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> A few words on the most commonly invoked plasma
processes for particle acceleration

» I will argue that turbulence and magnetic reconnection
should take place together in astrophysical plasmas

» Introduce the method (Fully Kinetic PIC) used to study
particle acceleration

» Turbulence (with reconnection) as reproduced by Fully
Kinetic PIC simulations

> Some hits on how particles are accelerated in Fully Kinetic
PIC simulations of turbulence (with reconnection)

» Generation of power-law energy distribution from thermal
distributions (focusing on protons)
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The Usual Suspects

~— (Collisionless)
Shocks

Osiris presentation (Collisionless)

Turbulence

(Collisionless)
Magnetic Reconnection

L,=70d,

Daughton et al. 2014

UHECR



Magnetization Parameter

0> 1 = vg=c\/o/(1+0)~c (relativistic regime)
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Relativistic Shocks

: ' » Shock acceleration: standard
e <« V. .
paradigm for many years

Courtesy of F. Fiuza

quasi-perpendicular electron-positron shock

— 0=0

» Poor particle acceleration
already for fairly modest
plasma magnetizations

YdN/dy

1% E o > 1072 = no acceleration
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Sironi et al. 2013
See also Krymskii 1977, Axford et al. 1977, Blandford & Ostriker 1978, Bell 1978,
Gallant et al. 1992, Spitkovsky 2008, Fiuza et al. 2012, ...
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Relativistic Magnetic Reconnection

107%5;

7 dN/dy

107+
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Efficient particle accelerator
for fairly high plasma
magnetizations

o 2 1 = acceleration

Sironi & Spitkovsky, 2014
See also Zenitani & Hoshino 2001, Jaroschek et al. 2004, Lyubarsky & Liverts
2008, Cerutti et al. 2013, Guo et al. 2014, Werner et al. 2016, ...
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Important Caveat

Density

But simulations employ ad hoc
(ultra-unstable) initial current sheets
(having kinetic-scale thickness).

Astrophysical systems have large scale
separation, [ >> \g.

Under most circumstances,
turbulence is inevitable (high Re).
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Turbulence Cascade a la Richardson

injection of energy flux of energy dissipation of energy
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[=2n/ky >N\ La=2nlka

energy-containin, L. dissipation
&y J inertial range p
range range
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Turbulence Cascade with Magnetic Reconnection

injection of energy flux of energy dissipation of energy

1=2n/ky >N\ Aa=2nlkq

energy-containin, N dissipation
&y & inertial range P
range range
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Turbulence Cascade with Magnetic Reconnection

injection of energy flux of energy dissipation of energy out-of-plane electric current density

(magnetic field lines superimposed)

?\@
N

@ % é > reconnecting

@ @ @?? ‘?&f current sheet
P

} t L 1 L [/
1k :Zn/k/ a=2mlkq [zoomed-in subdomain from 2D turbulence simulation]

energy-containin R dissipation
24 s inertial range P
range range

> Magnetic reconnection occurs in intermittent current sheets
= inevitable when [ >> )4
(essentially all astrophysical systems of interest here)
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How Turbulence+Reconnection Accelerate Particles?

Turbulence 4+ Reconnection + Particles:

Magnetic Reconnection
totut 44.80 ps

Turbulence
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Solving the Full Problem: Timeline

Turbulence + Reeemreetion + Particles:
Complex, Nonlinear, Multiscale Problem

Fermi Toy Model

(random magnetic mirrors)

N L § L L L L § g L
t ¥ t 1 ¥ t t t ¥ ¥ &

1940 1960 1980 2000 2020
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Solving the Full Problem: Timeline

Turbulence + Reeemreetion + Particles:
Complex, Nonlinear, Multiscale Problem

Test-Particle Simulations

Fermi Toy Model (in prescribed fields)
(random magnetic mirrors)
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Solving the Full Problem: Timeline

Turbulence + Reeemreetion + Particles:
Complex, Nonlinear, Multiscale Problem

Test-Particle Simulations

Fermi Toy Model (in prescribed fields)
(random magnetic mirrors)

N L § L L L L § g L
t ¥ t 1 ¥ t t t ¥ ¥ B

1940 1960 1980, 2000 2020

Test-Particle Simulations
(in fields from MHD simulations)
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Solving the Full Problem: Timeline

Turbulence + Reconnection + Particles:
Complex, Nonlinear, Multiscale Problem

Test-Particle Simulations

Fermi Toy Model (in prescribed fields)
(random magnetic mirrors)

L i i 3 i i E 3 L i }
3 3 3 ¥ t ¥ t ¥ ¥ 4
1940 1960 1980, 2000 2020
Test-Particle Simulations Hybrid Simulations
(in fields from MHD simulations) (fluid electrons, kinetic ions)
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Solving the Full Problem: Timeline

Turbulence + Reconnection + Particles:
Complex, Nonlinear, Multiscale Problem

Test-Particle Simulations

Fermi Toy Model (in prescribed fields)

S Fully-Kinetic Simulations
(random magnetic mirrors)

L i i 3 i i E 3 L i }
3 3 3 ¥ t ¥ t ¥ ¥ 4
1940 1960 1980, 2000 2020
Test-Particle Simulations Hybrid Simulations
(in fields from MHD simulations) (fluid electrons, kinetic ions)
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Fully-Kinetic Treatment - PIC Method

Solve Particle
Equations of Motion:

dp, Py
=P — E x B
dt a» + YpMpc

dz,  pp

dt oMy

[ Interpolate to Particles: ] [ Extrapolate to Grid: ]

(E,B);, —+ F, (. p), = Ji

Solve Maxwell’s Equations
o8

ot

on

ot

=cV xB—4nJ

=—cVXxE

PIC code: TRISTAN-MP (Spitkovsky 2005)
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Numerical Simulations with Massive Supercomputers

| B e
e R W R N N Y |

» This problem is hard (needs large separation of scales)

> We can do it now thanks to huge numerical simulations
(> 100 cells, > 2 x 101! particles)

» Here I'll present (scattered) results from simulations of:
nonrealtivistic plasma turbulence, relativistic pair plasma
turbulence, relativistic proton-electron plasma turbulence
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Turbulence Power Spectrum
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Comisso & Sironi ApJL 2022

» The large computational domain allow us to capture both
the MHD cascade at large scales and the kinetic cascade at
small scales
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Reconnecting Current Sheets in Turbulence

T/ ms S0
3.0

20 The large inertial range

allows the development of
reconnection layers with

1.0
0.0
-1.0
20 flux ropes
-3.0

Comisso & Sironi 2022
(see also Comisso & Sironi
2018, 2019)
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Current Sheets Initiate Particle Acceleration

14 ‘
12F == ions G . 9
ol = cletrons Sudden “injection phase

g that brings particles to

o sf

£ energies € > ey, followed by
4t a more gradual stochastic
2f Fermi acceleration phase
0 |
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tv,/l
e ——
The initial particle 10°% - highenergyionsatly,
. i K —o— high-energy electrons at t,;
acceleration is associated —o— all particles at t =1.251/o,

with locations of high é 1oL
current density
(reconnecting sheets)
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Stochastic Fermi Acceleration for v/v, 2 1

The power-law tail of the
particle spectrum starts at
/e 21

(75 is the mean Lorentz factor
after turbulent dissipation)
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Development of a Nonthermal Power-Law Tail

efie)
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Comisso & Sironi ApJL 2022

» Self-consistent formation of a nonthermal power-law tail.
Here, fi(e) = dN(g)/de, e = (y — 1)m;c®, p= —dIn f;/dIne
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Development of a Nonthermal Power-Law Tail
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> Self-consistent formation of a nonthermal power-law tail.
Here, By = Bio + Beo, with Bio = Beo = 8mnokpTy/ B}
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The Spectrum Hardens for Increasing o

10° = B .
102 .
w
&
w 4
10 .
— B,=0.08, 6,=5.5
100 — By=0.08, 6,=0.02 i

10° 10 10? 10°
8/&ki

» Here, ,; = (3/2)I€BTO + K Agi,e = (3/2 + 2/€i/,80)kBTO is
the mean energy per particle after turbulent dissipation
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Hardening of the Ion Spectrum for Increasing oy

efi(e)

10 10° 10" 10?
S/S*i

» Hardening of the ion energy spectrum for increasing
plasma magnetization (relativistic regime o¢ 2 1)
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Acceleration up to pr ~ outer scale eddy size

Here shown for a pair plasma...
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Summary

Fully Kinetic Simultaneous Treatment of Turbulence,
Reconnection, and Particle Acceleration.

High-Energy Particles are Generated Self-Consistent-
ly as a By-Product of Turbulence + Reconnection.

Particle Acceleration Follows a Two-Stage Process.
Self-consistent Formation of a Nonthermal
Power-Law Tail (starting from a thermal

distribution) up to py ~ outer scale eddy size.

Hardening of the Proton Energy Spectrum for
Higher Plasma Magnetization (Relativistic Regime).

a~
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