On the existence of N-junctions for a symmetric nonnegative potential with N + 1 zeros.

Giorgio Fusco

Abstract

We consider a nonnegative potential $W : \mathbb{R}^2 \to \mathbb{R}$ which is invariant under C_N , the rotation group of the regular polygon with N sides:

$$W(\omega z) = W(z), \ z \in \mathbb{R}^2,$$

where ω is the rotation of angle $\frac{2\pi}{N}$. We assume that W has N + 1 zeros:

$$\{W = 0\} = \{0, a, \omega a, \dots, \omega^{N-1}a\},\$$

for some $a \in \mathbb{R}^2 \setminus \{0\}$.

We prove that, if the ratio between the surface tension for the interface $0 \leftrightarrow a$ and the surface tension for the interface $a \leftrightarrow \omega a$ is sufficiently large, then there exists a N-junction, that is a solution $U : \mathbb{R}^2 \to \mathbb{R}^2$ of

$$\Delta u = W_u(u)$$

which remains away from 0 (in spite of the fact that W(0) = 0) and divides the plane in N equal sectors where $U \sim a, \ldots, U \sim \omega^{N-1}a$.