On the existence of N-junctions for a symmetric nonnegative potential with $N+1$ zeros.

Giorgio Fusco

Abstract

We consider a nonnegative potential $W: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is invariant under C_{N}, the rotation group of the regular polygon with N sides: $$
W(\omega z)=W(z), \quad z \in \mathbb{R}^{2}
$$ where ω is the rotation of angle $\frac{2 \pi}{N}$. We assume that W has $N+1$ zeros: $$
\{W=0\}=\left\{0, a, \omega a, \ldots, \omega^{N-1} a\right\}
$$ for some $a \in \mathbb{R}^{2} \backslash\{0\}$. We prove that, if the ratio between the surface tension for the interface $0 \leftrightarrow a$ and the surface tension for the interface $a \leftrightarrow \omega a$ is sufficiently large, then there exists a N-junction, that is a solution $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of $$
\Delta u=W_{u}(u)
$$ which remains away from 0 (in spite of the fact that $W(0)=0$) and divides the plane in N equal sectors where $U \sim a, \ldots, U \sim \omega^{N-1} a$.

