Detector calibration	Spectrum, composition and anisotropies	Muon content of showers	Hadronic physics	Neu
0000		00	0	00

Neutrinos and exotics

Atmospheric physics

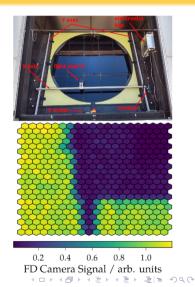
Poster Rapporteur: Experiments

armando.dimatteo@to.infn.it

Sezione di Torino Turin, Italy

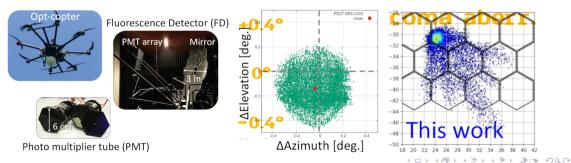
Armando di Matteo

UHECR 2022 Biological 1 1 Million


6th International Symposium on Ultra High Energy Cosmic Rays (UHECR 2022) 3–7 October 2022 Gran Sasso Science Institute (GSSI), L'Aquila, Italy

Detector calibration	Spectrum, composition and anisotropies	Muon content of showers	Hadronic physics	Neutrinos and exotics	Atmospheric physics	
Outline						

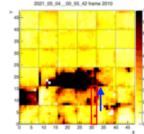
- Detector calibration
- 2 Spectrum, composition and anisotropies
- Muon content of showers
- 4 Hadronic physics
- 5 Neutrinos and exotics
- 6 Atmospheric physics

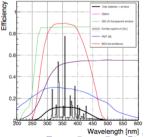

XY-Scanner for Auger FD calibration Martin Vacula [Pierre Auger collab.]

- Light source (UV LED in a 13.5 cm-diameter sphere) mounted on two vertical and one horizontal stages
- Moved all over the telescope aperture (1,700 positions with 6 cm spacing)
- Calibration constant for each PMT by integrating over all light source positions
- Typically $\mathcal{O}(1\%)$ change between measurements

Oct-copter for TA FD calibration Takayuki Tomida [Telescope Array collab.]

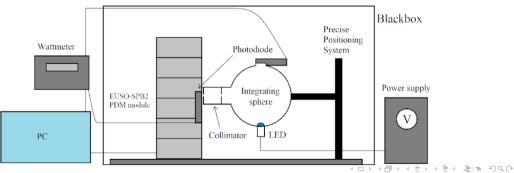
- Light source (UV LED) on a drone flown 300 m from the Telescope Array FD equipped with a RTK-GPS (precision of $10 \text{ cm} \rightarrow 0.02^{\circ}$)
- (Size of TA FD pixels: 1°)
- Allows precise determinations of FD pointing direction, spot size, coma aberration




UV ground flasher for Mini-EUSO calibration

Hiroko Miyamoto [JEM-EUSO collab.]

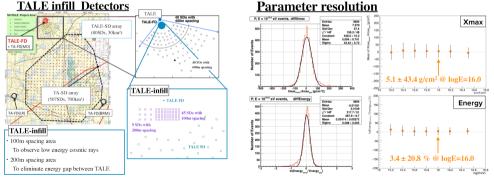
- Mini-EUSO: ±22°-FoV telescope currently onboard the ISS facing nadir, with 2304 pixels, three timescales (2.5 µs, 320 µs, 40 ms)
- UV flasher (100 W UV LED) measured in Turin, then pointed up and detected by Mini-EUSO
- Efficiency determined, in good agreement with theoretical values (after correcting for atmospheric absorption)



Calibration of EUSO-SPB2 photodetection modules

Daniil Trofimov [JEM-EUSO collab.]

- EUSO-SPB2: balloon to be launched in 2023, with three PDMs (Mini-EUSO has one, JEM-EUSO will have tens)
- The PDMs have been calibrated both in full illumination mode and in single-pixel illumination mode.



Spectrum, composition and anisotropies

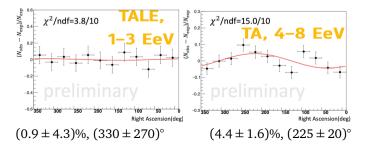
• TALE-infill: Existing TALE FD, plus 100 m- and 200 m-spacing SD stations to be deployed in October–November 2022

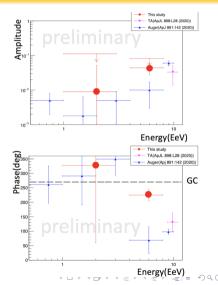
Muon content of showers

• Will extend the TALE energy range down to PeV energies

(optimized cuts might improve X_{max} resolution to 40 g/cm^2)

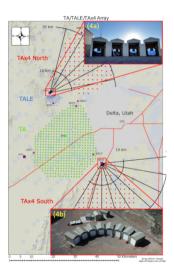
Parameter resolution

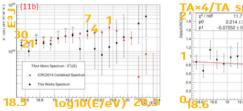

Hadronic physics

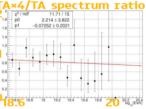

Neutrinos and exotics

Atmospheric physics

TALE and TA large-scale anisotropy Toshihiro Fujii [Telescope Array collab.]


- No significant dipole observed yet either with TALE in [1 EeV, 3 EeV) (2019 Oct 02–2021 Sep 28 → 1,122 events) or with TA in [4 EeV, 8 EeV) (2008 May 11–2019 May 11 → 8,810 events)
- More statistic needed!




500

TA×4 monocular FD spectrum Mathew Potts [Telescope Array collab.]

- TA×4 North: 4 FD telescopes, completed in 2018
- TA×4 South: 8 FD telescopes, completed in 2019
- Resol.: $E \pm 20\%$, $\theta \pm 3^{\circ}$, $\psi \pm 7^{\circ}$, $X_{\text{max}} \pm 86 \text{ g/cm}^2$
- Good agreement with MC simulations and with main TA spectrum

• Will provide more statistics for future analyses

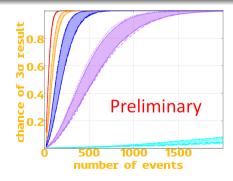
Requirements for future X_{max} anisotropies Ryosuke Saito

How much statistics will we need?

Hypotheses

- Background with constant X_{max} composition (Auger mix) over the full sky
- Excess (TA hotspot) due to one element
- Same energy spectrum shape (from TA measurements) in both

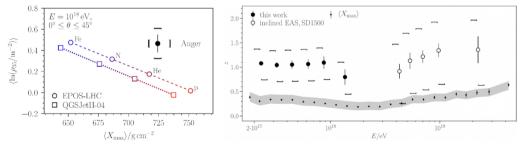
Procedure


• Simulate events according to the model above, until the X_{max} distributions inside and outside the hotspot differ with a 3σ statistical significance

Atmospheric physics

Requirements for future X_{max} anisotropies Ryosuke Saito

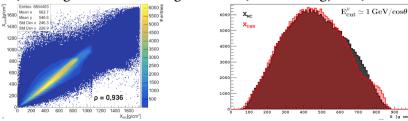
Results


- Around 160, 250, 1500, > 10000 or 500 events needed if the hotspot is **protons**, helium, nitrogen, silicon or iron, respectively
- Relatively similar results between EPOS LHC and OGSJET II-04

The Underground Muon Detector of Auger

Marina Scornavacche [Pierre Auger collab.]

- So far, $7 \times (2 \times 5 \text{ m}^2 + 2 \times 10 \text{ m}^2)$ scintillator modules buried 2.3 m deep to detect muons in showers (at low densities, individual muons can be counted)
- Result from engineering array: 38% (50%) more muons in real showers than in EPOS LHC (QGSJET II-04) simulations


• Full array ($3 \times 10 \text{ m}^2$ for each SD-750 station) to be completed by mid-2023

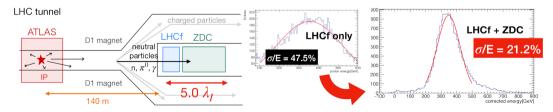
900 1000 X[g cm⁻²] ⊨ 4

Muon production depth reconstructed via DNN Eva dos Santos

- Muons are mostly produced within tens of metres of the shower axis, especially the most energetic ones.
- They incur geometric and kinematic delays ($\mathcal{O}(100 \, \text{ns})$)
- A deep neural network was trained to estimate the production distance of muons based on:
 - Zenith angle $\sec \theta$ Azimuth angle $\cos \zeta$ Core distance r
 - Arrival time *t* Whether they reach the UMD (see previous slide)

• In MC, among muons reaching the UMD, bias $< 10 \text{ g/cm}^2$, res. $\sim 80 \text{ g/cm}^2$

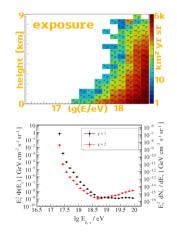
wers Hadronic physics


Neutrinos and exotics

Atmospheric physics

LHCf-ATLAS ZDC joint measurements

Moe Kondo [LHCf and ATLAS ZDC collabs.]


- Measurements of γ , π^0 , *n* emitted in the very forward region by *pp* collisions by the LHC-forward and ATLAS Zero Degree Calorimeter experiments in order to investigate hadronic interaction models and the muon excess in air showers
- Much better resolution than LHCf alone

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Search for upgoing events in Auger Vladimir Novotný [Pierre Auger collab.]

- ANITA detected events looking like upward-going ν_τ-initiated air showers, at angles that should not be possible according to the Standard Model.
- Auger FD data were searched for similar showers.
- After filtering misreconstructed downgoing showers and calibration laser shots out, one event survived (compatible with the expected background).
- This fact and the exposure (computed via MC) were used to set limits to upgoing *τ* leptons.

(日本本語を本語を注意を入口を)

Hadronic physics

Neutrinos and exotics

Atmospheric physics

Payload for Ultrahigh Energy Observations (PUEO) Austin Cummings

- Radio detection of cosmic rayand neutrino-induced showers (successor experiment of ANITA)
- Comprises a main instrument and a low-frequency instrument
- Goals:
 - Detection of (or limits on) EeV neutrinos
 - Search for ANITA-like upgoing events
 - Studies of ice properties
- **PUEOSim** MC code developed for PUEO
- vSpaceSim for future detectors in space

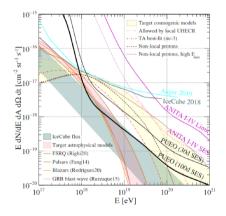
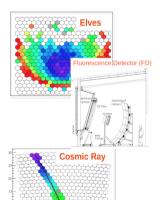


Figure: Expected sensitivity

Hadronic physics

Neutrinos and exotics


Atmospheric physics

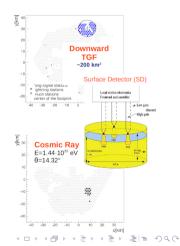
EL OQA

ELVES and terrestial gamma-ray flashes at Auger

Roberta Colalillo [Pierre Auger collab.]

- Lightning is one of the most energetic phenomena on Earth. It can trigger **ELVES** and TGFs.
- ELVES are transient luminous events at the base of the ionosphere ($\sim 10^2$ km high).
- They are visible from 250–1000 km away in Auger FD data as expanding rings.
- Based on their time structure, they can be classified as single-peaked or double-peaked.
- There may be several different mechanisms producing the latter. New triggers for HEAT have been devised to study them.

s Hadronic physics


ics Neutrinos and ex

Atmospheric physics

ELVES and terrestial gamma-ray flashes at Auger

Roberta Colalillo [Pierre Auger collab.]

- Lightning is one of the most energetic phenomena on Earth. It can trigger ELVES and **TGFs**.
- TGFs are millisecond pulses of gamma rays produced by relativistic runaway electron avalanches in thunderstorm clouds.
- They are visible in Auger SD data as rings.
- The hole in the middle is because the signal there is too long for Auger cosmic-ray triggers.
- A new trigger has been devised to study them and fill the hole.

Thanks for your attention!