## Multimessenger Connections of UHECRs Irene Tamborra (Niels Bohr Institute)

6th International Symposium on Ultra High Energy Cosmic Rays, L'Aquila, October 3-7, 2022

VILLUM FONDEN

 $\gg$ 



CARL§BERG FOUNDATION

SFB 1258 Neutrinos Dark Matter Messengers



#### **Cosmic Messengers**



## **Cosmic Messengers**

Proton

Gravitational wave

Photon

Neutrino

## Outline

- Overview on current status
- Core collapse supernovae and compact binary mergers
- Cosmic accelerators
- Outlook

## Multi-Messenger Sources as of 2022: No. 1

#### Supernova 1987A





Multi-messenger observations.



Test of core-collapse physics.

Image credits: NASA, CERNCOURIER.

## Multi-Messenger Sources as of 2022: No. 2

#### **Cosmic Accelerators**

#### **Starburst Galaxies**





**Blazars** 



#### **Tidal Disruption Events**





Several likely point source associations

Test particle acceleration theory. Need for improved source modeling.

Image credits: IceCube Collaboration.

## Multi-Messenger Sources as of 2022: No. 3

#### GW170817 & GRB 170817A



First joint detection of GWs and EM radiation.

Test merger/GRB/kilonova physics. Hints on origin of heavy elements.

Figure credits: Abbott et al., ApJ (2017), ESA.

## Core-Collapse Supernovae

Figure credits: Royal Society

## The Next Local Supernova (SN 2XXXA)



Figure from Nakamura et al., MNRAS (2016).

# **Diffuse Supernova Neutrino Background**



- Independent insight on supernova population.
- Modeling uncertainties are to be reduced.
- Detection expected to happen soon!

Figure from Abe et al., PRD (2021). Moller, Suliga, Tamborra, Denton, JCAP (2018). Kresse, Ertl, Janka, ApJ (2021). Lunardini & Tamborra, JCAP (2012). Horiuchi et al., PRD (2021). Ziegler et al., MNRAS (2022, in press).

# High Energy Emission from Supernovae



Supernovae may be sources of high-energy neutrinos and gamma-rays.

They may explain the low-energy excess observed in the diffuse background of high-energy neutrinos, without overshooting the gamma-ray diffuse background (no need to invoke hidden cosmic ray accelerators?).

Sarmah, Chackraborty, Tamborra, Auchettl, JCAP (2022). Pitik, Tamborra, Angus, Auchettl, ApJ (2022). Brose, Sushch, Mackey, arXiv: 2208.04185.

## **High Energy Emission from Supernovae**



SNe of Type IIn and II-P could be detectable in gamma-rays and neutrinos locally.

Sarmah, Chackaborty, Tamborra, Auchettl, JCAP (2022). Pitik, Tamborra, Angus, Auchettl, ApJ (2022). Kheirandish & Murase, arXiv: 2204.08518. Christofari et al., MNRAS (2022).

# **Compact Binary Mergers**

Figure credit: Price & Rosswog, Science (2006).

## The Next Binary Merger (GW XXXX22)



Figure credit: R. Fernandez & B. Metzger, Ann. Rev. Nucl. Part. Sci. (2016).

#### **Multi-Messenger Opportunities**



Using EM observations to ascertain the outcome of future compact mergers detected in GWs, we could assess the diversity of their r-process contributions and probe nuclear EoS.

Margalit & Metzger, ApJL (2019). Bauswein et al., ApJL (2017).

## **Nucleosynthesis of the Heavy Elements**



Synthesis of heavy elements depends on neutrino flavor.





• Flavor consersion ben hances synthesis nuclei with A>130 by a factor 2-3.

• More work needed to grasp how neutrinos affect electromagnetic emission.

Just, Abbar, Wu, Tamborra, Janka, Capozzi, PRD (2022). Wu, Tamborra, Just, Janka, PRD (2017). Wu & Tamborra, PRD (2017). Padilla-Gay, Shalgar, Tamborra, JCAP (2021). George, Wu, Tamborra, Ardevol-Pulpillo, Janka, PRD (2020). Li & Siegel, PRL (2021). Fernandez, Richers, Mulyk, Fahlman, arXiv: 2207.10680.



- No neutrinos detected from prompt short GRB phase.
- Neutrinos from long-lived ms magnetar following the merger.
- Neutrinos from internal shock propagating in kilonova ejecta.
- Favorable detection opportunities with multi-messenger triggers.

Figure credit: Christian Spiering. Murase& Bartos, Ann. Rev. (2019). Fang & Metzger, ApJ (2017). Kimura et al., PRD (2018). Biehl et al., MNRAS (2018). Kyutoku, Kashiyama, PRD (2018). Tamborra, Ando, JCAP (2015). Gottlieb, Globus, ApJL (2021).

## **Other Cosmic Accelerators**

# Long Duration Gamma-Ray Bursts



• No successful detection of high energy neutrinos from long GRBs (<1% to diffuse emission).

- Neutrino emission strongly depends on GRB emission mechanism.
- Neutrino emission from low-power GRBs can be copious.

ANTARES Coll., MNRAS (2020). IceCube Coll., ApJ (2017). Pitik, Tamborra, Petropoulou, JCAP (2021). Rudolph et al., MNRAS (2022), ApJ (2020). Heinze et al., MNRAS (2020).

#### **Do We See a Connection Among All Messengers?**



Marek Kowalski, ICRC 2021, PoS 022.

### **Blazars**

Several IceCube neutrino events may be in coincidence with blazars.



- Models statistically consistent with the detection of neutrinos but require extreme parameters, atypical of the blazar population.
- Need to move beyond one-zone model as well as investigate time variability.
- Multi-wavelength long-term evolution needs to be explored.
- Emerging trend of possible correlation between neutrino and radio/X-ray data to be understood.

Figure credit: F. Oikonomou.

### **Starburst Galaxies**

#### **Neutrinos**

#### Gamma-rays



Joint detection of neutrinos and gamma-rays will be a smoking gun signature of hadronic interactions (optimistic detection prospects).

Ambrosone et al. ApJL (2021), MNRAS (2022). Condorelli et al., arXiv: 2209.08593. Tamborra, Ando, Murase, JCAP (2014). Bechtol et al., ApJ (2017). Peretti et al., MNRAS (2022), MNRAS (2020).

#### **Tidal Disruption Events**

| Name       | Neutrino<br>energy<br>(PeV) | Neutrino<br>arrival time<br>(day) | Distance<br>(Mpc) | Core                             |
|------------|-----------------------------|-----------------------------------|-------------------|----------------------------------|
| AT2019dsg  | 0.2                         | 150                               | 220               | Non-AGN                          |
| AT2019fdr  | 0.08                        | 300                               | 1360              | LL-AGN,<br>( <b>maybe SLSN</b> ) |
| AT2019aalc | 0.15                        | 150                               | 160               | LL-AGN                           |

• Copious UV and optical emission, weak in X-rays and radio, very large bolometric flux.

- No signature of relativistic jet.
- Neutrinos detected >O(100) days after discovery.
- Theoretical scenarios under debate.

Stein et al., Nature Astronomy (2021). K. Hayasaki, Nat. Astr. (2021). Winter & Lunardini, Nat. Astr. (2021). Liu et al., PRD (2020). Murase et al., ApJ (2020). van Velzen et al., arXiv: 2111.09391. Liao et al., ApJL (2022). Reusch et al., PRL (2022). Pitik, Tamborra, Angus, Auchettl, ApJ (2022).

## **New Species in the Transient Zoo?**



S. Bradley Cenko, Nature Astronomy (2017).

### **Fast Blue Optical Transients**



• Extremely fast rise time.

 Powered by a compact object launching an asymmetric outflow responsible for multiwavelength EM emission.

Perley et al., MNRAS (2019). Drout et al., ApJ (2014). Coppejans et al., ApJL (2020). Ho et al., arXiv: 2105.08811.

#### **Fast Blue Optical Transients**











#### Conclusions

 Multi-messenger observations carry imprints of the source engine and are crucial to test particle acceleration.

• Microphysics modeling is still preliminary.

Exciting growing number of likely multi-messenger detections.

