

A machine learning approach for mass composition analysis with TALE-SD data

Ryuhei Arimura Osaka Metropolitan University for the Telescope Array Collaboration

October 3rd, 2022 UHECR 2022

3rd Oct. 2022

UHECR2022@Gran Sasso, Italy

Outline

- TA TALE Experiment
- Motivation of mass-composition analysis with TALE-SD
- Machine learning approach
- The prediction of the machine learning model
- Summary and Future

Cosmic ray around the 2nd knee

and surface detector

TALE TA Low energy Extension

Motivation of Mass composition analysis with TALE-SD

- Advantage of SD array
 >over 90% duty cycle, high statistics
 (FD → 10% duty cycle)
 - Application to cosmic ray anisotropy per composition

 Event display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display
 Image: Construction of the second display

 Image: Construction of the second display

Approach
 ≻machine learning

Composition-sensitive parameters $(\alpha_1, \alpha_2, \alpha_3, ...)$

Machine learning approach

Machine learning model Outline

proton/iron cosmic rays by MC simulation discrimination model (binary classification)

machine learning model Image

22 Composition-sensitive parameters with TALE-SD

22 mass-composition sensitive parameters from the characteristics of air showers \rightarrow

Composition-sensitive parameters with TALE-SD proton iron

MC simulation Data set and Cut

Data Set	proton	iron	
MC Simulation	CORSIKA		22 ★ TALE-FD(MD) TALE-SD
Interaction model	QGSJET II-04		20
Energy	10 ¹⁸ eV (fixed)		
Zenith Angle	30° (fixed)		
Azimuth Angle	0° – 360°		
Core position	Uniform in the red circle		12
N _{TALE-SDs}	78 (trigger : any4)		
N _{generate}	100,000	100,000	Shower Core Position
N _{reconstructed+after Event Cut}	17,121	17,262	
N _{used}	<u>17,121</u>	<u>17,121</u>]

Event Cut

- $N_{\text{SD}} \ge 5$
- $\chi_{G}^{2}/d. \text{ o. f.} \le 4, \chi_{L}^{2}/d. \text{ o. f.} \le 2$
- $\left(\sigma_{\theta}^2 + \sin^2\theta \,\sigma_{\varphi}^2\right)^{0.5} \le 2.5 \,\deg$
- $\sigma_{S_{600}}/S_{600} \le 0.25$
- $N_{\text{useSD}} \ge 1$ (in 1 event) 3rd Oct. 2022

N_{useSD} condition (SD selection)

- \succ t_{record WF} ≤ 2.56 µs (128 bin)
- \succ N_{bin} (>15 FADC count) ≥ 2
- \succ N_{bin} (>45 FADC count) ≥ 1
- Not saturate
- \succ 400 m ≤ r ≤ 700 m

The prediction of the machine learning model

<u>Input α :</u>

- \rightarrow 22 composition-sensitive parameters
- parameters of geometry fit function
- parameter of lateral distribution
- the thickness of an air shower

output β : $0 \le \beta \le 1$

proton

iron

 $\rightarrow 0$

 \rightarrow 1

Summary and Future

• <u>Summary</u>

- Search composition-sensitive parameters
- Input 22 Event-by-Event parameters to machine learning
- Current Accuracy : 67.14% ($\theta = 30^{\circ}, E = 10^{18} \text{ eV}$)

Future

• To improve the accuracy of machine learning model,

Addiction of Detectors' parameters as input
Search new composition-sensitive parameters
Using Graph Neural Network

Backup

- Accuracy and loss transition
- Zenith angle and energy distribution
- Parameter definition
 - Parameter of geometry fit function
 - Parameter of lateral distribution
 - Thickness of an air shower (upper/lower layer)

Accuracy and loss transition

Zenith angle

- proton - iron

Primary Energy

Lateral Trigger Probability $\rightarrow P_{\text{Lateral Trigger}}$

$$P_{\text{Lateral Trigger}}(r_L) = \frac{N_{\text{Trigger}}}{N_{\text{Trigger}} + N_{\text{non-Trigger}}}$$

	*	
r_L	Lateral distance between shower core and detector position	
N _{trigger}	number of triggered stations contained within radius $= r_L$	
N _{non-trigger}	number of untriggered stations contained within radius = r_L	TALE-SD array
		★ TALE-FD(MD) • ● Triggered SD

19

Ex) P(2000m) = 13/40 = 0.325

- Circle of radius $(r_L = 2000 \text{ m})$

3rd Oct. 2022

LDF function slope

$$\rho(r) = A \left(\frac{r}{91.6 \text{ m}}\right)^{-1.2} \left(1 + \frac{r}{91.6 \text{ m}}\right)^{-\eta_{s}+1.2} \left(1 + \left[\frac{r}{1000 \text{ m}}\right]^{2}\right)^{-0.6}$$

- the parameter of air shower longitudinal development
- As η_s is a free parameter, $\rho(r)$ is fitted using χ^2 test and r

S_b parameter • <u>Definition</u>

$$S_b = \frac{1}{N_{\rm SD}} \sum_{i}^{N_{\rm SD}} \left[\rho_i \times \left(\frac{r_i}{r_0} \right)^b \right]$$

$ ho_i$	Particle density of <i>i</i> -th detector
r_i	Distance from the shower axis [m]
r_0	Reference distance [m] \rightarrow 400 m
b	Separation parameter \rightarrow b = 2

Parameters of lateral distribution

signal size at r = 200m s200 hist_proton 900 Entries 17121 Mean 289 800 F Std Dev 76.66 700 hist iron 600 Intries 17262 500 Mean 267.2 Std Dev 77.97 400 F 300F 200F 100 0 100 150 200 250 300 350 400 450 500 50 0 s200[VEM/m²]

signal size at r = 600m s600 hist_proton Entries 17121 1200 Mean 7.752 Std Dev 2.027 1000 hist_iron Entries 17262 800 Mean 7.163 600 Std Dev 2.082 400 200 6 8 10 12 14 s600[VEM/m²]

5 20 25 30 ° 00.05 0 N_{so} UHECR2022@Gran Sasso, Italy

signal size at r = 1000m s1000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 $P_{\text{Lateral Trigger}}$ (1200m $\leq r_{\text{L}} \leq 3000$ m)

0.1

0.15

0.2

P_{lateral trigger}

1200

1000

800

600

400

200

2500

2000

1500

1000

500

hist_proton

Entries 17121

Std Dev 0.2814

hist iron

Entries 1726

Std Dev 0.2913

Mean 0.9954

s1000[VEM/m²]

hist_proton

Entries 17121

Mean 0.06122

Std Dev0.04428

hist iron

Entries 1726

Mean 0.07805

Std Dev0.04976

0.25

Mean 1.077

3rd Oct. 2022

Detectors' average • Definition of Mean for thickness parameters

 \rightarrow "M_{thickness}"

$t_{ m thickness} ightarrow$	$t_{ m rise}$, $t_{ m middle}$, $t_{ m fall}$, $t_{ m width1.0Mip}$, $t_{ m width0.3Mip}$				
N _{good SD}	# of SDs that meet the following Signal and r Cut				
Signal Cut		r Cut			
> WF recording time is within 128 bin		t _{rise}	$400 \text{ m} \le r \le 1000 \text{ m}$		
\geq 2 or more bins higher than 15FADC		t _{middle}	$0 \text{ m} \le r \le 800 \text{ m}$		
 > 1 or more bins higher than 45FADC > Not saturate 		t_{fall}	$0 \text{ m} \le r \le 800 \text{ m}$		
		$t_{ m width}^{ m 1.0Mip}$	$100 \text{ m} \le r \le 700 \text{ m}$		
		$t_{ m width}^{0.3 m Mip}$	$100 \text{ m} \le r \le 800 \text{ m}$		

Thickness of an air shower (upper/lower layer)

UHECR2022@Gran Sasso, Italy

3rd Oct. 2022

27

proton iron