
† Target : > $10^{19.5} \mathbf{e V}$, ultrahigh-energy cosmic rays, neutrino and gamma rays
\star Huge target volume \Rightarrow Fluorescence detector array

Fine pixelated camera

Smaller optics and single or few pixels

Too expensive to cover a huge area

Low-cost and simplified telescope

500 stations
$\rightarrow 150,000 \mathrm{~km}^{2}$

Scientific goals and characteristics with FAST

- To clarify origins and natures of UHECRs

Dipole as "standard candle"

T. Fujii et al., PoS (ICRC2021) 402
$X_{\text {max }}$ at highest

\uparrow Directional anisotropy on spectrum and composition with $10 \times$ (Auger or TAx4) exposure
\downarrow Pros
\uparrow Calorimetric energy determination
\uparrow Mass-composition sensitivity using $\boldsymbol{X}_{\text {max }}$
\uparrow Less dependent on hadronic interaction models

\rightarrow Cons

\downarrow Low duty cycle, $10-20 \%$
\uparrow Many calibration components(PMT gains, Optics, atmospheric parameters, telescope direction)
\uparrow Understanding directional exposure
\uparrow Calibration source: large-scale dipole anisotropy
-Stand-alone operation required

Validations of the FAST concept

FAST@TA observations

\uparrow Remote controlling observation
\downarrow Synchronized operation with external triggers from
Telescope Array fluorescence detector (TA FD)
$\downarrow 80 \%$ FoV of TA FD

TA FD FoV (12 telescopes, $\left.33^{\circ} \times 108^{\circ}\right)$
Elevation [deg]

> | Vertical laser signal at 21 km |
| :---: |
| (280 shot average) |

Azimuth [deg]
FAST FoV (3 telescopes, $30^{\circ} \times 90^{\circ}$)

Automated all-sky camera

Clear

276 CLF shots from 2018/05/07 06:57:31.994035000

Cloudy

L. Chytka et al. (FAST Collaboration), JINST 15 T10009 (2020)

Cherenkov dominated event

FAST waveforms + Expected signals from top-down reconstruction (Data, Simulation by the best-fit parameters)

FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy $59.8 \mathrm{deg} \quad-96.7 \mathrm{deg} \quad 7.9 \mathrm{~km} \quad-9.0 \mathrm{~km} \quad 842 \mathrm{~g} / \mathrm{cm}^{2} \quad 17.3 \mathrm{EeV}$

Fluorescence dominated event

TA result

FAST result

pmt_0_20190110_063617_657398690

FAST top-down reconstruction (Preliminary)					
Zenith	Azimuth	Core(X)	Core (Y)	Xmax	Energy
33.9 deg	19.3 deg	4.6 km	-4.7 km	$808 \mathrm{~g} / \mathrm{cm}^{2}$	18.8 EeV

 800
me bin [100
ns]

TA SD (Preliminary)				
Zenith	Azimuth	Core(X)	Core(Y)	Energy
36.2 deg	18.0 deg	5.0 km	-4.5 km	15.8 EeV
TA FD (Preliminary)				
33.2 deg	35.8 deg	6.1 km	-5.3 km	20.0 EeV

Reconstructing UHECRs with FAST@TA

- Data period: 2018/Mar/19-2019/Oct/14, 225 hours
\& Event number: 964 (TA FD) -> 179 (Single-hit with FAST, S/N > 6 $\sigma, \Delta t>500 \mathrm{~ns}$) -> 59 (Multi-hit)
\uparrow The shower parameters are reconstructed by TA FD monocular result

* Use top-down reconstruction for events with multi-hit PMTs above 1 EeV
\downarrow First-guess geometry given from the TA FD

\uparrow Night sky background: $\sigma=10$ p.e. $/ 100 \mathrm{~ns}$, based on field measurements at TA and Auger sites
\uparrow Test data: $X_{\text {max }}$ distributions based on CORSIKA-Conex simulations
$\uparrow 4$ species ($\mathrm{P}, \mathrm{He}, \mathrm{N}, \mathrm{Fe}$) with 3 interaction models (EPOS-LHC, QGSJetII-04, Sibyll 2.3c)

$$
\epsilon=\frac{N_{i}\left(E_{\text {trigger }}^{\text {true }}\right)}{N_{i}\left(E_{\text {thrown }}^{\text {true }}\right)}
$$

3-fold trigger efficiency
100% above
20 EeV

Reconstructed $X_{\text {max }}$ distributions

$50-60 \mathrm{EeV}$

$70-80 \mathrm{EeV}$

40-50 EeV

$80-90 \mathrm{EeV}$

ャ Resolution@~40 EeV, Arrival direction: 4.2 degrees, Core: 465 m, Energy: 8\% Xmax: $30 \mathrm{~g} / \mathrm{cm}^{2} 12$

https://youtu.be/ceN-IsaWcXg

Coincidence event

 with Auger hybridLos Leones site at Auger

Distant laser at 26 km
CLF shots - 578 events

CLF shots - 483 events

Robust enclosure
 Optimization of optics using 4 mirrors

New electronics development

AMP

Dual 32ch FADC (ADS52J90), 64ch FADC, 14bit, 32.5 MSPS, 32 ch

Work: Hiromu Nagasawa

PMT R14688

\downarrow R14688
\downarrow R5912-03

PMT R14688 0° Uniformity

PMT R14688 0° Cross Section (X)

R5912-03, with magnetic shied (FINEMET)

Summary and future plan

\downarrow Fluorescence detector Array of Single-pixel Telescopes

 (FAST)\uparrow Low-cost fluorescence telescope array
\uparrow Promising concept as next-generation cosmic ray observatory to fulfill requirements
\downarrow Anisotropy with mass composition sensitivity

Expected sensitivity with a full-size FAST array
\downarrow Performance estimation

- Arrival direction: 4.2 deg , Core: 465 m
\uparrow Energy: 8\%, Xmax: $30 \mathrm{~g} / \mathrm{cm}^{2}(\Delta \ln A \sim 1)$
Latest results at both northern and southern hemisphere
\uparrow Identical telescopes installed at Auger and TA for cross calibration
\uparrow Next step and challenges
\uparrow Stand-alone operation of FAST array in field

https://www.fast-project.org

Backup

Data/simulation comparison using a distant vertical laser

Spot-size

A UV vertical laser at 21 km away

Directional characteristic (PMT2)

(PMT 4)

Electronics and PMT calibration in laboratory

New electronics development $\quad \begin{gathered}\text { Dual } \\ 142 \mathrm{bith} \\ \text { FADC (ADS52 J90) }\end{gathered}$, 64ch FADC

Calibration using Robot arm (0.2 mm accuracy)

Single Photo Electron

Non-uniformity

Ex He Mirror production at Olomouc, Czech republic

 Fluorescence detector Array of Single-pixel Telescopes

Installation of the FAST prototype

Neural network first guess reconstruction

- Top-down reconstruction (Inverse Monte Carlo)
\star Use all available information from individual pixel traces
\checkmark Computationally expensive
\uparrow Need a reliable first-guess geometry
\uparrow Neural network first guess reconstruction
$\leftrightarrow 3$ input per PMT: total signal, centroid time and pulse hight
\uparrow Kares/Tensorflow in Python, two hidden layers
$\uparrow 6$ outputs: $X_{\text {max }}$, energy, geometry (θ, φ, x, y)
\uparrow Very prompt reconstruction

Installation site survey

F W Stecker, J. Phys. G: Nucl. Part. Phys. 29 R47 (2003)

89 events, $\mathrm{E}>4 \times 10^{19} \mathrm{eV}$ AGASA(red),Haverah(green),Yakutsk(blue),Volcano(black

~20 years ago...

Xmax vs LogE(eV) HiRes stereo (circles): HiRes prototype-MIA (squares), Flys Eye (diamonds)

$E>40 \mathrm{EeV}$
J. Cronin, Nucl.Phys.Proc.Suppl.

138:465 (2005)

Recent results

R.A. Batista et al.,

Front.Astron.Space Sci.
6 (2019) 23

T. Fujii et al., PoS (ICRC2021) 402

