Bálint Tóth (Bristol \& Budapest)

Statistical Physics with Continuous Symmetries
VI. The Bose (lattice) Gas and Stochastic Representations

The Bose Lattice Gas:

N Bose-particles (bosons) on the lattice $\wedge \subset \mathbb{Z}^{d}$:

$$
\begin{aligned}
& \mathcal{H}_{\wedge, N}=\left\{f: \wedge^{N} \rightarrow \mathbb{C}: \forall \pi \in S_{N}: f(\pi \underline{x})=f(\underline{x}),(f, g):=\sum_{\underline{x}} \overline{f(\underline{x})} g(\underline{x})\right\} \\
& H_{\wedge, N}=\underbrace{\sum_{1 \leq j \leq N}-\Delta^{(j)}}_{\text {kinetic energy }}+\underbrace{\sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right)}_{\text {interaction energy }}+\underbrace{h N I}_{\text {dummy }}
\end{aligned}
$$

HW: Compute $\operatorname{dim}\left(\mathcal{H}_{\wedge, N}\right)$.
Unspecified number of bosons on \wedge :

$$
\mathcal{H}_{\Lambda}=\bigoplus_{N=0}^{\infty} \mathcal{H}_{\Lambda, N},\left.\quad \quad H_{\Lambda}\right|_{\mathcal{H}_{\Lambda, N}}=H_{\Lambda, N}
$$

The role of h : Control the number of particles in the system.

Condensation in the Free Bose Gas $V=0$:
[SN Bose (1924)], [A Einstein (1924)]:
If $V=0$ then the Hamiltonian $H_{\wedge, N}$ is easily diagonalizable. Let

$$
\varphi_{\wedge, p}(x):=|\wedge|^{-1 / 2} e^{i p \cdot x}, \quad p \in \wedge^{*}
$$

be the Fourier o-n basis in $\ell^{2}(\wedge)$,

$$
\left[N \mid \wedge^{*}\right]:=\left\{\underline{n}: \wedge^{*} \rightarrow \mathbb{N}, \quad \text { such that } \sum_{p \in \wedge^{*}} n(p)=N\right\}
$$

and, for $\underline{n} \in\left[N \mid \wedge^{*}\right],\left(p_{r}(\underline{n})_{1 \leq r \leq N}\right.$ be a (canonical) listing of the $p-\mathrm{s}$ in \underline{n}, with multiplicities. Then
$\psi_{\Lambda, N, \underline{n}}\left(x_{1}, \ldots, x_{N}\right):=(N!)^{-1 / 2} \sum_{\pi \in S_{N}} \prod_{r=1}^{N} \varphi_{\wedge, p_{r}(\underline{n})}\left(x_{\pi(r)}\right), \quad \underline{n} \in\left[n \mid \wedge^{*}\right]$,
form an orthonormal basis in $\mathcal{H}_{\Lambda, N}(H W)$.

These are exactly the eigenvectors of the free Hamiltonian (HW).

$$
H_{\wedge, N} \psi_{\wedge, N, \underline{n}}=\epsilon_{\wedge, N, \underline{n}} \psi_{\wedge, N, \underline{n}}
$$

with eigenvalues

$$
\epsilon \wedge, N, \underline{n}=\sum_{p \in \Lambda^{*}} D(p) n(p)
$$

We also define the occupation number operators for the oneparticle states $(\varphi \wedge, p)_{p \in \Lambda^{*}}$, in the diagonal form:

$$
N_{\Lambda, N}(p) \psi_{\wedge, N, \underline{n}}=\underline{n}(p) \psi_{\Lambda, N, \underline{n}}, \quad \underline{n} \in\left[N \mid \wedge^{*}\right]
$$

Note that

$$
\sum_{p \in \Lambda^{*}} N_{\Lambda, N}(p)=N I
$$

Putting these together we write

$$
H_{\wedge, N}=\sum_{p \in \Lambda^{*}} D(p) N_{\Lambda, N}(p)
$$

Thus, we can compute explicitly whatever we please.
Let $\beta<\infty$ be fixed, and compute the occupation density of the one-particle ground state $|\Lambda|^{-1}\left\langle N_{\Lambda, N}(0)\right\rangle_{\Lambda, N, \beta^{\prime}}$ or rather

$$
|\Lambda|^{-1} \sum_{p \in \Lambda \backslash\{0\}}\left\langle N_{\Lambda, N}(p)\right\rangle_{\Lambda, N, \beta}=|\Lambda|^{-1} N-|\Lambda|^{-1}\left\langle N_{\Lambda, N}(0)\right\rangle_{\Lambda, N, \beta}
$$

turn page

$$
\begin{align*}
& |\Lambda|^{-1} \sum_{p \in \Lambda \backslash\{0\}}\left\langle N_{\Lambda, N}(p)\right\rangle_{\Lambda, N, \beta}= \\
& \quad=|\Lambda|^{-1} \sum_{p \in \Lambda \backslash\{0\}} \frac{\sum_{\underline{n} \in\left[N \mid \Lambda^{*}\right]} n(p) \prod_{q \in \Lambda^{*} \backslash\{0\}} e^{-\beta D(q) n(q)}}{\sum_{\underline{n} \in\left[N \mid \Lambda^{*}\right]} \Pi_{q \in \Lambda^{*} \backslash\{0\}} e^{-\beta D(q) n(q)}} \\
& \quad=|\Lambda|^{-1} \sum_{p \in \Lambda \backslash\{0\}} \frac{\sum_{M \leq N} \sum_{\underline{n} \in\left[M \mid \Lambda^{*} \backslash\{0\}\right]} n(p) \Pi_{q \in \Lambda^{*} \backslash\{0\}} e^{-\beta D(q) n(q)}}{\sum_{M \leq N} \sum_{\underline{n} \in\left[M \mid \Lambda^{*} \backslash\{0\}\right]} \Pi_{q \in \Lambda^{*} \backslash\{0\}} e^{-\beta D(q) n(q)}} \\
& \quad=\mathrm{E}\left(\left|\Lambda^{-1} \sum_{p \in \Lambda \backslash\{0\}} \xi_{\Lambda^{*}, p}\right||\Lambda|^{-1} \sum_{p \in \Lambda \backslash\{0\}} \xi_{\Lambda^{*}, p} \leq|\Lambda|^{-1} N\right) \quad \text { (1) } \tag{1}
\end{align*}
$$

where $\left(\xi_{\Lambda^{*}, p}\right)_{p \in \Lambda^{*} \backslash\{0\}}$ are independent random variables with geometric distributions

$$
\begin{aligned}
& \mathbf{P}\left(\xi_{\wedge^{*}, p}=k\right)=\left(1-e^{-\beta D(p)}\right) e^{-\beta D(p) k} \sim \operatorname{GEOM}\left(e^{-\beta D(p)}\right) \\
& \mathbf{E}\left(\xi_{\wedge^{*}, p}\right)=\frac{e^{-\beta D(p)}}{1-e^{-\beta D(p)}} \quad \operatorname{Var}\left(\xi_{\wedge^{*}, p}\right)=\frac{e^{-\beta D(p)}}{\left(1-e^{-\beta D(p)}\right)^{2}}
\end{aligned}
$$

Computing the conditional expectation on the rhs of (1), in the thermodynamic limit $\wedge \nearrow \mathbb{Z}^{d}, N \rightarrow \infty, N /|\Lambda| \rightarrow \varrho \in(0, \infty)$, becomes a well-posed large deviation problem of probability theory. Let

$$
\begin{aligned}
\varrho^{*} & :=\lim _{\wedge \nearrow \mathbb{Z}^{d}}|\wedge|^{-1} \sum_{p \in \Lambda \backslash\{0\}} \mathbf{E}\left(\xi_{\wedge^{*}, p}\right) \\
& =\int_{[-\pi, \pi]^{d}} \frac{e^{-\beta D(p)}}{1-e^{-\beta D(p)}} d p \begin{cases}=\infty & d=1,2 \\
<\infty & d \geq 3\end{cases}
\end{aligned}
$$

Then, in the thermodynamic limit
$\lim \mathbf{E}\left(\left.|\Lambda|^{-1} \sum_{p \in \Lambda \backslash\{0\}} \xi_{\wedge^{*}, p}| | \Lambda\right|^{-1} \sum_{p \in \Lambda \backslash\{0\}} \xi_{\wedge^{*}, p} \leq \varrho\right)= \begin{cases}\varrho & \text { if } \varrho \leq \varrho^{*} \\ \varrho^{*} & \text { if } \varrho>\varrho^{*}\end{cases}$
and thus
$\varrho_{\text {cond }}:=\lim \frac{\langle \# \text { particles in single particle ground state }\rangle_{\Lambda, \beta}}{|\Lambda|}=\left(\varrho-\varrho^{*}\right)_{+}$

Topics for essay for a probabilist student: Prove BEC with full mathematical rigour.
The limit (2) follows from well established, though not completely trivial probabilistic arguments:

- $\varrho<\varrho^{*}, d \geq 1$: A large deviation estimate in the spirit of Cramér's upper bound
$\circ \varrho \geq \varrho^{*}, d \geq 4$: Chebyshev's inequality.
- $\varrho \geq \varrho^{*}, d=3$: Separate the sum as

$$
\sum_{p \in \Lambda \backslash\{0\}} \xi_{\Lambda^{*}, p}=\sum_{\substack{p \in \Lambda \backslash\{0\} \\|p|<\varepsilon}} \xi_{\Lambda^{*}, p}+\sum_{\substack{p \in \Lambda \backslash\{0\} \\|p| \geq \varepsilon}} \xi_{\Lambda^{*}, p}
$$

then apply Markov's inequality to the first and Chebyshev's inequality to the second part.

Still BEC. Fock space and second quantization.

Unitary equivalent reformulation of the same setting (HW).

$$
\begin{aligned}
& \mathcal{H}_{\Lambda}=\bigotimes_{x \in \Lambda} \ell^{2}(\mathbb{N})=\bigoplus_{N=0}^{\infty} \ell_{\text {symm }}^{2}\left(\wedge^{N}\right)=\bigoplus_{N=0}^{\infty}\left(\bigotimes_{j=1}^{N} \ell^{2}(\Lambda)\right)_{\text {symm }} \\
& H_{\Lambda}=-\sum_{x \sim y \in \Lambda} \mathfrak{b}^{\dagger}(x) \mathfrak{b}(y)+\frac{1}{2} \sum_{x, y \in \Lambda} V(y-x)\{\mathfrak{n}(x) \mathfrak{n}(y)\}_{\mathrm{p}}+h \sum_{x} \mathfrak{n}(x)
\end{aligned}
$$

$\circ \mathfrak{b}^{\dagger}, \mathfrak{b}, \mathfrak{n}$ are bosonic creation, annihilation, number operators acting on $\ell^{2}(\mathbb{N})$:

$$
\left[\mathfrak{b}, \mathfrak{b}^{\dagger}\right]=I, \quad \mathfrak{n}=\mathfrak{b}^{\dagger} \mathfrak{b}, \quad\left[\mathfrak{n}, \mathfrak{b}^{\dagger}\right]=\mathfrak{b}^{\dagger}, \quad[\mathfrak{n}, \mathfrak{b}]=-\mathfrak{b}
$$

Their canonical matrix representation is $(n, m \in \mathbb{N})$

$$
\mathfrak{b}_{n, m}^{\dagger}=\sqrt{n} \delta_{n, m+1} \quad \mathfrak{b}_{n, m}=\sqrt{n+1} \delta_{n, m-1} \quad \mathfrak{n}_{n, m}=n \delta_{n, m}
$$

- Notational convention (as before): $\mathfrak{a}(x):=I \otimes \cdots \otimes I \otimes \mathfrak{a} \otimes I \otimes \cdots \otimes I$
- We count pairs: $\{\mathfrak{n}(x) \mathfrak{n}(y)\}_{\mathrm{p}}:=\mathfrak{n}(x) \mathfrak{n}(y)-\delta(x-y) \mathfrak{n}(x)$

Note the formal similarities with the the $X X Z$ Hamiltonian!

In particular: Let the total number operator be

$$
N_{\Lambda}:=\sum_{x \in \Lambda} \mathfrak{n}(x),\left.\quad N_{\wedge}\right|_{\mathcal{H}_{\wedge, N}}=\left.N I\right|_{\mathcal{H}_{\wedge, N}}
$$

Then, obviously (HW)

$$
\left[N_{\Lambda}, H_{\Lambda}\right]=0
$$

and, thus, the Hamiltonian has the $U(1)$ internal symmetry

$$
e^{i \theta N_{\wedge}} H_{\wedge} e^{-i \theta N_{\Lambda}}=H_{\Lambda}
$$

It is the case that the BEC exactly corresponds to the LRO breaking the $U(1)$ symmetry:
$\varrho_{\text {cond }}=\lim _{\Lambda \nearrow \mathbb{Z}^{d}}|\Lambda|^{-2} \sum_{x, y \in \Lambda}\left\langle\mathfrak{b}^{\dagger}(y) \mathfrak{b}(x)\right\rangle_{\Lambda}=\lim _{\Lambda \nearrow \mathbb{Z}^{d}}|\Lambda|^{-1} \sum_{x \in \Lambda}\left\langle\mathfrak{b}^{\dagger}(0) \mathfrak{b}(x)\right\rangle_{\Lambda}$

Condensation in Interacting $\mathbf{B G}, V \neq 0$, remains a mystery. [F London (1938)], [RP Feynman (1953)] :
Superfluidity of liquid $\mathrm{He}^{4}=B E C$. Hence BEC is a major issue in quantum statistics and condensed matter physics.
It is not even clear, however, how to define the "condensate" for interacting bosons.
[O Penrose, L Onsager (1956)]: ODLRO

$$
\begin{aligned}
\varrho_{\text {cond }} & =\lim _{\Lambda \nearrow \mathbb{Z}^{d}}|\Lambda|^{-1}\langle\underbrace{\left(|\Lambda|^{-1 / 2} \sum_{x \in \Lambda} \mathfrak{b}^{\dagger}(x)\right)}_{\mathfrak{N}} \underbrace{\left(|\Lambda|^{-1 / 2} \sum_{y \in \Lambda} \mathfrak{b}(y)\right)}_{\mathfrak{B}}\rangle_{\Lambda, \beta} \\
& =\lim _{\Lambda \nearrow \mathbb{Z}^{d}}|\Lambda|^{-1} \sum_{x \in \Lambda}^{\left.\sum_{x \in \mathfrak{b}^{\dagger}}\langle 0) \mathfrak{b}(x)\right\rangle_{\wedge, \beta}}
\end{aligned}
$$

Note: Formal similarity with the LRO $r(\beta)$ in Heisenberg's $X X Z$ model! Actually: the same type of phase transition.

The Feynman-Kac Formula

[RP Feynman (1942, PhD)], [M Kac (1949)]
Let $|i\rangle, i \in \mathcal{J}$, be a natural o-n basis in \mathcal{H}, in which $H=-G+V$,

$$
G_{i, j}=\left(1-\delta_{i, j}\right)\left|G_{i, j}\right|-\delta_{i, j} \sum_{k \neq i} G_{i, k}, \quad V_{i, j}=V(i) \delta_{i, j}
$$

Then (under conditions...) G is the infinitesimal generator of the Markov process $t \mapsto \eta(t)$ on the state space \mathcal{J}, w jump rates

$$
\mathbf{P}(\eta(t+d t)=j \mid \eta(t)=i)=G_{i, j} d t+o(d t)
$$

The following identity holds:

$$
\begin{equation*}
\langle i| e^{-t H}|j\rangle=\mathrm{E}\left(e^{-\int_{0}^{t} V(\eta(s)) d s} \mathbb{1}_{\{\eta(t)=j\}} \mid \eta(0)=i\right) \tag{FK}
\end{equation*}
$$

Proof: Both sides are equal to the (unique) $\sin f: \mathbb{R}_{+} \times \mathcal{J} \rightarrow \mathbb{R}$ of the parabolic PDE (HW)

$$
\partial_{t} f=(G-V) f, \quad f(0, j)=\delta_{i, j} .
$$

Remarks to FK:

- To derive (FK) write

$$
\begin{aligned}
& \mathbf{E}\left(e^{-\int_{0}^{t} V(\eta(s)) d s} \mathbb{1}_{\{\eta(t)=j\}} \mid \eta(0)=i\right)= \\
& \quad \mathbf{E}\left(e^{-\int_{0}^{\varepsilon} V(\eta(s)) d s} \mathbf{E}\left(e^{-\int_{\varepsilon}^{t} V(\eta(s)) d s} \mathbb{1}_{\{\eta(t)=j\}} \mid \eta(\varepsilon)\right) \mid \eta(0)=i\right)
\end{aligned}
$$

and use Markov property. Discrete-space is technically easy.
The true technical difficulties come with continuous space:

$$
\langle f| e^{-t(-\Delta+V)}|g\rangle=\int_{\mathbb{R}^{d}} \mathbf{E}_{x}\left(e^{-\int_{0}^{t} V(B(s)) d s} g(B(t))\right) f(x) d x
$$

- Feynman's dream: Express $\langle f| e^{\sqrt{-1}}(-\Delta+V) t|g\rangle$ as path integral.
- A quote from Mark Kac: Enigmas of Chance (autobiography):
"It is only fair to say that I had Wiener's shoulders to stand on. Feynman, as in everything else he has done, stood on his own, a trick of intellectual contortion that he alone is capable of."

FK applied to Bose gas: [RP Feynman (1953)]
N bosons in $\wedge \subset \mathbb{Z}^{d}$, with pair interaction $V(y-x)$:

$$
\mathcal{H}_{\wedge, N}=\ell^{2}\left(\wedge^{N}\right)_{\text {symm }}, \quad H_{\wedge, N}=-\sum_{i} \Delta_{i}+\sum_{i<j} V\left(x_{i}-x_{j}\right) .
$$

[CPF] $\quad Q_{\wedge, N}(\beta):=\operatorname{Tr}\left(e^{-\beta H_{\wedge, N}}\right)=$
$\frac{1}{N!} \sum_{\sigma \in \mathcal{S}_{N}} \sum_{x_{1}, \ldots, x_{N} \in \Lambda} \mathbf{E}_{x_{1}, \ldots, x_{N}}\left(e^{-\int_{0}^{\beta} \sum_{i<j} V\left(X_{i}(s)-X_{j}(s)\right) d s} \mathbb{1}_{\left\{X_{j}(\beta)=x_{\sigma(j)}\right\}}\right)$
[GCPF] $\equiv_{\wedge}(\beta, h)=\sum_{N=0}^{\infty} e^{\beta h N_{N}} Q_{\wedge, N}(\beta)$
where $X_{j}(t), 1 \leq j \leq N$ are independent rw-s on \wedge.
Define on \mathcal{S}_{N} the probability measure (next slide)

$$
\begin{aligned}
& \mathbf{P}_{\Lambda, N, \beta}(\sigma)=\frac{1}{Q_{\Lambda, N}(\beta) N!} \times \\
& \quad \sum_{x_{1}, \ldots, x_{N} \in \Lambda} \mathbf{E}_{x_{1}, \ldots, x_{N}}\left(e^{-\int_{0}^{\beta} \sum_{i<j} V\left(X_{i}(s)-X_{j}(s)\right) d s} \mathbb{1}_{\left\{X_{j}(\beta)=x_{\sigma(j)}\right\}}\right)
\end{aligned}
$$

Note: $\left(\forall \tau \in \mathcal{S}_{n}\right): \quad \mathbf{P}_{\wedge, N, \beta}\left(\tau \sigma \tau^{-1}\right)=\mathbf{P}_{\wedge, N, \beta}(\sigma)$
[RP Feynman (1953)]: In the limit $N \rightarrow \infty, \wedge \nearrow \mathbb{Z}^{d}, N /|\wedge| \rightarrow \varrho$, relate macroscopic size cycles of $\sigma \sim \mathrm{P}_{\Lambda, N, \beta}$ to BEC.
[A Sütó $(1993,2002)$]: For the free Bose-gas $(V \equiv 0)$ and some mean field approximations:

$$
\left\{\varrho_{\text {cond }}>0\right\} \Leftrightarrow\left\{\lim \mathbf{P}_{\wedge, N, \beta}(\text { longest cycles of } \sigma \asymp N)>0\right\}
$$

Condensation of interacting bosons ($V \not \equiv 0$) remains wide open.

The $s=1 / 2$ quantum- $X X Z$ as hard core Bose gas

 [TD Holstein, H Primakoff (1940)]:The Pauli matrices:

$$
\begin{aligned}
S_{+}:=S_{1}+i S_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad S_{-}:=S_{1}-i S_{2} & =\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad S_{+} S_{-}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
S_{+}^{2}=S_{-}^{2}=0, \quad\left[S_{-}, S_{+}\right] & =I-2 S_{+} S_{-},
\end{aligned}
$$

These are exactly the CCR for bosons with hard core repulsion.
The Hamiltonian: $\mathcal{H}_{\Lambda}=\left(\mathbb{C}^{2}\right)^{\otimes \Lambda \text {, }}$

$$
\begin{gathered}
H_{\wedge}=-\sum_{x \sim y}\left(S_{+}(x) S_{-}(y)+u S_{3}(x) S_{3}(y)\right)-h \sum_{x} S_{3}(x) \\
=-\sum_{x \sim y} \mathfrak{b}^{\dagger}(x) \mathfrak{b}(y)+\frac{1}{2} \sum_{x, y} V(x-y)\{\mathfrak{n}(x) \mathfrak{n}(y)\}_{\mathrm{p}}-h \sum_{x} \mathfrak{n}(x) \\
V(x-y)=+\infty \mathbb{1}_{\{x=y\}}-2 u \mathbb{1}_{\{x \sim y\}}
\end{gathered}
$$

The rest based on [BT (1993)] and some follow-up. Ingredients:

- $X_{j, t}, 1 \leq j \leq N$, indep. cont. time rws on \wedge, w/ j.r. $1 /$ edge.
$\circ \tau:=\inf \left\{t \geq 0: X_{i, t}=X_{j, t}, 1 \leq i<j \leq N\right\}=$ first coll. time.
○ $\underline{x}_{N}:=\left\{x_{1}, \ldots, x_{N}\right\} \in\binom{\wedge}{N}$, where $x_{i} \neq x_{j} \in \wedge, 1 \leq i<j \leq N$.
- $\mathcal{B}(A):=\#\{(x, y) \in A \times A:|x-y|=1\}$ (double count!)
- Symmetric Simple Exclusion Proc.: $t \mapsto \eta_{t} \in\binom{\wedge}{N}$ - explain.
\circ Random Transposition Process: $t \mapsto \xi_{t} \in \mathcal{S}_{\Lambda}$ - explain.
Note: $\forall A \in\binom{\wedge}{N}$ and $\forall \beta<0$:

$$
\left(\underline{X}_{N, s}: 0 \leq s \leq \beta<\tau \mid \underline{X}_{N, 0}=A\right) \stackrel{\text { law }}{=}\left(\eta_{s}: 0 \leq s \leq \beta<\tilde{\tau} \mid \eta_{0}=A\right)
$$

where

$$
\mathbf{P}_{\wedge}(\tilde{\tau}>\beta \mid \eta(s), 0 \leq s \leq \beta)=e^{-\int_{0}^{\beta} \mathcal{B}\left(\eta_{s}\right) d s}
$$

The CPF in terms of Simple Exclusion:

$$
\begin{aligned}
Q_{\Lambda, N}(\beta) & =\sum_{A \in\left(\begin{array}{c}
\hat{N} \\
N
\end{array}\right.} \mathbf{E}_{\wedge}\left(e^{u \int_{0}^{\beta} \mathcal{B}\left(\underline{X}_{N, s}\right) d s} \mathbf{1}_{\{\tau>\beta\}} \mathbb{1}_{\left\{\underline{X}_{N, \beta}=A\right\}} \mid \underline{X}_{N, 0}=A\right) \\
& =\sum_{A \in\binom{\hat{N}}{N}} \mathbf{E}_{\Lambda}\left(e^{u \int_{0}^{\beta} \mathcal{B}\left(\eta_{s}\right) d s} \mathbf{1}_{\{\tilde{\tau}>\beta\}} \mathbf{1}_{\left\{\eta_{\beta}=A\right\}} \mid \eta_{0}=A\right) \\
& =\sum_{A \in\left(\begin{array}{l}
\hat{N} \\
N
\end{array}\right.} \mathbf{E}_{\Lambda}\left(e^{(u-1) \int_{0}^{\beta} \mathcal{B}\left(\eta_{s}\right) d s} \mathbf{1}_{\left\{\eta_{\beta}=A\right\}} \mid \eta_{0}=A\right) \\
& \stackrel{u \equiv 1}{=} \sum_{A \in\binom{\wedge}{N}} \mathbf{P}_{\wedge}\left(\eta_{\beta}=A \mid \eta_{0}=A\right)
\end{aligned}
$$

From now on $u=1$, the isotorpic ferromagnet case.

The GCPF in terms of Random Transpositions:

$$
\begin{aligned}
\bar{\Xi}_{\wedge}(\beta, 2 h) & =\sum_{N=0}^{\infty} e^{2 \beta h N_{N}} Q_{\Lambda}(\beta, N)(\beta) \\
& =\sum_{A \subseteq \Lambda} e^{2 \beta h|A|} \mathbf{P}_{\wedge}\left(\eta_{\beta}=A \mid \eta_{0}=A\right) \\
& =\left(1+e^{2 \beta h}\right)^{|\wedge|} \sum_{A \subseteq \wedge}(\underbrace{\frac{1}{1+e^{2 \beta h}}}_{1-p})^{|\wedge \backslash A|}(\underbrace{\frac{e^{2 \beta h}}{1+e^{2 \beta h}}}_{p})^{|A|} \mathbf{P}_{\wedge}\left(\xi_{\beta}(A)=A\right)
\end{aligned}
$$

$$
\stackrel{(2)(\odot)}{=} e^{|\wedge| \beta h} \mathbf{E}_{\Lambda}\left(\prod_{l \geq 1}(2 \cosh (l \beta h))^{\alpha_{l}\left(\xi_{\beta}\right)}\right)
$$

$$
\stackrel{h \equiv 0}{=} \mathbf{E}_{\Lambda}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)}\right)
$$

Notation:

$$
\begin{aligned}
& \alpha_{l}(\sigma):=\text { number of cylces of length } l \text { in } \sigma \in \mathcal{S}_{|\Lambda|} \\
& \lambda_{x}(\sigma):=\text { length of cylce in } \sigma \in \mathcal{S}_{\Lambda} \text { containing } x \in \Lambda
\end{aligned}
$$

And a straightforward (but very useful) identity: for $F: \mathbb{N} \rightarrow \mathbb{R}$

$$
\begin{gathered}
\sum_{l \geq 1} l F(l) \alpha_{l}(\sigma)=\sum_{x \in \Lambda} F\left(\lambda_{x}(\sigma)\right) \\
|\Lambda|^{-1} \mathbf{E}_{\Lambda}\left(\sum_{l \geq 1} l F(l) \alpha_{l}\left(\xi_{\beta}\right)\right)=\mathbf{E}_{\Lambda}\left(F\left(\lambda_{0}(\sigma)\right)\right)
\end{gathered}
$$

The spontaneous magnetisation:

$$
\begin{aligned}
m_{\Lambda}(\beta, 2 h) & =\frac{1}{\beta|\Lambda|} \frac{\partial \log \equiv \wedge}{\partial h}(\beta, 2 h)-\frac{1}{2} \\
& =\frac{1}{|\wedge|} \frac{\mathbf{E}_{\wedge}\left(\prod_{l \geq 1}(2 \cosh (l \beta h))^{\alpha_{l}\left(\xi_{\beta}\right)} \sum_{k \geq 1} k \alpha_{k}\left(\xi_{\beta}\right) \tanh (k \beta h)\right)}{\mathbf{E}_{\wedge}\left(\prod_{l \geq 1}(2 \cosh (l \beta h))^{\alpha_{l}\left(\xi_{\beta}\right)}\right)} \\
& =\frac{\mathbf{E}_{\wedge}\left(\prod_{l \geq 1}(2 \cosh (l \beta h))^{\alpha_{l}\left(\xi_{\beta}\right)} \tanh \left(\lambda_{0}\left(\xi_{\beta}\right) \beta h\right)\right)}{\mathbf{E}_{\wedge}\left(\prod_{l \geq 1}(2 \cosh (l \beta h))^{\alpha_{l}\left(\xi_{\beta}\right)}\right)} \\
m(\beta) & =\lim _{h \rightarrow 0} \lim _{\wedge \nearrow \mathbb{Z}^{d}} m_{\wedge}(\beta, h) \\
& =\lim _{n \rightarrow \infty} \lim _{\wedge \nearrow \mathbb{Z}^{d}} \frac{\mathbf{E}_{\wedge}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)} \mathbf{1}_{\left\{\lambda_{0}\left(\xi_{\beta}\right)>n\right\}}\right)}{\mathbf{E}_{\wedge}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)}\right)}
\end{aligned}
$$

The Long Range Order at $h=0$:
$r^{2}(\beta):=\underbrace{\lim _{\Lambda \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \sum_{x \in \Lambda}\left\langle S_{+}(0) S_{-}(x)\right\rangle_{\wedge, \beta}}_{\text {Heisenberg spins }} \stackrel{\text { or }}{=} \underbrace{\lim _{\Lambda \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \sum_{x \in \Lambda}\left\langle\mathfrak{b}^{\dagger}(0) \mathfrak{b}(x)\right\rangle_{\wedge, \beta}}_{\text {hard core Bose gas }}$

$$
\begin{aligned}
& =\lim _{\Lambda \nearrow \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \frac{\left.\mathbf{E}_{\Lambda}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)} \mathbb{1}_{\{0, x} \text { on the same cycle of } \xi_{\beta}\right\}\right)}{\mathbf{E}_{\Lambda}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)}\right)} \\
& =\lim _{\wedge \nearrow \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \frac{\mathbf{E}_{\Lambda}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)} \lambda_{0}\left(\xi_{\beta}\right)\right)}{\mathbf{E}_{\Lambda}\left(2^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)}\right)}
\end{aligned}
$$

The rest is fantasy and conjectures.

The formulas make prefect sense with 2 replaced by $\theta \geq 1$:

$$
\begin{aligned}
& m_{\theta}(\beta)=\lim _{n \rightarrow \infty} \lim _{\wedge \nearrow \mathbb{Z}^{d}} \frac{\mathbf{E}_{\wedge}\left(\theta^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)} \mathbf{1}_{\left\{\lambda_{0}\left(\xi_{\beta}\right)>n\right\}}\right)}{\mathbf{E}_{\wedge}\left(\theta^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)}\right)} \\
& r_{\theta}^{2}(\beta):=\lim _{\wedge \nearrow \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \frac{\mathbf{E}_{\wedge}\left(\theta^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)} \lambda_{0}\left(\xi_{\beta}\right)\right)}{\mathbf{E}_{\wedge}\left(\theta^{\sum_{l \geq 1} \alpha_{l}\left(\xi_{\beta}\right)}\right)}
\end{aligned}
$$

though, their interpretation as q-physical objects is less clear.
Compare with the FK, or, random cluster models of [CM Fortuin, PW Kasteleyn (1972)]: ... (explain) ...
$\theta=1$ percolation; $\quad \theta=2$ Ising; $\quad \theta=3,4, \ldots$ Potts;
$\theta=1$ is particularly appealing: "quantum percolation"?

Conjectures: Based on [BT (1993)], $\theta=1,2$.
$\circ d=2: \forall \beta<\infty, r_{\theta}(\beta)=0, m_{\theta}(\beta)=0$.

- $d \geq 3: \exists 0<\beta_{*}<\beta^{*}<\infty$, such that
- for $\beta<\beta_{*}: r_{\theta}(\beta)=0, m_{\theta}(\beta)=0$.
- for $\beta>\beta^{*}: r_{\theta}(\beta)>0, m_{\theta}(\beta)>0$.

Some results: Mostly for $\theta=1$, some extended/able to $\theta=2$

- [O Schramm (2005)]

Fully resolved on the $\Lambda_{n}=K_{n}, n \rightarrow \infty$.

- [A Hammond (2015)]

Essentially resolved on the tree \mathbb{T}_{d} with $d \gg 1$.

- [R Kotecký, P Miloś, D Ueltschi (2016)]

Partial results on $\wedge_{n}=\{0,1\}^{n}, n \rightarrow \infty$.

- [D Ueltschi (2013-...)] Various joint extensions of
[BT (1993)] and [M Aizenman, B Nachtergaele (1994)]
○

Nobel Laureates (Physics) who contributed substantially to the subject of the course and appeared in these lectures:
1921: Einstein
1932: Heisenberg
1945: Pauli
1957: Lee, Yang
1965: Feynman
1968: Onsager
1970: Néel
2016: Kosterlitz, Thouless
Could have appeared, left out only due to time constraints:
1952: Bloch
1977: Anderson, Mott
2016: Haldane
In the same league - and appeared in the talk:
Peierls, Dyson

