Astrophysics of cosmic-ray accelerators

Anna Franckowiak

UHECR 2022, L'Aquila, 3.10.2022

RUHR UNIVERSITÄT BOCHUM

Neutrino Production Processes

$$\begin{array}{c} \text{Cosmic ray} \\ pp \\ p\gamma \\ p\gamma \\ target \end{array} \quad \left\{ \begin{array}{c} \dots + \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu \\ \dots + \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu \\ \dots + \pi^0 \to \gamma\gamma \end{array} \right.$$

Neutrino Production Processes

Cosmic ray

$$\begin{array}{c} pp \\ p\gamma \\ p\gamma \\ target \end{array} \quad \begin{array}{c} \dots + \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu \\ \dots + \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu \\ \dots + \pi^0 \to \gamma\gamma \end{array}$$

Gamma-rays are not exclusively produced in hadronic processes

Neutrino Production Processes

Diffuse Flux discovered!

Cosmic Cosmic Neutrino proton Atmosphere Muon mospheric utrino Atmospheri Muon

RUB IceCube

Where do the neutrinos come from?

Three Strategies

Northern Sky

- 1. Look for hotspots in the neutrino sky \rightarrow identify source candidates
- 2. Start from EM source catalog \rightarrow look for neutrinos from source population ("stacking")
- 3. Focus on high-energy neutrinos with high signal probability \rightarrow look for EM counterparts

Main Challenges

- Neutrino angular resolution poor compared to EM instruments
- Large background of atmospheric events
- We don't know what to look for (many possible source candidates), what is the best wavelength to trace neutrino emission?

Three Strategies

Northern Sky

- 1. Look for hotspots in the neutrino sky \rightarrow identify source candidates
- 2. Start from EM source catalog \rightarrow look for neutrinos from source population ("stacking")
- 3. Focus on high-energy neutrinos with high signal probability \rightarrow look for EM counterparts

Hotspot Search

IceCube Coll. PRL 124 (2020)

Three Strategies

Northern Sky

- 1. Look for hotspots in the neutrino sky \rightarrow identify source candidates
- 2. Start from EM source catalog \rightarrow look for neutrinos from source population ("stacking")
- 3. Focus on high-energy neutrinos with high signal probability \rightarrow look for EM counterparts

Gamma-rays emitters are obvious candidates

Cosmic ray

$$\begin{array}{c}pp\\p\gamma\\p\gamma\\target\end{array} \quad \dots + \pi^{+} \to \mu^{+} + \nu_{\mu} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu} + \nu_{\mu} \\ \dots + \pi^{-} \to \mu^{-} + \bar{\nu}_{\mu} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu} + \bar{\nu}_{\mu} \\ \dots + \pi^{0} \to \gamma\gamma\end{array}$$

Search for neutrinos from pre-defined source list

- 110 sources based on gamma-ray properties and weighted with neutrino search sensitivity
 - 8 starburst galaxies detected by Fermi-LAT
 - 98 brightest Fermi-LAT blazars (above 1 GeV)
 - 12 galactic sources based on VHE gamma-ray measurements

Most significant candidate: NGC 1068

Source Candidates – NGC 1068

- 2.9 sigma excess in TeV neutrinos (~60 events) in 10 years of IceCube data
- Nearby (M=14Mpc) Seyfert 2 galaxy
- AGN and star-forming activity

 1.70° -0.30° -2.30° 42.87° Right Ascension Right Ascension P-value map 6.0 4.5 30.90 0 1.5 0.0

Gamma rays need to be absorbed

IceCube Coll. PRL 124 (2020)

Spectrum of NGC 1068 (M77)

See also Inoue et al. ApJL 891 (2020)

NGC 1068 also contributes to the SBG excess found by Auger Different interaction models

Table 2.	Populations	investigated
----------	-------------	--------------

SBGs	1[°]	b [°]	Distance ^a [Mpc]	Flux weight [%]	Attenuated weight: A / B / C [%]	% contribution ^b : A / B / C [%]
NGC 253	97.4	-88	2.7	13.6	20.7 / 18.0 / 16.6	35.9 / 32.2 / 30.2
M82	141.4	40.6	3.6	18.6	24.0 / 22.3 / 21.4	0.2 / 0.1 / 0.1
NGC 4945	305.3	13.3	4	16	19.2 / 18.3 / 17.9	39.0 / 38.4 / 38.3
M83	314.6	32	4	6.3	7.6 / 7.2 / 7.1	13.1 / 12.9 / 12.9
IC 342	138.2	10.6	4	5.5	6.6 / 6.3 / 6.1	0.1 / 0.0 / 0.0
NGC 6946	95.7	11.7	5.9	3.4	3.2 / 3.3 / 3.5	0.1 / 0.1 / 0.1
NGC 2903	208.7	44.5	6.6	1.1	0.9 / 1.0 / 1.1	0.6 / 0.7 / 0.7
NGC 5055	106	74.3	7.8	0.9	0.7 / 0.8 / 0.9	0.2 / 0.2 / 0.2
NGC 3628	240.9	64.8	8.1	1.3	1.0 / 1.1 / 1.2	0.8 / 0.9 / 1.1
NGC 3627	242	64.4	8.1	1.1	0.8 / 0.9 / 1.1	0.7 / 0.8 / 0.9
NGC 4631	142.8	84.2	8.7	2.9	2.1 / 2.4 / 2.7	0.8 / 0.9 / 1.1
M51	104.9	68.6	10.3	3.6	2.3 / 2.8 / 3.3	0.3 / 0.4 / 0.5
NGC 891	140.4	-17.4	11	1.7	1.1 / 1.3 / 1.5	0.2 / 0.3 / 0.3
NGC 3556	148.3	56.3	11.4	0.7	0.4 / 0.6 / 0.6	0.0 / 0.0 / 0.0
NGC 660	141.6	-47.4	15	0.9	0.5 / 0.6 / 0.8	0.4 / 0.5 / 0.6
NGC 2146	135.7	24.9	16.3	2.6	1.3 / 1.7 / 2.0	0.0 / 0.0 / 0.0
NGC 3079	157.8	48.4	17.4	2.1	1.0 / 1.4 / 1.5	0.1 / 0.1 / 0.1
NGC 1068	172.1	-51.9	17.9	12.1	5.6 / 7.9 / 9.0	6.4 / 9.4 / 10.9
NGC 1365	238	-54.6	22.3	1.3	0.5 / 0.8 / 0.8	0.9 / 1.5 / 1.6
Arp 299	141.9	55.4	46	1.6	0.4 / 0.7 / 0.6	0.0 / 0.0 / 0.0
Arp 220	36.6	53	80	0.8	0.1 / 0.3 / 0.2	0.0 / 0.2 / 0.1
NGC 6240	20.7	27.3	105	1	0.1 / 0.3 / 0.1	0.1 / 0.3 / 0.1
Mkn 231	121.6	60.2	183	0.8	0.0 / 0.1 / 0.0	0.0 / 0.0 / 0.0

RUB

=

A. Aab et al (Auger Collaboration) 2018 ApJL 853 L29

Other Seyfert Galaxies

		p-value		
Source	Stochastic (High CR pressure)	Stochastic (Modest CR pressure)	Magnetic reconnection	
NGC 1068	10^{-6}	0.09	1.8×10^{-4}	
NGC 1275	0.03	0.3	0.1	
CGCG 164-019	0.04	0.3	0.1	
UGC 11910	0.1	0.4	0.09	
Cen A	0.5	0.2	0.2	
Circinus Galaxy	0.5	0.3	0.3	
NGC 7582	0.5			
ESO 138-1	0.5		6-vr KM3NeT/	ARCA F
NGC 424	0.5	10^{-11}	= 10-vr IceCube	
NGC 4945	0.5		=== 10-yr IceCube-0	Fen2
Prospects for observations of bright nearby Seyfert galaxies in 10 years of IceCube		10^{-12} $MC_{$	it ji itee use e	
		$\sim 10^{-13}$	M31	
		Circinus NGC253		ARF
			GC1068 NGC3424	
Stacking analysis in		$\overset{\square}{}_{a}\overset{\square}$	ARP220 M33	C2146
progress with IceCube data		$\overset{\Theta}{=} 10^{-16}$	· · · ·	
		-1.0 -0.5	0.0 0.5	1.0
			$\sin\delta$	

RUB Kheirandish et al. ApJ 2021, Ambrosone ApJL 2021, Condorelli 2022

A. Ambrosone's and A. Condorelli's talks on Thursday Page 18

Stacking Analyses (uncomplete list)

Hints / evidence

- Stacking of blazars from BZCat ~ 6×10⁻⁷ p-value (Buson et al. ApJL 2022)
- Stacking of radio-loud AGN ~ 0.2% p-value (Plavin et al. ApJ 894 (2020))
- Stacking of AGN cores: ~ 0.5% p-value (IceCube Coll. PRD 2022)

Upper limits

- Fermi-LAT blazars: <10% of diffuse flux (IceCube Coll. ApJ 835 (2017))
- Stacking of GRBs → GRBs contribute less than 1% to diffuse neutrino flux (IceCube Coll., ApJ 805 (2015), ApJ 824 (2016))
- Stacking of Fermi low-energy sources → contribute less than 1% (IceCube Coll. ApJ 2022)
-

Challenge: Weighting scheme needed. What is the right tracer for neutrino emission? \rightarrow Input from theory!?

Summary of Stacking Limits

F. Oikonomou PoS ICRC2021 (2022) 030, arXiv:2201.05623

Stacking with BZCat

Analysis reduced to Southern sky (dec < 85 deg)

Correlation of blazars with IceCube neutrino alerts at chance coincidence of 6×10⁻⁷

Buson et al. ApJL 2022

Three Strategies

Northern Sky

- 1. Look for hotspots in the neutrino sky \rightarrow identify source candidates
- 2. Start from EM source catalog \rightarrow look for neutrinos from source population ("stacking")
- 3. Focus on high-energy neutrinos with high signal probability \rightarrow look for EM counterparts

IceCube Target of Opportunity Program

Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- "Gold" alert stream: 10 / yr, ~5 / yr of cosmic origin
- Median latency: 30 sec

Goal: Find electromagnetic counterpart

Astropart. Phys., 92, 30 (2017)

IC-170922A – a 290 TeV Neutrino

Signalness: 56.5%

RUB IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Page 24

Source Candidates – TXS 0506+056

300 TeV neutrino coincident with gamma-ray flare (3sigma significance)

RUB

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Simple one-zone hadronic models violate X-ray constraints → More complex models needed

Gao et al., Nature Astronomy 2018, Keivani et al., ApJ, 2018, MAGIC Coll., ApJ, 2018, Cerruti et al. MNRAS 2018, ...

RUB

Modeling – lepto-hadronic

RUB

Gao et al., Nature Astronomy 2018, Keivani et al., ApJ, 2018, MAGIC Coll., ApJ, 2018, Cerruti et al. MNRAS 2018, ...

Other blazar-neutrino alert coincidences

Models consistent (statistically) with neutrino detection for > month long flares but require atypically high proton content

No excess found in alert stacking using GeV gamma-rays as weights Lagunas Gualda ICRC 2021

RUB

F. Oikonomou ICRC 2021

Gamma-rays emitters are obvious candidates

Cosmic ray

$$\begin{array}{c}pp\\p\gamma\\p\gamma\\target\end{array} \quad \dots + \pi^{+} \to \mu^{+} + \nu_{\mu} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu} + \nu_{\mu} \\ \dots + \pi^{-} \to \mu^{-} + \bar{\nu}_{\mu} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu} + \bar{\nu}_{\mu} \\ \dots + \pi^{0} \to \gamma\gamma\end{array}$$

Gamma-ray emitters are obvious candidates, but ...

... in order not to overshoot the measured gamma-ray background a majority of the neutrino sources has to be dark in GeV gamma rays ("hidden sources")

Selection of Source Candidates

ZTF Follow-up Pipeline

Reject stars, planets, artifacts, asteroids

 high-energy neutrino alert arrives

2. Observe with ZTF

3. Follow-up with AMPEL

Nordin et al., A&A 631, A147 (2019)

R. Stein et al. 2022 **RU**B

4. Trigger further follow-up observations

Page 32

Source Candidates – AT 2019dsg

Tidal Disruption Event (TDE)

~50 TDEs identified, 4 jetted TDEs

Source Candidates – AT 2019dsg

Fermi

Distance: z = 0.05 (d = 230 Mpc), no gamma rays

- First hint of neutrino production in TDEs
- Two more candidates identified (3.7 sigma)

Neutrino Production in TDEs

▲ Soft X-ray TDEs

W. Winter's talk on Thursday

Hayasaki, Nature Astronomy 2021

What have we learned?

Sources accelerate protons to at least PeV energies

Correlation of arrival directions of neutrinos and UHECRs

No significant correlation found. Neutrinos and UHECR have very different horizon.

ANTARES, IceCube, PAO, TA, ApJ 934 164 (2022)

Do we expect neutrinos to trace UHECRs?

Non-observation of neutrino multiplets limits UHECR-neutrino correlation. Best chance for negative source evolution.

RUB

Galactic Sources

Galactic Sources

Neutrino flux modeled by Galactic propagation code constraint by gamma-ray and cosmic-ray measurements

No significant neutrino excess found from Galactic plane yet

 $+75^{\circ}$

-75°

 10^{-8}

 10^{-7}

 $dN/d\Omega \, [{\rm cm}^{-2} \, {\rm sr}^{-1} \, {\rm s}^{-1}]$

 10^{-6}

 $+60^{\circ}$

 -60°

 10^{-1}

 $+45^{\circ}$

 $+30^{\circ}$

 $+15^{\circ}$ **24**h

-15

Contribution to diffuse flux <8.5%

RUB

ANTARES & IceCube, ApJ 868 (2018) no.2, L20

0h

 10^{-5}

Gamma rays at highest energies

Cao, Aharonian et al. Nature 594, 2021

RUB

In the Future

Next Generation Neutrino Telescopes

Operating Planned / under construction

At very-high energies: PAO, RNO-G, GRAND, POEMMA, ...

New Instrument to identify Counterparts

Closing the Gap in the MeV Range

RUB

Page 45

Summary

Neutrinos and gamma-rays are unique messengers from the high-energy Universe

Summary

Multi-wavelength observations are key to identify neutrino and cosmic-ray sources

Stacking Analysis using Fermi-LAT blazar catalog

Correlation study of 3 years of IceCube data and 862 *Fermi*-LAT blazars

Fermi-LAT blazars can only be responsible for a **small fraction** of the observed ν 's.

Stacking with radio-loud AGN

Correlation with VLBI-flux-density limited sample of AGN

Correlation of radio-bright AGN with IceCube neutrino alerts at chance coincidence of 0.2%

RUB

Plavin et al., ApJ 894 (2020), Plavin et al. 2020 arXiv:2009.08914

Stacking with radio-loud AGN

Correlation with VLBI-flux-density limited sample of AGN

Correlation of radio-bright AGN with IceCube neutrino alerts at chance coincidence of 0.2%

RUB

Plavin et al., ApJ 894 (2020), Plavin et al. 2020 arXiv:2009.08914

Source Candidates – AT 2019dsg

Page 53

Source Candidates – AT 2019dsg

Radio observations

Radio data reveals long-lasting activity of central engine

Two more TDE candidates!

$$p = 2 \times 10^{-4} (3.7 \sigma)$$

→ Very efficient neutrino production in TDEs

S. Reusch et al. PRL 2022

RUB

S. Van Velzen et al. arXiv:2111.09391 Page 55

Gamma-Ray Bursts (GRBs)

Gamma rays and X-rays tell us where and when to look for neutrinos

Prompt emission of > 800 GRBs correlated with IceCube data → no excess found

Precursor and afterglow searches in preparation

GRBs contribute less than 1% to observed diffuse neutrino flux. Potential large population of nearby low-luminosity GRBs not constrained

IceCube Coll., ApJ 805 (2015), ApJ 824 (2016)

The Cosmic Neutrino Pi Chart

Bartos et al. Astrophys.J. 921 (2021)

IceCube-Gen2 time line

