Particle Acceleration via Magnetized Turbulence and Magnetic Reconnection

Luca Comisso

Department of Astronomy, Columbia University Columbia Astrophysics Laboratory, Columbia University

> 6th International Symposium on Ultra High Energy Cosmic Rays

> > L'Aquila, October 3-7, 2022

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Outline

- ► A few words on the most commonly invoked plasma processes for particle acceleration
- ► I will argue that turbulence and magnetic reconnection should take place together in astrophysical plasmas
- ▶ Introduce the method (Fully Kinetic PIC) used to study particle acceleration
- Turbulence (with reconnection) as reproduced by Fully Kinetic PIC simulations
- Some hits on how particles are accelerated in Fully Kinetic PIC simulations of turbulence (with reconnection)
- Generation of power-law energy distribution from thermal distributions (focusing on protons)

The Usual Suspects

Magnetization Parameter

 $\sigma \gg 1 \implies v_A = c \sqrt{\sigma/(1+\sigma)} \simeq c$ (relativistic regime)

Relativistic Shocks

 Shock acceleration: standard paradigm for many years

 Poor particle acceleration already for fairly modest plasma magnetizations

 $\sigma\gtrsim 10^{-2}\Rightarrow$ no acceleration

See also Krymskii 1977, Axford *et al.* 1977, Blandford & Ostriker 1978, Bell 1978, Gallant *et al.* 1992, Spitkovsky 2008, Fiuza *et al.* 2012, ...

Relativistic Magnetic Reconnection

- Efficient particle accelerator for fairly high plasma magnetizations
 - $\sigma\gtrsim1\Rightarrow\text{acceleration}$

See also Zenitani & Hoshino 2001, Jaroschek *et al.* 2004, Lyubarsky & Liverts 2008, Cerutti *et al.* 2013, Guo *et al.* 2014, Werner *et al.* 2016, ...

Important Caveat

But simulations employ *ad hoc* (ultra-unstable) initial current sheets (having kinetic-scale thickness).

Astrophysical systems have large scale separation, $l \gg \lambda_d$.

Under most circumstances, turbulence is inevitable (high Re).

Turbulence Cascade à la Richardson

Turbulence Cascade with Magnetic Field

Turbulence Cascade with Magnetic Reconnection

Turbulence Cascade with Magnetic Reconnection

Turbulence Cascade with Magnetic Reconnection

out-of-plane electric current density (magnetic field lines superimposed)

[zoomed-in subdomain from 2D turbulence simulation]

Magnetic reconnection occurs in *intermittent current sheets* \Rightarrow inevitable when $l \gg \lambda_d$ (essentially all astrophysical systems of interest here)

How Turbulence+Reconnection Accelerate Particles?

Turbulence + Reconnection + Particles:

Fully-Kinetic Treatment - PIC Method

PIC code: TRISTAN-MP (Spitkovsky 2005)

Numerical Simulations with Massive Supercomputers

- ▶ This problem is hard (needs large separation of scales)
- We can do it now thanks to huge numerical simulations $(> 10^{10} \text{ cells}, > 2 \times 10^{11} \text{ particles})$
- Here I'll present (scattered) results from simulations of: nonrealtivistic plasma turbulence, relativistic pair plasma turbulence, relativistic proton-electron plasma turbulence

Turbulence Structures from PIC Simulations

Luca Comisso UHECR 2022

Turbulence Power Spectrum

Comisso & Sironi ApJL 2022

▶ The large computational domain allow us to capture both the MHD cascade at large scales and the kinetic cascade at small scales

Reconnecting Current Sheets in Turbulence

The large inertial range allows the development of reconnection layers with flux ropes

> 2.0 J_z/J_{z,rms} 0.0 -2.0 -4.0 -6.0

> > 1.6

|B|/B₀ ^{1.2}

Comisso & Sironi 2022 (see also Comisso & Sironi 2018, 2019)

Current Sheets Initiate Particle Acceleration

Sudden "injection phase" that brings particles to energies $\varepsilon \gg \varepsilon_{\rm th}$, followed by a more gradual stochastic Fermi acceleration phase

The initial particle acceleration is associated with locations of high current density (reconnecting sheets)

Stochastic Fermi Acceleration for $\gamma/\gamma_{\sigma} \gtrsim 1$

Development of a Nonthermal Power-Law Tail

► Self-consistent formation of a nonthermal power-law tail. Here, $f_i(\varepsilon) = dN(\varepsilon)/d\varepsilon$, $\varepsilon = (\gamma - 1)m_ic^2$, $p = -d\ln f_i/d\ln \varepsilon$

Development of a Nonthermal Power-Law Tail

► Self-consistent formation of a nonthermal power-law tail. Here, $\beta_0 = \beta_{i0} + \beta_{e0}$, with $\beta_{i0} = \beta_{e0} = 8\pi n_0 k_B T_0 / B_0^2$

The Spectrum Hardens for Increasing σ_0

• Here, $\varepsilon_{*i} = (3/2)k_BT_0 + \kappa_i \Delta \overline{\varepsilon}_{i,e} = (3/2 + 2\kappa_i/\beta_0)k_BT_0$ is the mean energy per particle after turbulent dissipation

• Hardening of the ion energy spectrum for increasing plasma magnetization (relativistic regime $\sigma_0 \gtrsim 1$)

Here shown for a pair plasma...

Summary

- ► Fully Kinetic Simultaneous Treatment of Turbulence, Reconnection, and Particle Acceleration.
- ▶ High-Energy Particles are Generated Self-Consistently as a By-Product of Turbulence + Reconnection.
- ▶ Particle Acceleration Follows a Two-Stage Process.
- ► Self-consistent Formation of a Nonthermal Power-Law Tail (starting from a thermal distribution) up to $\rho_L \sim$ outer scale eddy size.
- Hardening of the Proton Energy Spectrum for Higher Plasma Magnetization (Relativistic Regime).