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The Bose Lattice Gas:

N Bose-particles (bosons) on the lattice Λ ⊂ Zd:

HΛ,N = {f : ΛN → C : ∀π ∈ SN : f(πx) = f(x), (f, g) :=
∑
x
f(x)g(x)}

HΛ,N =
∑

1≤j≤N
−∆(j)

︸ ︷︷ ︸
kinetic energy

+
∑

1≤i<j≤N
V (xi − xj)︸ ︷︷ ︸

interaction energy

+ hN I︸ ︷︷ ︸
dummy

HW: Compute dim(HΛ,N).

Unspecified number of bosons on Λ:

HΛ =
∞⊕

N=0

HΛ,N , HΛ|HΛ,N
= HΛ,N

The role of h: Control the number of particles in the system.
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Condensation in the Free Bose Gas V = 0:
[SN Bose (1924)], [A Einstein (1924)]:

If V = 0 then the Hamiltonian HΛ,N is easily diagonalizable. Let

ϕΛ,p(x) := |Λ|−1/2 eip·x, p ∈ Λ∗

be the Fourier o-n basis in `2(Λ),

[N |Λ∗] := {n : Λ∗ → N, such that
∑
p∈Λ∗

n(p) = N}

and, for n ∈ [N |Λ∗], (pr(n)1≤r≤N be a (canonical) listing of the
p-s in n, with multiplicities. Then

ψΛ,N,n(x1, . . . , xN) := (N !)−1/2 ∑
π∈SN

N∏
r=1

ϕΛ,pr(n)(xπ(r)), n ∈ [n|Λ∗],

form an orthonormal basis in HΛ,N (HW).
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These are exactly the eigenvectors of the free Hamiltonian (HW).

HΛ,NψΛ,N,n = εΛ,N,nψΛ,N,n

with eigenvalues

εΛ,N,n =
∑
p∈Λ∗

D(p)n(p)

We also define the occupation number operators for the one-
particle states

(
ϕΛ,p

)
p∈Λ∗

, in the diagonal form:

NΛ,N(p)ψΛ,N,n = n(p)ψΛ,N,n, n ∈ [N |Λ∗]

Note that ∑
p∈Λ∗

NΛ,N(p) = NI
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Putting these together we write

HΛ,N =
∑
p∈Λ∗

D(p)NΛ,N(p)

Thus, we can compute explicitly whatever we please.

Let β <∞ be fixed, and compute the occupation density of the
one-particle ground state |Λ|−1

〈
NΛ,N(0)

〉
Λ,N,β

, or rather

|Λ|−1 ∑
p∈Λ\{0}

〈
NΛ,N(p)

〉
Λ,N,β

= |Λ|−1N − |Λ|−1
〈
NΛ,N(0)

〉
Λ,N,β

turn page
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|Λ|−1 ∑
p∈Λ\{0}

〈
NΛ,N(p)

〉
Λ,N,β

=

= |Λ|−1 ∑
p∈Λ\{0}

∑
n∈[N |Λ∗] n(p)

∏
q∈Λ∗\{0} e

−βD(q)n(q)∑
n∈[N |Λ∗]

∏
q∈Λ∗\{0} e−βD(q)n(q)

= |Λ|−1 ∑
p∈Λ\{0}

∑
M≤N

∑
n∈[M |Λ∗\{0}] n(p)

∏
q∈Λ∗\{0} e

−βD(q)n(q)∑
M≤N

∑
n∈[M |Λ∗\{0}]

∏
q∈Λ∗\{0} e−βD(q)n(q)

= E
(
|Λ|−1 ∑

p∈Λ\{0}
ξΛ∗,p

∣∣∣ |Λ|−1 ∑
p∈Λ\{0}

ξΛ∗,p ≤ |Λ|−1N
)

(1)

where
(
ξΛ∗,p

)
p∈Λ∗\{0}

are independent random variables with ge-

ometric distributions
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P
(
ξΛ∗,p = k

)
= (1− e−βD(p))e−βD(p)k ∼ GEOM(e−βD(p))

E
(
ξΛ∗,p

)
=

e−βD(p)

1− e−βD(p)
Var

(
ξΛ∗,p

)
=

e−βD(p)

(1− e−βD(p))2

Computing the conditional expectation on the rhs of (1), in the
thermodynamic limit Λ ↗ Zd, N → ∞, N/ |Λ| → % ∈ (0,∞), be-
comes a well-posed large deviation problem of probability theory.
Let

%∗ := lim
Λ↗Zd

|Λ|−1 ∑
p∈Λ\{0}

E
(
ξΛ∗,p

)

=
∫

[−π,π]d

e−βD(p)

1− e−βD(p)
dp

=∞ d = 1,2

<∞ d ≥ 3
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Then, in the thermodynamic limit

limE
(
|Λ|−1 ∑

p∈Λ\{0}
ξΛ∗,p

∣∣∣ |Λ|−1 ∑
p∈Λ\{0}

ξΛ∗,p ≤ %
)

=

% if % ≤ %∗

%∗ if % > %∗

(2)

and thus

%cond := lim
〈#particles in single particle ground state〉Λ,β

|Λ|
=
(
%− %∗

)
+

Topics for essay for a probabilist student: Prove BEC with
full mathematical rigour.

The limit (2) follows from well established, though not com-
pletely trivial probabilistic arguments:
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◦ % < %∗, d ≥ 1: A large deviation estimate in the spirit of
Cramér’s upper bound

◦ % ≥ %∗, d ≥ 4: Chebyshev’s inequality.

◦ % ≥ %∗, d = 3: Separate the sum as∑
p∈Λ\{0}

ξΛ∗,p =
∑

p∈Λ\{0}
|p|<ε

ξΛ∗,p +
∑

p∈Λ\{0}
|p|≥ε

ξΛ∗,p

then apply Markov’s inequality to the first and Chebyshev’s
inequality to the second part.
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Still BEC. Fock space and second quantization.
Unitary equivalent reformulation of the same setting (HW).

HΛ =
⊗
x∈Λ

`2(N) =
∞⊕

N=0

`2symm(ΛN) =
∞⊕

N=0

 N⊗
j=1

`2(Λ)


symm

HΛ = −
∑

x∼y∈Λ

b†(x)b(y) +
1

2

∑
x,y∈Λ

V (y − x){n(x)n(y)}p + h
∑
x

n(x)

◦ b†, b, n are bosonic creation, annihilation, number operators
acting on `2(N):

[b, b†] = I, n = b†b, [n, b†] = b†, [n, b] = −b,
Their canonical matrix representation is (n,m ∈ N)

b†n,m =
√
nδn,m+1 bn,m =

√
n+ 1δn,m−1 nn,m = nδn,m

◦ Notational convention (as before): a(x) := I⊗· · ·⊗I⊗ a⊗I⊗· · ·⊗I
◦ We count pairs: {n(x)n(y)}p := n(x)n(y)− δ(x− y)n(x)
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Note the formal similarities with the the XXZ Hamiltonian!

In particular: Let the total number operator be

NΛ :=
∑
x∈Λ

n(x), NΛ|HΛ,N
= N I|HΛ,N

Then, obviously (HW)

[NΛ, HΛ] = 0

and, thus, the Hamiltonian has the U(1) internal symmetry

eiθNΛHΛe
−iθNΛ = HΛ

It is the case that the BEC exactly corresponds to the LRO
breaking the U(1) symmetry:

%cond = lim
Λ↗Zd

|Λ|−2 ∑
x,y∈Λ

〈
b†(y)b(x)

〉
Λ

= lim
Λ↗Zd

|Λ|−1 ∑
x∈Λ

〈
b†(0)b(x)

〉
Λ
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Condensation in Interacting BG, V 6= 0, remains a mystery.
[F London (1938)], [RP Feynman (1953)] :
Superfluidity of liquid He4 = BEC. Hence BEC is a major issue
in quantum statistics and condensed matter physics.
It is not even clear, however, how to define the "condensate" for
interacting bosons.
[O Penrose, L Onsager (1956)]: ODLRO

%cond = lim
Λ↗Zd

|Λ|−1
〈 (
|Λ|−1/2 ∑

x∈Λ

b†(x)
)

︸ ︷︷ ︸
B†

(
|Λ|−1/2 ∑

y∈Λ

b(y)
)

︸ ︷︷ ︸
B︸ ︷︷ ︸

N

〉
Λ,β

= lim
Λ↗Zd

|Λ|−1 ∑
x∈Λ

〈
b†(0)b(x)

〉
Λ,β

Note: Formal similarity with the LRO r(β) in Heisenberg’s XXZ
model! Actually: the same type of phase transition.
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The Feynman-Kac Formula
[RP Feynman (1942, PhD)], [M Kac (1949)]
Let |i〉, i ∈ J , be a natural o-n basis in H, in which H = −G+V ,

Gi,j = (1− δi,j)|Gi,j| − δi,j
∑
k 6=i

Gi,k, Vi,j = V (i)δi,j

Then (under conditions . . . ) G is the infinitesimal generator of
the Markov process t 7→ η(t) on the state space J , w jump rates

P
(
η(t+ dt) = j

∣∣∣η(t) = i
)

= Gi,jdt+ o(dt)

The following identity holds:

〈i|e−tH |j〉 = E
(
e−
∫ t

0 V (η(s))ds11{η(t)=j}
∣∣∣η(0) = i

)
(FK)

Proof: Both sides are equal to the (unique) sln f : R+ × J → R
of the parabolic PDE (HW)

∂tf = (G− V )f, f(0, j) = δi,j.
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Remarks to FK:
◦ To derive (FK) write

E
(
e−
∫ t

0 V (η(s))ds11{η(t)=j}
∣∣∣η(0) = i

)
=

E
(
e−
∫ ε

0 V (η(s))ds E
(
e−
∫ t
ε V (η(s))ds11{η(t)=j}

∣∣∣η(ε)
)∣∣∣ η(0) = i

)
and use Markov property. Discrete-space is technically easy.
The true technical difficulties come with continuous space:

〈f |e−t(−∆+V )|g〉 =
∫
Rd

Ex
(
e−
∫ t

0 V (B(s))dsg(B(t))
)
f(x)dx

◦ Feynman’s dream: Express 〈f |e
√
−1(−∆+V )t|g〉 as path

integral.
◦ A quote from Mark Kac: Enigmas of Chance (autobiography):
"It is only fair to say that I had Wiener’s shoulders to stand
on. Feynman, as in everything else he has done, stood on his own,
a trick of intellectual contortion that he alone is capable of."
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FK applied to Bose gas: [RP Feynman (1953)]

N bosons in Λ ⊂ Zd, with pair interaction V (y − x):

HΛ,N = `2(ΛN)symm, HΛ,N = −
∑
i

∆i +
∑
i<j

V (xi − xj)·

[CPF] QΛ,N(β) := Tr
(
e−βHΛ,N

)
=

1

N !

∑
σ∈SN

∑
x1,...,xN∈Λ

Ex1,...,xN

(
e
−
∫ β

0

∑
i<j V (Xi(s)−Xj(s))ds11{Xj(β)=xσ(j)}

)

[GCPF] ΞΛ(β, h) =
∞∑

N=0

eβhNQΛ,N(β)

where Xj(t), 1 ≤ j ≤ N are independent rw-s on Λ.

Define on SN the probability measure (next slide)
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PΛ,N,β

(
σ
)

=
1

QΛ,N(β)N !
×

∑
x1,...,xN∈Λ

Ex1,...,xN

(
e
−
∫ β

0

∑
i<j V (Xi(s)−Xj(s))ds11{Xj(β)=xσ(j)}

)
Note: (∀τ ∈ Sn): PΛ,N,β

(
τ σ τ−1

)
= PΛ,N,β

(
σ
)

[RP Feynman (1953)]: In the limit N → ∞, Λ ↗ Zd, N/|Λ| → %,
relate macroscopic size cycles of σ ∼ PΛ,N,β to BEC.

[A Sütő (1993, 2002)]: For the free Bose-gas (V ≡ 0) and some
mean field approximations:{

%cond > 0
}
⇔
{

limPΛ,N,β

(
longest cycles of σ � N

)
> 0

}

Condensation of interacting bosons (V 6≡ 0) remains wide open.
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The s = 1/2 quantum-XXZ as hard core Bose gas
[TD Holstein, H Primakoff (1940)]:
The Pauli matrices:

S+ :=S1+iS2 =

(
0 1
0 0

)
S− :=S1−iS2 =

(
0 0
1 0

)
S+S−=

(
1 0
0 0

)

S2
+ = S2

− = 0, [S−, S+] = I − 2S+S−,

These are exactly the CCR for bosons with hard core repulsion.
The Hamiltonian: HΛ = (C2)⊗Λ,

HΛ = −
∑
x∼y

(
S+(x)S−(y) + uS3(x)S3(y)

)
− h

∑
x
S3(x)

= −
∑
x∼y

b†(x)b(y) +
1

2

∑
x,y

V (x− y){n(x)n(y)}p − h
∑
x

n(x)

V (x− y) = +∞11{x=y} − 2u11{x∼y}
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The rest based on [BT (1993)] and some follow-up. Ingredients:

◦ Xj,t, 1 ≤ j ≤ N , indep. cont. time rws on Λ, w/ j.r. 1/edge.

◦ τ := inf{t ≥ 0 : Xi,t = Xj,t, 1 ≤ i < j ≤ N} = first coll. time.

◦ xN := {x1, . . . , xN} ∈
(

Λ
N

)
, where xi 6= xj ∈ Λ, 1 ≤ i < j ≤ N .

◦ B(A) := #{(x, y) ∈ A×A : |x− y| = 1} (double count!)

◦ Symmetric Simple Exclusion Proc.: t 7→ ηt ∈
(

Λ
N

)
- explain.

◦ Random Transposition Process: t 7→ ξt ∈ SΛ - explain.

Note: ∀A ∈
(

Λ
N

)
and ∀β < 0:(

XN,s : 0 ≤ s ≤ β < τ
∣∣∣XN,0 = A

) law
=

(
ηs : 0 ≤ s ≤ β < τ̃

∣∣∣ η0 = A
)

where

PΛ

(
τ̃ > β

∣∣∣ η(s), 0 ≤ s ≤ β
)

= e−
∫ β

0 B(ηs)ds
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The CPF in terms of Simple Exclusion:

QΛ,N(β) =
∑

A∈(Λ
N)

EΛ

(
eu
∫ β

0 B(XN,s)ds11{τ>β}11{XN,β=A}
∣∣∣XN,0 = A

)

=
∑

A∈(Λ
N)

EΛ

(
eu
∫ β

0 B(ηs)ds11{τ̃>β}11{ηβ=A}
∣∣∣ η0 = A

)

=
∑

A∈(Λ
N)

EΛ

(
e(u−1)

∫ β
0 B(ηs)ds11{ηβ=A}

∣∣∣ η0 = A
)

u=1
=

∑
A∈(Λ

N)

PΛ

(
ηβ = A

∣∣∣ η0 = A
)

From now on u = 1, the isotorpic ferromagnet case.
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The GCPF in terms of Random Transpositions:

ΞΛ(β,2h) =
∞∑

N=0

e2βhNQΛ(β,N)(β)

=
∑
A⊆Λ

e2βh|A|PΛ

(
ηβ = A

∣∣∣ η0 = A
)

= (1 + e2βh)|Λ|
∑
A⊆Λ

(
1

1 + e2βh︸ ︷︷ ︸
1−p

)
|Λ\A|

(
e2βh

1 + e2βh︸ ︷︷ ︸
p

)
|A|PΛ

(
ξβ(A) = A

)

,,
= e|Λ|βhEΛ

( ∏
l≥1

(
2 cosh(lβh)

)αl(ξβ))
h=0
= EΛ

(
2
∑
l≥1 αl(ξβ)

)
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Notation:

αl(σ) := number of cylces of length l in σ ∈ S|Λ|

λx(σ) := length of cylce in σ ∈ SΛ containing x ∈ Λ

And a straightforward (but very useful) identity: for F : N→ R∑
l≥1

lF (l)αl(σ) =
∑
x∈Λ

F (λx(σ))

|Λ|−1EΛ

( ∑
l≥1

lF (l)αl(ξβ)
)

= EΛ

(
F (λ0(σ))

)
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The spontaneous magnetisation:

mΛ(β,2h) =
1

β|Λ|
∂ log ΞΛ

∂h
(β,2h)−

1

2

=
1

|Λ|

EΛ

( ∏
l≥1

(
2 cosh(lβh)

)αl(ξβ) ∑
k≥1

kαk(ξβ) tanh(kβh)
)

EΛ

( ∏
l≥1

(
2 cosh(lβh)

)αl(ξβ))

=

EΛ

( ∏
l≥1

(
2 cosh(lβh)

)αl(ξβ)
tanh(λ0(ξβ)βh)

)
EΛ

( ∏
l≥1

(
2 cosh(lβh)

)αl(ξβ))
m(β) = lim

h→0
lim

Λ↗Zd
mΛ(β, h)

= lim
n→∞ lim

Λ↗Zd

EΛ

(
2
∑
l≥1 αl(ξβ)11{λ0(ξβ)>n}

)
EΛ

(
2
∑
l≥1 αl(ξβ)

) 22



The Long Range Order at h = 0:

r2(β) := lim
Λ↗Zd

1

|Λ|
∑
x∈Λ

〈
S+(0)S−(x)

〉
Λ,β︸ ︷︷ ︸

Heisenberg spins

or
= lim

Λ↗Zd
1

|Λ|
∑
x∈Λ

〈
b†(0)b(x)

〉
Λ,β︸ ︷︷ ︸

hard core Bose gas

= lim
Λ↗Zd

1

|Λ|
∑
x∈Λ

EΛ

(
2
∑
l≥1 αl(ξβ)11{0,x on the same cycle of ξβ}

)
EΛ

(
2
∑
l≥1 αl(ξβ)

)

= lim
Λ↗Zd

1

|Λ|
EΛ

(
2
∑
l≥1 αl(ξβ)λ0(ξβ)

)
EΛ

(
2
∑
l≥1 αl(ξβ)

)
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The rest is fantasy and conjectures.
The formulas make prefect sense with 2 replaced by θ ≥ 1:

mθ(β) = lim
n→∞ lim

Λ↗Zd

EΛ

(
θ
∑
l≥1 αl(ξβ)11{λ0(ξβ)>n}

)
EΛ

(
θ
∑
l≥1 αl(ξβ)

)

r2
θ (β) := lim

Λ↗Zd
1

|Λ|
∑
x∈Λ

EΛ

(
θ
∑
l≥1 αl(ξβ)λ0(ξβ)

)
EΛ

(
θ
∑
l≥1 αl(ξβ)

)
though, their interpretation as q-physical objects is less clear.

Compare with the FK, or, random cluster models of
[CM Fortuin, PW Kasteleyn (1972)]: . . . (explain) . . .
θ = 1 percolation; θ = 2 Ising; θ = 3,4, . . . Potts;

θ = 1 is particularly appealing: "quantum percolation"?
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Conjectures: Based on [BT (1993)], θ = 1,2.
◦ d = 2: ∀β <∞, rθ(β) = 0, mθ(β) = 0.
◦ d ≥ 3: ∃0 < β∗ < β∗ <∞, such that

- for β < β∗: rθ(β) = 0, mθ(β) = 0.
- for β > β∗: rθ(β) > 0, mθ(β) > 0.

Some results: Mostly for θ = 1, some extended/able to θ = 2

◦ [O Schramm (2005)]
Fully resolved on the Λn = Kn, n→∞.
◦ [A Hammond (2015)]
Essentially resolved on the tree Td with d� 1.
◦ [R Kotecký, P Miloś, D Ueltschi (2016)]
Partial results on Λn = {0,1}n, n→∞.
◦ [D Ueltschi (2013-. . . )] Various joint extensions of
[BT (1993)] and [M Aizenman, B Nachtergaele (1994)]
◦ . . . . . .
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Nobel Laureates (Physics) who contributed substantially
to the subject of the course and appeared in these lectures:
1921: Einstein
1932: Heisenberg
1945: Pauli
1957: Lee, Yang
1965: Feynman
1968: Onsager
1970: Néel
2016: Kosterlitz, Thouless
Could have appeared, left out only due to time constraints:
1952: Bloch
1977: Anderson, Mott
2016: Haldane
In the same league - and appeared in the talk:
Peierls, Dyson
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