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:: pierre auger observatory ::365 collaborators in 90 institutions in 18 countries
i. Located at 35.2◦ S, 69.2◦ W, 1400 m a.s.l.(Mendoza Province, Argentina)
ii. Main SD array: 1600 water Cherenkovdetectors in a 1.5 km triangular grid
iii. Can detect showers with zenith angles up to

80◦ (northernmost declination visible: +44.8◦)
iv. Taking data since 01 Jan 2004
v. Current dataset: events up to 31 Dec 2020(17 yr = ICRC)

a. 124,000 km2 yr sr effective exposure
b. 39,691 events with EAuger ≥ 8.53 EeV
c. 2635 events with EAuger ≥ 32 EeV



:: telescope array ::140 collaborators in 32 institutions in 7 countries
i. Located at 39.3◦ N, 112.9◦ W, 1400 m a.s.l.(Millard County, Utah, USA)
ii. Main SD array: 507 plastic scintillatordetectors in a 1.2 km triangular grid
iii. Can detect showers with zenith angles up to

55◦ (southernmost declination visible: −15.7◦)
iv. Taking data since 11 May 2008
v. Current dataset: events up to 10 May 2022(14 yr = ICRC + 3 yr)

a. 18,000 km2 yr sr effective exposure
b. 6014 events with ETA ≥ 10 EeV
c. 395 events with ETA ≥ 40.5 EeV



:: exposures ::

Neither Auger nor TA can see the whole sky... howevertheir FOVs overlap near the equator
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:: cross calibration ::

i. The energies of UHECR events are affected by systematicuncertainties: δEsys = 14% for Auger and δEsys = 21% for TA
ii. If we do not cross-calibrate the fluxes we might “observe” spuriousNorth-South anisotropies
iii. Strategy: the flux integrated over the common band in each energybin must be the same if the energies match
iv. Assume a power-law relationship © Tinyakov [Auger and TA collabs.] ICRC2021

EAuger = Ê eα(ETA/Ê )β and ETA = Ê e−α/β(EAuger/Ê )1/β
Ê = 10 EeV

v. PS: this conversion must NOT be used outside of this study
see talk by V Verzi for Auger-TA spectrum WG results
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:: cross calibration ::
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:: dipole and quadrupole ::

In harmonic space
Φ(n̂) = ∑

ℓm
aℓmYℓm(n̂)

The first two moments can be written as
Φ(n̂) = Φavg

(
1 + d⃗ · n̂ + 1

2
n̂ · Qn̂ + . . .

)

They have intuitive theoretical interpretationsThe amps |d⃗ | and |Q| are relatively stable wrt the GMFOnly with a full-sky we can assume nothing about aℓm, ℓ > 2
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:: dipole and quadrupole ::

EAuger [EeV] [8.57, 16) [16, 32) [32,+∞)
ETA [EeV] [10, 19.47) [19.47, 40.8) [40.8,+∞)
dx [%] −0.2 ± 1.1 ± 0.0 +0.9 ± 1.9 ± 0.0 −4.4 ± 3.7 ± 0.1
dy [%] +5.0 ± 1.1 ± 0.0 +4.4 ± 1.9 ± 0.0 +10.0 ± 3.5 ± 0.0
dz [%] −3.0 ± 1.3 ± 1.2 −8.4 ± 2.2 ± 1.3 +3.3 ± 4.4 ± 3.5

Qxx −Qyy [%] −4.3 ± 4.6 ± 0.0 +12.9 ± 8.1 ± 0.0 +39.7 ± 15.0 ± 0.0
Qxz [%] −2.7 ± 2.7 ± 0.0 +4.1 ± 4.7 ± 0.0 +4.9 ± 9.7 ± 0.1
Qyz [%] −4.3 ± 2.7 ± 0.0 −8.3 ± 4.6 ± 0.1 +12.8 ± 9.1 ± 0.3
Qzz [%] +0.5 ± 3.1 ± 1.5 +4.5 ± 5.4 ± 1.5 +22.0 ± 10.3 ± 4.1
Qxy [%] +1.3 ± 2.3 ± 0.0 −0.6 ± 4.0 ± 0.1 +4.0 ± 7.8 ± 0.1

Uncertainties: ± statistical ± cross-calibration. Statistical uncertainties are uncorrelatedexcept ρ(dx ,Qxz ) = ρ(dy ,Qyz ) = 0.45 and ρ(dz ,Qzz ) = 0.53.
UHECR2022



:: dipole and quadrupole ::

EAuger [EeV] [8.53, 16) [16, 32) [32,+∞)
ETA [EeV] [10, 19.49) [19.49, 40.5) [40.5,+∞)
dx [%] −0.7 ± 1.1 ± 0.0 +1.6 ± 2.0 ± 0.0 −5.3 ± 3.9 ± 0.1
dy [%] +4.8 ± 1.1 ± 0.0 +3.9 ± 1.9 ± 0.1 +9.7 ± 3.7 ± 0.0
dz [%] −3.3 ± 1.4 ± 1.3 −6.0 ± 2.4 ± 1.3 +3.4 ± 4.7 ± 3.6

Qxx −Qyy [%] −5.1 ± 4.8 ± 0.0 +13.6 ± 8.3 ± 0.0 +42.7 ± 15.6 ± 0.1
Qxz [%] −3.9 ± 2.9 ± 0.1 +5.4 ± 5.1 ± 0.0 +4.9 ± 10.5 ± 0.1
Qyz [%] −4.9 ± 2.9 ± 0.0 −9.6 ± 5.0 ± 0.0 +11.9 ± 9.8 ± 0.2
Qzz [%] +0.5 ± 3.3 ± 1.7 +5.2 ± 5.8 ± 1.7 +19.5 ± 11.0 ± 4.6
Qxy [%] +2.2 ± 2.4 ± 0.0 +0.2 ± 4.2 ± 0.1 +4.4 ± 8.1 ± 0.1

Uncertainties: ± statistical ± cross-calibration. Statistical uncertainties are uncorrelatedexcept ρ(dx ,Qxz ) = ρ(dy ,Qyz ) = 0.45 and ρ(dz ,Qzz ) = 0.53.
ICRC2021



:: nearby galaxies ::

d Search for correlations with nearby galaxies. We used twocatalogues: 2MRS at D < 250 Mpc and starburst at D < 130 Mpc.
g We stick to higher energies to minimise the impact of the GMFand possible EGMF. We choose the cut at EAuger ≥ 32 EeV.
e The TS is a log-likelihood ratio between a model (an isotropicbackground plus a weighted sum of Fisher distributions) and the nullhypothesis (isotropy). We then scan over the energy threshold Emin,angular scale ψ and signal fraction f .
f To reduce statistical penalties we do not model the coherentGMF, energy losses∗, more than one source class at a time.

∗ Energy losses are expected to be small because SBGs are mostly nearby.
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:: nearby galaxies ::
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:: nearby galaxies ::
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:: nearby galaxies ::
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:: conclusions ::

We have updated the ICRC2021 anisotropy resultsWe used 17 years of Auger data and 14 years of TA data (ICRC2021+3)Uncertainties reduced wrt Auger-only, especially on dz and Qzz (60%)The most significant multipole is dy = 5.0 ± 1.1 (up from 4.8 ± 1.1)
SBG correlation improved wrt Auger-only/ICRC2021: 4.0σ/4.2σ Ï 4.6σOngoing work: interpretation of SGB correlation through simulations

Outlook: TAx4, AugerPrime, better calibration
1x paper: ApJ 794 (2014) 172; 9x proceedings at UHECR and ICRC

:: we need to keep running!!! ::
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:: nearby galaxies ::

catalogue E
(Auger)min E

(TA)min ψ [deg] f [%] TS significanceall galaxies 40 EeV 51 EeV 29+11
−12 41+29

−18 14.3 2.7σglobalstarburst 38 EeV 49 EeV 15.1+4.6
−3.0 12.1+4.5

−3.1 31.1 4.6σglobal

 0

 5

 10

 15

 20

 25

 30

 35  40  45  50  55  60  65  70  75  80
 0σ
 1σ

 2σ

 3σ

 4σ

 5σ

 45  50  55  60  65  70  75  80  85  90  95  100 105

te
st

 s
ta

ti
st

ic
, m

ax
ψ

,f 
T

S

pr
e-

tr
ia

l s
ig

ni
fi

ca
nc

e 
(χ

2 2)

EAuger threshold [EeV]

ETA threshold [EeV]

all
starburst

UHECR2022



:: nearby galaxies ::

catalogue E
(Auger)min E

(TA)min ψ [deg] f [%] TS significanceall galaxies 40 EeV 51 EeV 29+11
−12 41+29

−18 14.3 2.7σglobalstarburst 38 EeV 49 EeV 15.1+4.6
−3.0 12.1+4.5

−3.1 31.1 4.6σglobal
si

gn
al

 f
ra

ct
io

n 
f

angular scale ψ [deg]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90
 0
 2
 4
 6
 8
 10
 12
 14

te
st

 s
ta

ti
st

ic
 T

S

all galaxies, {51.3 EeV (TA)
40 EeV (Auger)

UHECR2022



:: nearby galaxies ::

catalogue E
(Auger)min E

(TA)min ψ [deg] f [%] TS significanceall galaxies 40 EeV 51 EeV 29+11
−12 41+29

−18 14.3 2.7σglobalstarburst 38 EeV 49 EeV 15.1+4.6
−3.0 12.1+4.5

−3.1 31.1 4.6σglobal

UHECR2022



:: predict ::
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Most optimistic scenario: less than 50% chances of 5σ at ICRC2023


