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Statistical Physics with Continuous Symmetries

I. Warming Up



The object of equilibrium statistical physics:

Understand macroscopic equilibrium behaviour of large systems
consisting of many identical, interacting microscopic constituent
elements/particles.

o macroscopic: described by a small number of characteristic
global parameters.

o equilibrium: steady in time, "balanced" with no flows

o large, many: limit of system size — ~o.

Mathematical description (lattice models):

o system size: A 774

o state space: Qp = SN a (locally) compact complete
separable metric space. w € (25 encodes the states
of the system.




o reference measure: va(dw), "uniform" measure on
C2A given by some natural symmetries.

o Hamiltonian: Hp QA — R
Hpa(w) is the "energy" of the system in state w.
May have parameters.
States with lower energy are more stable.
Ground state(s): minimiser(s) of H.

o Gibbs state: Probability measure on 25 which captures
the distribution of states at
inverse temperature 8 =71 > 0:
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ZN.B
Why exactly this formula? We'll see soon.

pn p(dw) = ——e PHINDy (dw)



o Free energy:

fA(B) :=— A"t log Zp 4
It inherits the parameters of Hp
o Thermodynamic limit: A 7 7%,

Wanted:

(1) Probabilistic objects: expectations, variances, etc.
of relevant "observables'", in the thermodynamic limit

(2) Analytic features of of the thermodynamic functions,
e.d.,

f(B) == lim fA(B)
N 174

These are intimately related.



The Holy Trinity of Classical Probability Theory

Let &1,&5....,&, be i.i.d. random variables whose exponential
moment generating function is finite. Denote
2
m :=E(¢), 0? 1= Var(¢) = E(¢?) - E(¢)
and

Sn =&+ +&n

WLLN: Sn P

mn
Proof: Chebyshev/Markov inequality

E([Sn—nm|?)  no?

= — 0
n2€2 n2€2

P(|Sn — nm| > ne) <



Sn — nm 2
CLT: = GAU(O,
v (0,02)

Proof: Characteristic function.
W..0.g. assume m =0 and let o : R — C

o2u?

2
o+ o(u?)

o(u) :=E(ew£)=---=l-|-0-u—

Then

y 2 .2

iuSn/(ov/n)) — n _ _u- —1\\n -5
E(e )= el 2 =15 o) e



Further, denote, and assume VA eR: Z()\) < c©
Z(\) = E(ekfj), I\ :=log Z()\), I(z):=sup (/\x - f(/\))
A

Facts:
ol :R—Ris C° and strictly convex.

oy B L B0 (B(e))’
= IRCES =)

ol :R— Ry is C°° and strictly convex.

Crameér’s LDP:

— ] n_llogP<&€(a,b)>= inf I(x)

n— 00 n a<x<b

— lim lim n"tlog P(& = (ZC—€,£C—|—€)) = I(x)

e—0QM—00 n



In plain terms: P(& ~ a:') ~ e (2)
n

Proof: Exponential tilting: Define the tilted distribution, with
parameter \ € R,

ay . B @)
B(f(&Y)) =
E(e)‘5>
Upper/Lower bounds:. Subtle "turbo-Markov-inequalities" for
the tilted variables and optimisation for \. [ ]

Exercise (HW): Compute the functions I()\) and I(z) for spe-
cific distributions of ¢:
BERN, BIN, GEOM, NEGGEOM, POI, UNI, GAU, EXP, GAMMA, BETA, ...,

we'll look for these phenomena holding or failing to hold
for sums of dependent random variables (under Gibbs mea-
sures) naturally showing up in statistical physical models.
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Why the Gibbs measure?

Exercise (HW): Let X,, = (X,.1,...,Xnn) be a random vector
sampled uniformly from the sphere

{(x1,...,2zn) € R™: x%—l—---—l—x%:En}.
Prove that
Xn1 = GAU(O, E), as n — oo.

Exercise (HW): Let X,, = (X,.1,...,Xnn) be a random vector
sampled uniformly from the simplex

{(z1,...,2n) €ERY 121+ -+ 2n = En}.
Prove that

Xp1= EXP(E~ 1), as n — oo.



Gibbs Sampling Principle:
Let £1,&>....,&, be i.i.d. random variables whose exponential
moment generating function is finite

VAeER: Z(\) = E(eAfj) < 00.
Then (under reasonable regularity conditions)
. . §1+ - +&n .
é!l_%nll_mooP(ﬁl<x|E—8< - <E+e)=

SN
Z)TTE(eM M g, ),
where \* = \*(FE) is the unique A € R for which
Z(A*)_lE(eA*flgl) =F
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Exercise (HW): Another probabilistic characterisation of the
Gibbs measure.
Let v; be a reference measure on the set {F; : i€ I},

P<€=Ez’) = Di> > pi=1
i
and
SI:—Z]?Z'“’]& U::ZpiEi FI:U—B_ls
V; -
1

In physical terms: S is the entropy, U is the internal energy, F
IS the free energy.

Prove that (given §) the unique probability measure which max-
imises F' is

pi(B) == Z(B) te Py,
Hint: Use Lagrange multipliers.
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T he Ising Model:

A = (2/L)%, periodic boundary conditions

Qp = {-1,+1}", o= (U(CL‘))(EE/\ € Q2
vp = counting measure on $2p

The Hamiltonian and the Gibbs measure:
1

Hp(o) = 5 Z o(x)o(y) —h Z o(x)
R T~YyEN N zeN )
ZQ—Syrﬁmetry symm. Breaking
Z/\,B’h = Z e_ﬁH/\(g)
ASIPIN
_ exp{—BHA(0)}
A ala) 1=

ZN,B,h
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Under the probability measure up g, (a(az))er are identically
Y Y /\

distributed, dependent random variables. One expects that

o for small 8 their qualitative behaviour is close to i.i.d.:
WLLN, CLT, LDP hold.

o for large 5 their qualitative behaviour may differ from i.i.d.

Main question: EXistence of spontaneous symmetry breaking
and/or long range order at low positive temperatures, large val-
ues of 57
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The spontaneous magnetisation: (mind the order of the limits!)

per. b.c.
@) = (N o@) T (e,
N,B.h

xeN

m(B,) = lim mA(3 )

m(B) := lim m(8, h) {;} o ?

The long range order parameter: h = 0,

2 per. b.c.
ra(B)? 1= <(I/\|1 > a(w>> > = AT Y (0(0)a(@)p g
AYG;

TEN TEN

r(8)* 1=A|>r%dTA(5)2 {;} o 7

Fact: » >0 = m > 0.
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T he Main Mathematical Results about Ising:

o [R Peierls (1936)], [TD Lee, CN Yang (1952)],
[JG Kirkwood, ZW Salsburg (1953)], ...

d > 2:: there exists B¢ € (0,00) such that
(i) B €[0,Bc):: m =0, r =0.
(ii) B € (Bc,00):: m >0, r>0.

o [L Onsager (1944)]
d=2, h=0: Full solution: f(8) :=1im, «a|A|"*l0g Z 5

The main ideas and technical ingredients:
(i) Convergent expansions ("cluster expansions")
& The Lee-Yang circle theorem.

(ii) Peierls's contour method
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Sketch of Peierls’s contour argument

This is important for understanding the key difference between
discrete and continuous symmetry breaking.

Let A = [0, L]?NZ? and consider the Ising Hamiltonian with h = 0
and 4+-boundary condition (rather than periodic):

1
HA(Q)=—§ Y, o(@e(y) — > o(x)
T xyEeN _ TEITA
bulk terms bounda?y terms

We prove

ma(B) =2 a >0
uniformly in A 7 Z2.
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Denote

Ni(o) ={xeN:o(x) ==%1}.

Then
A= Ap@]+A-(@)] Y ol@) =|AL(0)]| = IA-(o)
xeN
and hence
_|_
Ay| = IN-]) A
+ A8 AN 3
ma(B) = = =1-2 :
A Al
Let
Ca := {simple contours in & }

Whittney dual of A

18



+ 4+ + +

+
+
+
_|_

[+]-|+

+ [ - + R +
+ et R+
+ +8+ + + + +F]+ +

+4++++++++++

e

+ .t

b

+
+ LB

l_l
l_l
l_l
l_l
l_l
l_l
l_l
l_l
l_l

+ T
+ [+ +
+£ -+ .

19



For v € Cp

1 if v is a countour of o

XV(Q) - {O otherwise

By isoperimetry

2
A@l< Y )

WECA
and, thus

At < 3 D
A 2 16 AP
yE

This is a very generous upper bound!
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Next, let
Ap = {c € Qp v is a countour of o}

AR = {o € Q) v is edge-disjoint of all countours of o}

—o(x) if v surrounds x
Ry 0 Qp — Qp, (Ryg)(x) L= .

+o(x) otherwise
Note that

o Ry is a bijection between Ap . and A;k\,y

o For g € Ap,

Hp(o) — HA(Ryo) = 2] .
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-y ZUEAAve_ﬁHA(Q) Soen 76—517?/\(@ 260
X = ’ = =c
TN ZO‘EQ e BH/\(Q) Z EA?\,P}/ €_BH/\(O-)
and

; ~ECA 16
Since

#{v €CA: |y =71} < N4
it follows that

_I_
<|/\—|>/\,5 < 1

Al ~ 16
uniformly as A " Z2.

00
Z T2€(Iog 4—-28)r
r=4
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The O(v), or Classical Heisenberg Model: » > 2,

A= (2Z/D) Q= (""" vAlde) = [] do(x)

€N Haar
The Hamiltonian and the Gibbs measure:
1
Hp(o) = —5 Y o(x)-o(y) —e ) o1(x)
. x~yeN N xeN

O(y)-symmetry symm. Breaking
finp.e(do) i= (Zpp.2) "t exp{—BHN (@)} T] do(=)
€N Haar

Inge = [ g1 L3O @) T do@

TeEN
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The spontaneous magnetisation:

per. b.c.
ma(B,¢) = <|/\|—1 > al(a:)> = (01(0))r .
N\,B,e

TEN
m(B,) = lim mA(3,)

m(8) := lim m(5,¢) {;} o ?

The long range order parameter: e = 0,

2 per. b.c.
rA(B)2 = <(|A|—1 5 a<a:>> > =AY (0(0) -0 (@) n 5
AWG;

TeEN TEN

r(8)* :=Al>r%drA(5>2 {;} o ¢

Fact: » >0 = m > 0.
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Essential difference between Ising and O(v):
discrete vs. continuous symmetry

No sharp contours = NoO Peierls argument
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The Main Results about O(v):

IND Mermin, H Wagner (1966)],
[RL Dobrushin, S Shlosman (1975)]:

od=2:: at any 8 € [0,), m =0 (and also r = 0).

[V Berezinski (1971-72)], [JM Kosterlitz, DJ Thouless (1972)],
[J Frohlich, T Spencer (1981)]

od=2,v=2: A" < s.t. 3>p5" =
so-called topological vortex-binding phase (BKT phase)

[J Frohlich, B Simon, T Spencer (1976)]:
o d > 3:.: there exists 8« < oo, such that
B> Bx = r >0 (and also m > 0).
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The Classical XX Z Model:

Qp = (SHN o(xz) = (01(x),02(x),03(x))
The Hamiltonian:

HO@) = Y (1®01() +02@oa(y) +ugs@os))

r~vyeN O(2)—s§rmmetry Zo-symmetry
+ symmetry breaking terms

Main Results:
o |u| > 1:: the Ising-behaviour of o3 prevails.

o |lul = 1:: this is exactly the O(3)-model.

o lul < 1:: O(2)-behaviour of (o1,05) prevails.
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