A Hierarchical Interpretation of the Observed Cosmic Ray Spectrum

Roger Blandford KIPAC Stanford with

Bram Achterberg, Kirk Barrow, David Eichler, Stefan Funk, Noemie Globus, Payel Mukhopadhyay, Jerry Ostriker, Enrico Peretti, Paul Simeon

Observational Oversimplification

- GeV-PeV Thigh
 - Knee
- PeV-EeV Shin
 - Ankle
- EeV-ZeV Foot - UHECR

Phenomenological Oversimplification

- Cosmic rays accelerated by shocks
 Bulk kinetic energy -> GeV ZeV CR
- Hierarchical model
 SNR -> GWTS -> CAS/ FAS
- Confront with observations
 - Each E_{max} requires maximal acceleration
 - GeV SNR PeV GWTS

Enrico Peretti

Theoretical Oversimplification

Diffusive Shock Acceleration at Plane Shock

 $\nabla \cdot (f\vec{u} - D\nabla f) = \nabla \cdot \vec{u} \,\partial_{p^3} f p^3$ fluid isotropic adiabatic heating convection diffusion $p \sim \rho^{1/3}$ Shock: $[-up\partial_p f - D\nabla f] = 0$

GSSI UHECR

 $P_{trans} = 4U_{+} / v$ $\Delta p/p = 4 (U_{-} - U_{+}) / 3v$

 $f(p) \sim dN / p^2 dp \sim p^{-3r/(r-1)}$ Downstream Greens function

Plasma Physics Oversimplification

В

Plasma instabilities Streaming: $\langle v \rangle \rangle V_A$ Growth $(n_{CR} / n_i) \Omega_L$ Current k > $1/r_L$ MHD k $\langle 1/r_L$ Alfven waves with k ~ $1/r_L$ V_A ~ B/ $(4\pi\rho)^{1/2} \ll c$ mfp ~ r_L (B/ δ B)² ~ r_L in Bohm limit r_L ~ R_{EV} / B_{µG} kpc

PIC Simulations of initial value problems with limited dynamic range Lab astro experiments have begun

6 x 2022

Downstream particles cool before escaping

PeV upstream particles?

CR from termination shocks? Cosmic ray initiated UHECR escape upstream Sink of interstellar mass, energy, angular momentum? 6

Bootstrap Hypothesis / Maximal Acceleration

- Highest rigidity, escaping CR create strong, gyro-resonant turbulence, with $D/u \sim r_{shock}$ ahead of subshock
- mfp ~ gyroradius; D ~ Rc/3eB
- Shorter wavelengths reflect lower rigidity particles closer to the subshock and weakly perturb higher energy particles
- Kinetic ~ electromagnetic ~ CR >> gas thermal energy fluxes
- Determines maximum rigidity accelerated by shock
- Gas remains cold until it passes through strong subshock
- Operates at SNR, GWTS, CAS with different geometries

Cluster Accretion Shocks

Zoomed x 100

Conserved Energy

Energetics

cf relativistic accelerator

 $R_{max} < (L_{EM}Z_0)^{1/2} \sim 20 L_{FMA3}^{1/2} EV$

- Kinetic Energy + Cosmic Rays + Poynting Flux
- Spherical Accretion (e.g. M87)
 - $-r_{\rm shock} \sim 2 \,{\rm Mpc}, V_{\rm shock} \sim 1000 \,{\rm km} \,{s}^{-1}, \dot{M} \sim 1000 \,{M}_{\odot} yr^{-1}$

$$-L_{gas} = \frac{1}{2} \dot{M} V_{shock}^2 \sim 3 \ge 10^{44} \text{ erg } s^{-1}$$

 $- L_{UHECR}(M87) \sim 6 \ge 10^{43} \text{ erg/s} \text{ (propagation model - dependent)}$

Hybrid Model

- Convection-diffusion model with strong magnetic turbulence
- Convert to diffusion equation $\nabla \cdot A(u,r)D(r,R)\nabla f = B(u,r) \partial_{lnR}f$
- Choose D(r,R), u(r,R)
- Solve for f(upstream, R), f(downstream, R) for R_{inject}
- Calculate associated cosmic ray and magnetic energy fluxes
- Iterate using generalized Bernoulli equation
- Explore time-dependence
- Take solution as initial condition for PIC simulation with enough dynamic range to investigate if Bohm turbulence is self-sustaining at kinetic level GSSI UHECR

Confrontation with spectrum, composition, anisotropy

- Supernova Remnants etc, Termination shocks etc
 - Observations at earth
 - Astrophysical constraints
 - Intergalactic / infalling input spectrum
- Cluster shock acceleration mechanism
 - General principles
 - Input spectrum -> upstream output spectrum
- Filamentary contribution at lower rigidity
 - Downstream spectrum

6 x 2022

Vulnerable to highest rigidity cosmic rays Less vulnerable to power requirements

Clusters and Filaments

Cluster Downstream Flow

- If cluster shocks are UHECR accelerators, they will be full of lower energy cosmic rays which can emit radio synchrotron radiation in μ G magnetic field and gamma rays
- Density increases from ~ 10^{-6} cm⁻³ to ~ 10^{-3} cm⁻³
- Cosmic rays lose 90% of energy relative to gas
- Observational constraint

Summary

- Hierarchical Model, SNR -> GWTS -> CAS
- Maximal diffusive shock acceleration at all levels
- Shock geometry important
- Phenomenological model -> PIC plasma codes
- Confront with improving measurements at highest rigidity
- Astrophysical constraints/implications

Supplementary Slide

Ding, Globus, Farrar 2021

GSSI UHECR