UHE photons flux from the Milky Way and its implication on SHDM searches

Corinne Bérat, Carla Bleve, Olivier Deligny, François Montanet, Pierpaolo Savina, Zoé Torrès

GRENOBLE | MODANE

Abstract

An estimate of the expected photon flux above 10^{17} eV from the interactions of ultra-high-energy cosmic rays with the matter in the Galactic disk is presented. Uncertainties arising from the distribution of the gas in the disk, the absolute level of the cosmic-ray flux, and the composition of the cosmic rays are taken into account. Within these uncertainties, the integrated photon flux above 10^{17} eV is averaged out over Galactic latitude less than 5°, between $\simeq 3.2 \times 10^{-2} \text{ km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1}$ and $\simeq 8.7 \times 10^{-2} \text{ km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1}$. The all-sky average value amounts to $\simeq 1.1 \times 10^{-2} \text{ km}^{-2} \text{ yr}^{-1} \text{ sr}^{-1}$ above 10^{17} eV and decreases roughly as E^{-2} , making this diffuse flux the dominant one from cosmic-ray interactions for energy thresholds between 10^{17} and 10^{18} eV. Compared to the current sensitivities of detection techniques, a gain of between two and three orders of magnitude in exposure is required for a detection below $\simeq 10^{18}$ eV. The implications for searches for photon fluxes from the Galactic center that would be indicative of the decay of super-heavy dark matter particles are discussed, as the photon flux presented in this study can be considered as a floor below which other signals would be overwhelmed.

2022 ApJ 929 55 | arXiv:2203.08751

Estimate of the expected photon flux above 10^{17} eV from the interactions of UHECRs with the matter in the Galactic disk

If this flux is detected :

* possible probing of the cosmogenic flux originating from π_0 decay

UHECRs + photon fields

 $\phi_{\gamma}^{cosmo} + \phi_{\gamma}^{gal}$ \Rightarrow knowledge of the background hiding the emission of sources in the Galaxy

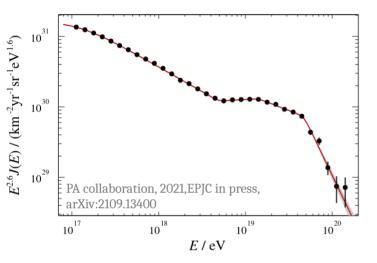
05/10/22

Galatic gas irradiated by UHECRs

* detection of localized fluxes \Rightarrow discovery of CR sources

* highlight the presence of Super Heavy Dark Matter (SHDM) produced in the early Universe and decaying today

S. Lee. astro-ph 9604098 **Procedure** 10⁴ redshift **Above** 10^{17} eV: * CR flux = protons + heavier nuclei 10 Distance(Mpc) * Galaxy transparent to photons 10 10 **Computation of the directional flux** = integration of emission rate along the line of sight p 10 emission rate $\phi_{\gamma}(E,\mathbf{n}) = \frac{1}{4\pi} \int_0^\infty \mathrm{d}s \ q_{\gamma}(E,\mathbf{x}_{\odot} + s\mathbf{n}).$ 10 Gal. diameter 10^{-2} 10¹² 10¹² 10¹³ 10¹⁴ 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁸ 10¹⁹ 10²⁰ 10²¹ 10²² 10²³ E (eV)


Isotropy of UHECRs \Rightarrow Isotropic irradiation \Rightarrow isotropic emission

Emission of UHE photons : inelastic interaction of UHECRs + interstellar gas → light mesons decaying into pions

$$q_{\gamma}(E, \mathbf{x}) = 4\pi \sum_{i,j} n_{j}(\mathbf{x}) \int_{E}^{\infty} dE' \phi_{i}(E') \sigma_{ij}(E') \frac{dN_{ij}^{\gamma}}{dE}(E', E).$$
Local density of gas (j)

CR flux of (i)

The cost section

Number of photons produced during the interaction

Soft International Symposium on UHECRs

05/10/22

2

Cosmic Ray Flux and Mass Composition


At UHE : CR flux and mass composition known by indirect mesurement of air showers produced in the atmosphere

Energy-dependent mass composition using the distribution of Xmax measurements from the Pierre Auger Observatory

> With 3 hadronic interaction models Sibyll2.3 EPOS-LHC QGSJetII-04

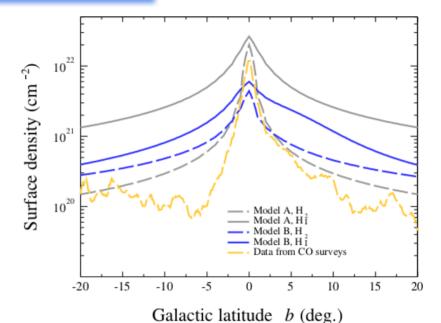
All particle spectrum above 10^{17} eV measured at the Pierre Auger Observatory : largest cumulated exposure + single detector type

Interstellar gas density in the Milky Way

Interstellar medium = molecular and atomic H (90%) + He (10%)

Models of the gas distribution in the galaxy :

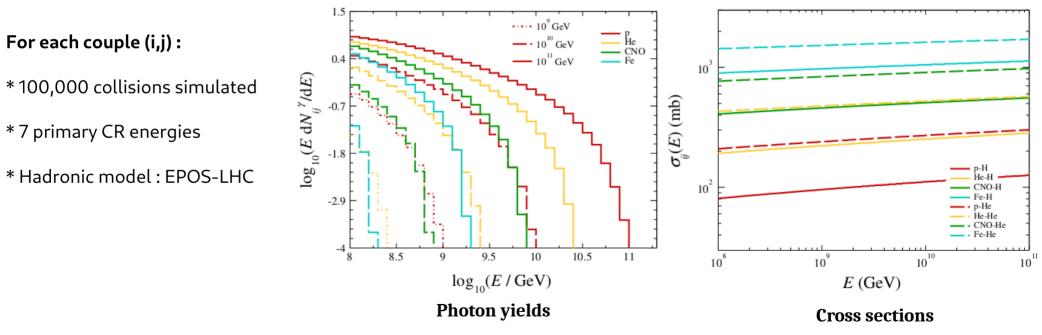
* Model A : large scale properties axial/up-down symmetric distribution [Lipari & Vernetto, Phys. Rev. D 98, 043003]


* Model B : smaller scale spiral arms and disk bulge modeled [Jóhannesson et al, 2018 ApJ 856 45]

Probing of the different gas elements :

* Molecular H : impossible to observe directly CO excited from its collisions with H_2 -> frequency of CO rotational transition -> calibration factor

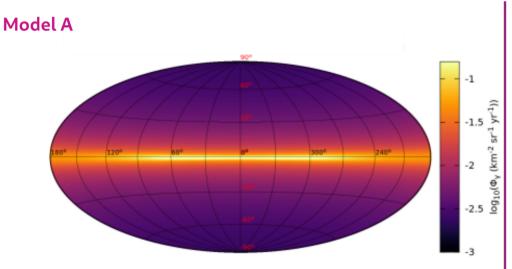
* Helium : follows the H distribution (factor 10%)



Photon production

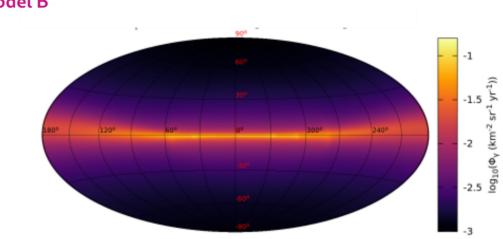
UHECRs irradiating interstellar matter result in the production of light mesons $\,(\pi_{0},
ho,K,\eta...)$

 $\pi_0 \rightarrow 2\gamma$


Inelastic cross sections and the energy spectra of photons : Cosmic Ray Monte Carlo (CRMC) package C. Baus, T. Pierog and R. Ulrich https://web.ikp.kit.edu/rulrich/crmc.html

Diffuse flux of UHE photons

* the flux is concentrated around the galactic plane, as expected


* a factor 10^{-5} ower than the UHECRs spectrum, 10^{-6} it highest energy

Smooth distribution along the longitude

Maximum value $\simeq 5.0 \times 10^{-1}$ /km²/yr/sr

Model B

Brighter in the innermost regions

Maximum value (smaller than Model A) at $~|l|\simeq 55^{\circ}$

6th International Symposium on UHECRs

Comparison to current upper limits

Comparison to a search for point-like sources :

* upper limits taken from the Auger collaboration [ApJ, 789, 160 (2014)]

* converted our directional flux into a collection of point-like sources (Averaged over a 5°-band over the galactic plane)

Directional photon flux

05/10/22

 10^{-1}

 10^{-2}

10-

 10^{-4}

10-5

EPOS-LHC

Model B

-150

-100

 $\psi_{\gamma}(l) \, (km^{-2}yr^{-1})$

Jpper limits, Auger Collab. (2014) as model A

Energy range = $[10^{17.3}, 10^{18.5}]$

-50

+ hadronic models

all particle energy spectrum

Galactic longitude l (deg.)

Model A Systematics =

$$\rightarrow \phi(l) = \frac{1}{2.sin5^{\circ}} \int dE_{CR} \int db.sinb \int d\mathbf{n}'.f(\mathbf{n}',\mathbf{n}).\phi(E_{CR},\mathbf{n})$$

Point-spread function of the PAO (gaussian filter)

Results:

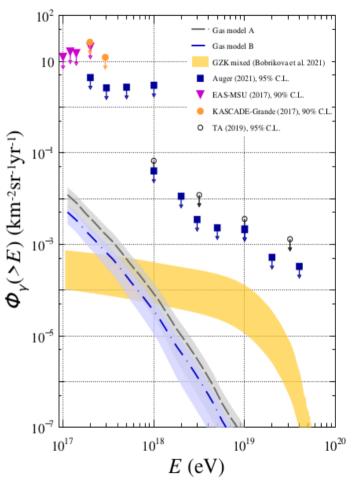
* 3 orders of magnitude below current limits : unreachable with current detectors

st upper limits are reported for a $E^{-2}\,$ photon flux and would be higher for steeper spectra

50

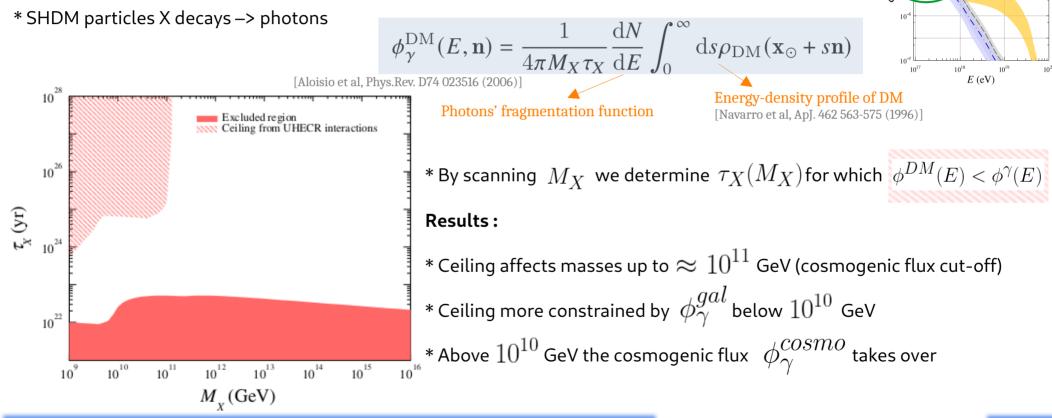
Comparison to current upper limits

Comparaison to other searches for a diffuse photon flux :


- * performed by several other experiments : (Auger, EAS-MSU, KASCADE-Grande, TA) * $\phi(E,\mathbf{n}) o \phi(>E)$
- * cosmogenic flux from π_0 decay : dependent on the primary UHECR mass
 - : a mix from p to Fe primaries that fits the Auger data [Bobrikova et al. , ICRC 2021, PoS]

Results:

* for energies $\approx (10^{17} \rightarrow 10^{18.5}) \,\text{eV}$: 2.5/3 orders of magnitude below other limits Θ


* higher for larger energy thresholds

* the cosmogenic flux computed here is dominant between 10^{17} and 10^{18} eV

Implication for search of SHDM

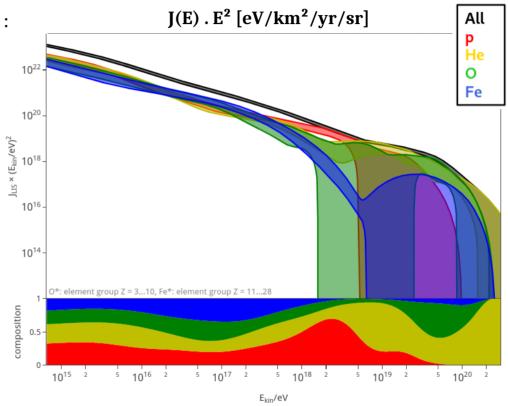
- * If dominant : could prevent the probing of sources and/or evidence of SHDM in the Galaxy
- $* \phi^{DM}$ can be observed if SHDM particles have long enough lifetime $\, au_X$

6th International Symposium on UHECRs

05/10/22

÷., (

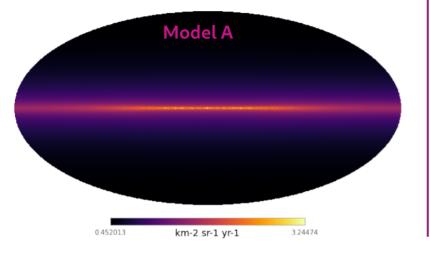
Diffuse flux of UHE neutrinos

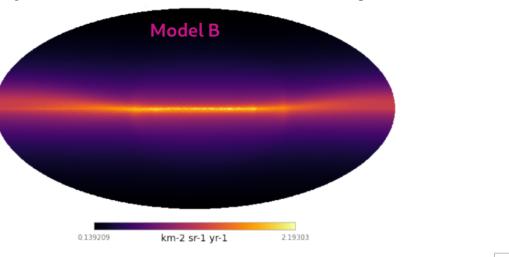

* Applying the same study to neutrinos above 10^{15} eV

* CR Flux : Global Spline Fit (H. Dembinski et al. | PoS(ICRC 2017)533, 2017) :

Data-driven fit using different ground based experiments

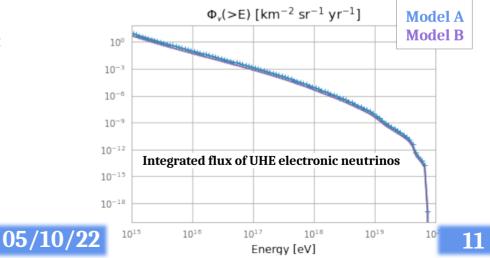
* Study to be refined :


- anisotropy of UHECRs sources (lower energies) : galactic sources have to be taken into account
- all the neutrons produced decay (CRMC parametrization) \Rightarrow over estimation of the flux of $\overline{\nu_e}$


https://www.mpi-hd.mpg.de/personalhomes/hdembins/

Diffuse flux of UHE neutrinos

Map of the integrated flux of electronic neutrinos above 10¹⁵ eV (log-scale)


Map of the integrated flux of electronic neutrinos above 10¹⁵ eV (log-scale)

* Maps of the directional flux : same repartition as UHE photons : will change when adding galactic sources of UHECRs

 * Plot of integrated flux (first estimate) : will be compared to other searches for UHE neutrinos when the study is refined

6th International Symposium on UHECRs

Summary and outlook

* the integrated UHE photon flux above 10^{17} eV amounts to 10^{-2} /km²/yr/sr (a few ° around the Galactic plane)

* it is the dominant cosmogenic flux between 10^{17} and $10^{18}\,{
m eV}$

* out of reach with current observatories

* sets a floor below which other signals will be overwhelmed : relevant for SHDM searches

* Below $M_X \approx 10^{11} \text{GeV}$: sets a ceiling region for the lifetime τ_X of SHDM particles

* Future study on UHE neutrino flux : **started**

Thank you for your attention

05/10/22

6th International Symposium on UHECRs