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Statistical Physics with Continuous Symmetries

VI. The Bose (lattice) Gas and

Stochastic Representations



T he Bose Lattice Gas:

N Bose-particles (bosons) on the lattice A C Z%:

Han={f: AN = C:vreSy: f(rz) = f(z), (f,9) =) flx)g(zx)}

H/\,NZ Z —A(])+ Z V(a:z—m])—l— h NI
}gjgN }§i<j§N dummy

o o

kineticvenergy interacti?)rn energy
HW: Compute dim(Ha n).

Unspecified number of bosons on A:

©.@)
Ha= D Han, Hply, v = HAN
N=0 ’

The role of h: Control the number of particles in the system.
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Condensation in the Free Bose Gas V = 0:
[SN Bose (1924)], [A Einstein (1924)]:

If V=0 then the Hamiltonian Hpa y is easily diagonalizable. Let

enp(@) = INTHV2ePT pe N
be the Fourier o-n basis in £2(N),
[NIN] :={n: A" =N, such that ) n(p) =N}
peEN®

and, for n € [N|A*], (pr(n)1<,<n be a (canonical) listing of the
p-S in n, with multiplicities. Then

N
YANa (@1 zn) = (VD2 T @) @rie)s n € [n|A7],
WESNT:].

form an orthonormal basis in Ha x (HW).



These are exactly the eigenvectors of the free Hamiltonian (HW).

HANYANn = EANPANn
with eigenvalues
eANn= ) D(n(p)
peEN*®

We also define the occupation number operators for the one-

particle states (gp/\ p> . in the diagonal form:
"/ p

NANP)UA N = n(P)YA N n € [N|A]
Note that

> Nan(p) =NI
pEN*



Putting these together we write
Hpan = > D(p)Na n(p)
peEN*
Thus, we can compute explicitly whatever we please.

Let 8 < oo be fixed, and compute the occupation density of the

one-particle ground state \/\|_1 <NA,N(O)>/\N5’ or rather

ATE DT (NAN))p 5 = INTEN = IATH(NAN (D))
peA\{0} o -

turn page



ATE ST (Nan(p) =
pEA\ {0} ( s

—BD(q)n(q)

s |/\|_1 Z ZEE[Nl/\*] n(p) qu/\*\{o} e
pEA\{0} 2ne[N|A*] genn o} e—BD(q)n(q)

—BD(q)n(q)

A1 L M<N Lne[m|an\{o}] (P) lgens\{o} €

=INTT ) —AD(@n ()

peEA(0}  2M<N Zne[M|A+\{0}] Ilgen=\{o} €

=E(IAITY Y Gap|IATT Y Gap SIAITEN) (D)
peEN\{0} peN\{0}

are independent random variables with ge-

Where. (gA*,p)pe/\*\{O}
ometric distributions



P(g/\*,p — k) — (1 — e BDW))=BDIE , aEom(e—BP®))

e—BD(p) o—BD(p)
Blens) =1 mom  Varlens) = G- anoy

Computing the conditional expectation on the rhs of (1), in the
thermodynamic limit A " Z% N — oo, N/|A| = 0 € (0,0), be-
comes a well-posed large deviation problem of probability theory.
et

o* = lim A7t Y E(éns
NZE T penVio) S

B e—BD(p) L= d=1,2
T Jeamil— e DD oo d>3




Then, in the thermodynamic limit

IME(IATE Y eaep|INTE Y éaep <o) =

{Q if o< o*
peN\{0} peN\{0}

of if 0>0"
(2)
and thus
(#particles in single particle ground state>/\,5
Al

Ocond = lim = (0 — Q*)-|-

Topics for essay for a probabilist student: Prove BEC with
full mathematical rigour.

The limit (2) follows from well established, though not com-
pletely trivial probabilistic arguments:



o o< ¥, d>1. A large deviation estimate in the spirit of
Crameér’s upper bound

o o> 0%, d>4:. Chebyshev's inequality.
o o> p", d = 3: Separate the sum as
2. Snp = DL Sapt DL Aty

peN\{0} peN\{0} peN\{0}
Ip|<e Ip|>e

then apply Markov's inequality to the first and Chebyshev’s
inequality to the second part.



Still BEC. Fock space and second quantization.
Unitary equivalent reformulation of the same setting (HW).

00 N
Ha= Q) 2(N) = @ mm(ANY) = P (@ 62<A>)
symm

xEN N=0 \j=1
- Y bT<x>b<y>+ S v<y—x>{n<x>n<y>}p+hzn<w>
x~yEeN x,yeEN

o [ﬂL,b,n are bosonic creation, annihilation, number operators
acting on ¢2(N):

6,61 =1, =0,  [nol]=0bl,  [nb6]=-b
Their canonical matrix representation is (n,m € N)
bj’b,m — \/ﬁ5n,m+1 bn,m —Vvn —I_ 157’2,,77’2,—1 nn7m — nCSn,m
o Notational convention (as before): a(z) = I® - RIRQ aRIR - Q1

o We count pairs: {n(z)n(y)}, = n(z)n(y) — é(z — y)n(x)
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Note the formal similarities with the the X X7 Hamiltonian!

In particular: Let the total number operator be

Np = ) n(z), Nalpgn y = N lgy, o
xeN 7 ’

Then, obviously (HW)
[NA, HA] =0
and, thus, the Hamiltonian has the U(1) internal symmetry
NN e ONA = )

It is the case that the BEC exactly corresponds to the LRO
breaking the U(1) symmetry:

= i —2 f T = i —1 T T
econa = lim Al wz@@ (1)b(2)) , Aim A %A@ (0)b(x)) ,
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Condensation in Interacting BG, V # 0, remains a mystery.

[F London (1938)], [RP Feynman (1953)] :
Superfluidity of liquid He* = BEC. Hence BEC is a major issue
in quantum statistics and condensed matter physics.

It is not even clear, however, how to define the "condensate" for
interacting bosons.

[O Penrose, L Onsager (1956)]: ODLRO
ocond = Iim [ATEC(IATH2 32 67 (@) (IA7Y2 Y b(y)
A2 < ( zEN ) ( yEN )J>A’B

\ 7\

N

= lim |A[71 Y (67(0)b(2))

N\
N /74 xEN X

Note: Formal similarity with the LRO r(3) in Heisenberg's XX 7
model! Actually: the same type of phase transition.
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The Feynman-Kac Formula

[RP Feynman (1942, PhD)], [M Kac (1949)]
Let |¢), : € J, be a natural o-n basis in H, in which H = -G+ V,

Gij =1 =8 )DIGijl =i Gig Vij =V(@)d;;
ki
Then (under conditions ...) G is the infinitesimal generator of
the Markov process t — n(t) on the state space J, w jump rates

P(n(t+ dt) = j\n(t) = i) = G, dt + o(dt)
The following identity holds:
(iletH]j) = B(e JoVNdsy v 1[n(0) = i) (FK)

Proof: Both sides are equal to the (unique) sin f: R4 xJ — R
of the parabolic PDE (HW)
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Remarks to FK:
o To derive (FK) write

B(em foV (N b1 )y Jn(0) = i) =

~ o V(s)ds g (o= 2 V(n(s))ds , —

E(eJo E(e ) 11 0=5[1())| 1(0) = 1)
and use Markov property. Discrete-space is technically easy.
The true technical difficulties come with continuous space:

(fle™ A = |

Rd

Eo(c™ Jo VIO sg(B(1))) f(a)da

o Feynman’s dream: Express (fleV—1(=A+V){ 4} as path
integral.
o A quote from Mark Kac: Enigmas of Chance (autobiography):

"It is only fair to say that I had Wiener’s shoulders to stand
on. Feynman, as in everything else he has done, stood on his own,
a trick of intellectual contortion that he alone is capable of."
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FK applied to Bose gas: [RP Feynman (1953)]
N bosons in A C Z%, with pair interaction V(y — z):

Han = L2(AY)symm, Hp N = Z N4> V(w— )
1<J

[CPF] QAN (B) i= Tr(e PHAN) =

_ B ici V(Xi(8)—X,;(s))ds
Z Z Exl,...,a:N(e fo <J l{Xj(ﬁ)zma(J)})

UESN 1., LNEN

[GCPF]  =a(8,h) = ff "N QN (B)

N=0
where Xj(t), 1 <45 < N are independent rw-s on A.

Define on Sy the probability measure (next slide)
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1
PAN(7) = o n(BN

Z Ezq,..on (e_ foﬁ > i V(Xi(s)—X;(s))ds
LCl,...,CUNE/\
Note: (vr € Sn): Pang(ror 1) =Prng(o)

[RP Feynman (1953)]: In the limit N — oo, A /' Z%, N/|A| = o,
relate macroscopic size cycles of o ~ P/\,N,ﬁ to BEC.

[A SiUt6 (1993, 2002)]: For the free Bose-gas (V = 0) and some
mean field approximations:

I{Xj(ﬁ):%(j)})

{Qcond > 0} <~ {Ii_mP/\,Nﬁ(Iongest cycles of o < N) > o}

Condensation of interacting bosons (V # 0) remains wide open.
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The s = 1/2 quantum-X X7 as hard core Bose gas
[TD Holstein, H Primakoff (1940)]:

The Pauli matrices:

: O 1 : O O 1 0
S+Z=Sl—|—’LSQ=<O O) S_2251—152=<1 O) S_|_S_=<O O)

S3 =52 =0, [S_,S4]=1-25,S_,
These are exactly the CCR for bosons with hard core repulsion.
The Hamiltonian: Ha = (C2)®N,
Ho =~ (S4(@)S-(y) + uS3(x)S3(y)) — h3_ S3(w)

r~y

— Y bl (@)b(y) + = Z V(e —y){n(z)n(y)}p — hZﬂ(w)

r~y

V(LU - y) — _I_OO]‘{x:y} — 2u1{xNy}
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The rest based on [BT (1993)] and some follow-up. Ingredients:
e Xjﬂf, 1 <j <N, indep. cont. time rws on A, w/ j.r. 1/edge.
orT :=inf{t>0:X;; =X, 1<i<j< N} = first coll. time.
oxy  =4{z1,...,xN} E (]/\\,) where :Uz-;zéa:j eN 1 <1<y <N.

o B(A) :=#{(z,y) € Ax A: |z —y| =1} (double count!)

o Symmetric Simple Exclusion Proc.: t+— n € (Q) - explain.
o Random Transposition Process: t — & € Sy - explain.

Note: VA € (]/\\,) and V3 < O:

(XN 0Ss<B<T|Xyo=A4) F (n::0<s<B<7|mo= 4)

where
PA(7> B|n(s), 0<s< )= e~ Jo B(ns)ds
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The CPF in terms of Simple Exclusion:

8
QAAN(B) = >  Ep (eu Jo B(XN’S)CZSI{T>B}1{&N,5=A} ‘XN,O = A)
Ae(y)

u B S
= 3 Ep(evfo B 17561 {n,=ay |0 = A)
Ae(})
U— p s)ds
Y. Ea (6( 1) Jo Blns)d Lin,=a3 ‘ 0 = A)

Ae(y)

1
> P/\(ma =A‘?70 =A)
Ae()
From now on uw = 1, the isotorpic ferromagnet case.

U
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The GCPF in terms of Random Transpositions:

=a(B.20) = 3 N8, N)(B)

N=0

B Azc:/\ AP A(mg = A|no = 4)

1 e26h
= (1+ 62Bh)|A|A E(\l +£25}5>|A\A| (\1 +525@>|A|PA(.§5(A) = A)
1-—p p

= e|A|BhEA( I1 (2 cosh(lﬁh))al(gﬁ))
>1

h=0 E (Qlel al(fﬁ))
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Notation:

ay(o)

Me(0)

number of cylces of length [ in o € S

length of cylce in 0 € Sp containing x € A

And a straightforward (but very useful) identity: for ' : N — R
S IFW (o) = Y FOu(0))

[>1 YA

NTTEA( Y IF(Day(6p)) = EA(F(Ma(0))

[>1
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The spontaneous magnetisation:
1 0log=nx 1
2h) — =

BIN|  Oh (8,2h) 2
E/\( I1 (2 cosh(lﬁh))al(gﬁ) Y kak(gﬁ)tanh(kﬁh))

1 1>1 k>1

ma(B,2h) =

N En( [T (2cosh(isn)) ")

[>1

E/\< 11 (2 cosh(lﬁh))al(ﬁﬁ)

[>1
E/\( I (2 cosh(lﬁh))al(£5)>

[>1

m(8) = Jim, lim m(8,h)

tanh(Ao(£5)8h))

E 22@10%(55)1
— im  lim /\< {Ao(§5)>n})

n=OoO N A7d EA (22121 O‘Z(ﬁﬁ)) >




The Long Range Order at h = 0O:

205) n 15 (S4(0)S- (), ,Z tim EE (b'(0)b(2)),, ,

z4 |\ xeEN A]Zd|A|x€A

Heisenberg spins hard core Bose gas

— lim 1 Z EA (22121%(56)1{0@ on the same cycle of 55}>

A7z [N A EA(22l21 al(fﬁ))

1 E/\ (22121 al(ﬁﬁ))\o(gﬁ)>
_/\/‘Zd Ay E/\(QZlZl al(ﬁﬁ))
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The rest is fantasy and conjectures.
The formulas make prefect sense with 2 replaced by 6 > 1:

 Ep(pem ) 10ro(s)>n))
mg(B) = lim lim
=00 \ A7d En (QZzzl O‘l(fﬁ)>

205 = 1im 1 > E/\(ngZl al(gﬁ)AO(fﬂ))
T = —
’ Az N A EA(QZl21 al(fﬁ))

though, their interpretation as g-physical objects is less clear.

Compare with the FK, or, random cluster models of
[CM Fortuin, PW Kasteleyn (1972)]: ... (explain) ...
6 = 1 percolation; 6 = 2 Ising; 0 =3,4,... Potts;

0 — 1 is particularly appealing: "quantum percolation"?
24



Conjectures: Based on [BT (1993)], § =1, 2.
od=2: VB <oo, rg(B) =0, my(B) = 0.
od>3: 40 < B« < B* < 0o, such that

- for B < B«: r9(B) = 0, my(B) = 0.
- for g > pB*: T@(B) > 0, m(g(ﬁ) > 0.

Some results: Mostly for 8 = 1, some extended/able to § = 2

O

O

O

[O Schramm (2005)]
Fully resolved on the A, = K,,, n — 0.

A Hammond (2015)]

Essentially resolved on the tree T; with d > 1.
R Kotecky, P Milos, D Ueltschi (2016)]
Partial results on A, = {0,1}", n — .

[D Ueltschi (2013-...)] Various joint extensions of
[BT (1993)] and [M Aizenman, B Nachtergaele (1994)]
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Nobel Laureates (Physics) who contributed substantially
to the subject of the course and appeared in these lectures:

1921.:
1932:
1945:
1957:
1965:
1968:
1970:
2016:

Einstein

Heisenberg

Pauli

Lee, Yang

Feynman

Onsager

Néel

Kosterlitz, Thouless

Could have appeared, left out only due to time constraints:

1952:

Bloch

1977: Anderson, Mott

2016:

Haldane

In the same league - and appeared in the talk:
Peierls, Dyson
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