M_{\odot}/\text{yr}$ $R \approx 1 - 10 \text{ kpc}$

WR31a- Image credit: ESA/Hubble & NASA Acknowledgement: Judy Schmidt

 $\frac{\text{Star clusters:}}{V_{\infty} \approx 10^{3} \text{km/s}}$ $\dot{M} \approx 10^{-4} M_{\odot}/\text{yr}$ $R \approx 10 - 10^{2} pc$

age credit: NASA / A / A. Nota / Wester $\frac{\text{AGN:}}{V_{\infty}} \approx 10^{3} - 10^{5} \text{km/s}$ $\dot{M} \approx 10^{-3} - 10^{3} M_{\odot}/\text{yr}$ $R \approx 10^{-3} - 10^{4} pc$

NGC3079 - Image credit: X-ray: NASA/CXC/University n/J-T Li et al.; Optical: NASA/STSc

M82 - Image credit: Daniel Nobre

NGC7635- Image credit: NASA Goddard Space Flight Center from Greenbelt, MD, USA

$$E_{max} \approx \xi q B \frac{u_1}{c} R_{sh}(u_1, \dot{M})$$

$$E_{max} \approx \xi \ q \ B \ \frac{u_1}{c} R_{sh}(u_1, \dot{M})$$

$$U_B = \epsilon_B P_{ram}(u_1, \dot{M})$$

$$E_{max} \approx \xi \ q \ B \ \frac{u_1}{c} R_{sh}(u_1, \dot{M})$$

$$U_B = \epsilon_B P_{ram}(u_1, \dot{M})$$

 $E_{max} = E_{max}(u_1, \dot{M})$

$$E_{max} \approx \xi \ q \ B \ \frac{u_1}{c} R_{sh}(u_1, \dot{M})$$

$$U_B = \epsilon_B P_{ram}(u_1, \dot{M})$$

$$E_{max} = E_{max}(u_1, \dot{M})$$

$$X \propto q \ \epsilon_B^{1/2} \ \dot{M}^{1/2} u_1^{3/2}$$

$$U_B = \epsilon_B P_{ram}(u_1, \dot{M})$$

$$K \propto q \ \epsilon_B^{1/2} \ \dot{M}^{1/2} u_1^{3/2}$$

$$X \propto q \ \epsilon_B^{1/2} \ \dot{M}^{1/2} u_1^{3/2}$$

Outline

• Wind bubbles: structure and evolution

• Model for particle acceleration in wind bubbles

• Solution: radial distribution and spectra

• Ultra Fast Outflows

Acceleration and transport model

 $\mathbf{0} = -r^2 u(r)\partial_r f + \partial_r [r^2 D(r,p)\partial_r f] + \frac{p}{3}\partial_r [r^2 u(r)]\partial_p f - r^2 \Lambda(r,p) + r^2 Q(r,p)$

Acceleration and transport model

$$r^2 u(r)\partial_r f = \partial_r [r^2 D(r,p)\partial_r f] + \frac{1}{3}\partial_r [r^2 u(r)]p\partial_p f \neq r^2 Q(r,p) - r^2 \Lambda(r,p)$$

Acceleration and transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

Outline

• Wind bubbles: structure and evolution

• Model for particle acceleration in wind bubbles

• Solution: radial distribution and spectra

• Ultra Fast Outflows

Solution: radial behavior and spectra **Advection dominated Diffusion dominated** 10^{0} $F(r^*, E)[$ arbitrary units] r / R_{sh}=1 r / R_{sh}=0.75 r / R_{sh}=0.5 j_{esc} / u₂ $F(r,E^{st})[$ arbitrary units]100 10-1 10^{-1} 10^{-2} 10⁻² $E_{max}/10^2$ 10-3 $E_{max}/10$ E_{max} 10-3 10^{-4} 10⁻² 10-1 10⁰ 10¹ $2 \times 10^{\circ}$ 3×10° 4×10° E^2 100 E/E_{max} R/R_{sh}

Advection dominated

Diffusion dominated

Negligible energy losses result in no relevant difference between the spectrum at the shock and the escaping flux

100

 $2 \times 10^{\circ}$

 R/R_{sh}

 3×10^{0}

LT.

Outline

• Wind bubbles: structure and evolution

• Model for particle acceleration in wind bubbles

• Solution: radial distribution and spectra

• Ultra Fast Outflows

AGN-driven wind bubbles (UFOs)

Seyfert NGC3079 - Image credit: X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

1arcmin=1115px

Seyfert NGC3079 - Image credit: X-ray: NASA/CXC/University of Michigan/J-T Li et al.; Optical: NASA/STSc

Ultra-Fast Outflows (UFOs)

- Dist. scale = $10^{-3} 10$ pc
 - $v \approx 0.03 c 0.3 c$
 - $\Omega \gtrsim 3\pi$ sr
 - $\dot{M} \approx 10^{-3} 1 M_{\odot} yr^{-1}$

The UFO wind bubble

$$r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$$

•
$$u_1 = 0.28 c$$

•
$$\dot{M} = 0.05 M_{\odot} yr^{-1}$$

• $l_c = 0.05 \, pc$

•
$$T_{age} = 1000 \ yr$$

Take home messages

- Diffusive shock acceleration can take place efficiently at wind shocks of wind bubbles
- Maximum energy: PeV can be reached in SCs, 10² PeV in SBGs & EeV in AGN-driven winds (UFOs)
- UHECRs can be injected by UFOs in the host galaxy featuring a hard spectral slope at the highest energies
 - UFOs can be bright neutrino sources while being opaque to gamma rays

THANKS FOR YOUR ATTENTION!

Solution: radial behavior and spectra

