Bálint Tóth (Budapest & Bristol)

Statistical Physics with Continuous Symmetries

I. Warming Up

The object of equilibrium statistical physics:

Understand <u>macroscopic</u> <u>equilibrium</u> behaviour of <u>large</u> systems consisting of <u>many</u> identical, interacting microscopic constituent elements/particles.

- macroscopic: described by a small number of characteristic global parameters.
- o equilibrium: steady in time, "balanced" with no flows
- \circ large, many: limit of system size $\to \infty$.

Mathematical description (lattice models):

- \circ system size: $\land \nearrow \mathbb{Z}^d$
- o state space: $\Omega_{\Lambda} := S^{\Lambda}$, a (locally) compact complete separable metric space. $\omega \in \Omega_{\Lambda}$ encodes the states of the system.

- \circ reference measure: $\nu_{\Lambda}(d\omega)$, "uniform" measure on Ω_{Λ} given by some natural symmetries.
- \circ <u>Hamiltonian</u>: $H_{\Lambda}:\Omega_{\Lambda}\to\mathbb{R}$ $H_{\Lambda}(\omega)$ is the "energy" of the system in state ω . May have parameters. States with lower energy are more stable. Ground state(s): minimiser(s) of H_{Λ} .
- <u>Gibbs state</u>: Probability measure on Ω_{Λ} which captures the distribution of states at inverse temperature $\beta = T^{-1} \ge 0$:

$$\mu_{\Lambda,\beta}(d\omega) := \frac{1}{Z_{\Lambda,\beta}} e^{-\beta H_{\Lambda}(\omega)} \nu_{\Lambda}(d\omega)$$

Why exactly this formula? We'll see soon.

Free energy:

$$f_{\Lambda}(\beta) := -|\Lambda|^{-1} \log Z_{\Lambda,\beta}$$

It inherits the parameters of H_{\wedge}

 \circ Thermodynamic limit: $\land \nearrow \mathbb{Z}^d$.

Wanted:

- (1) Probabilistic objects: expectations, variances, etc. of relevant "observables", in the thermodynamic limit
- (2) Analytic features of of the thermodynamic functions, e.g.,

$$f(\beta) := \lim_{\Lambda \nearrow \mathbb{Z}^d} f_{\Lambda}(\beta)$$

These are intimately related.

The Holy Trinity of Classical Probability Theory

Let $\xi_1, \xi_2, \ldots, \xi_n$ be i.i.d. random variables whose exponential moment generating function is finite. Denote

$$m := \mathbf{E}(\xi), \qquad \sigma^2 := \mathbf{Var}(\xi) = \mathbf{E}(\xi^2) - \mathbf{E}(\xi)^2$$

and

$$S_n := \xi_1 + \cdots + \xi_n$$

WLLN:

$$\frac{S_n}{n} \stackrel{\mathbf{P}}{\longrightarrow} m$$

Proof: Chebyshev/Markov inequality

$$\mathbf{P}(|S_n - nm| > n\varepsilon) \le \frac{\mathbf{E}(|S_n - nm|^2)}{n^2\varepsilon^2} = \frac{n\sigma^2}{n^2\varepsilon^2} \to 0$$

_ _ _

$$\frac{S_n - nm}{\sqrt{n}} \Rightarrow \text{GAU}(0, \sigma^2)$$

Proof: Characteristic function.

W.l.o.g. assume m=0 and let $\varphi:\mathbb{R}\to\mathbb{C}$

$$\varphi(u) := \mathbf{E}(e^{iu\xi}) = \dots = 1 + 0 \cdot u - \frac{\sigma^2 u^2}{2} + o(u^2)$$

Then

$$\mathbf{E}\left(e^{iuS_n/(\sigma\sqrt{n})}\right) = \varphi\left(\frac{u}{\sigma\sqrt{n}}\right)^n = (1 - \frac{u^2}{2n} + o(n^{-1}))^n \to e^{-\frac{u^2}{2}}$$

. . .

Further, denote, and assume $\forall \lambda \in \mathbb{R}$: $Z(\lambda) < \infty$

$$Z(\lambda) := \mathbf{E}(e^{\lambda \xi_j}), \quad \widehat{I}(\lambda) := \log Z(\lambda), \quad I(x) := \sup_{\lambda} (\lambda x - \widehat{I}(\lambda))$$

Facts:

 $\circ \ \widehat{I} : \mathbb{R} \to \mathbb{R}$ is C^{∞} and strictly convex.

$$\widehat{I}'(\lambda) = \frac{\mathbf{E}(\xi e^{\lambda \xi})}{\mathbf{E}(e^{\lambda \xi})} \qquad \widehat{I}''(\lambda) = \frac{\mathbf{E}(\xi^2 e^{\lambda \xi})}{\mathbf{E}(e^{\lambda \xi})} - \left(\frac{\mathbf{E}(\xi e^{\lambda \xi})}{\mathbf{E}(e^{\lambda \xi})}\right)^2$$

 \circ $I: \mathbb{R} \to \mathbb{R}_+$ is C^{∞} and strictly convex.

Cramér's LDP:

$$-\lim_{n\to\infty} n^{-1} \log \mathbf{P}\left(\frac{S_n}{n} \in (a,b)\right) = \inf_{a < x < b} I(x)$$
$$-\lim_{\varepsilon \to 0} \lim_{n\to\infty} n^{-1} \log \mathbf{P}\left(\frac{S_n}{n} \in (x-\varepsilon, x+\varepsilon)\right) = I(x)$$

$$\mathbf{P}\left(\frac{S_n}{n} \approx x\right) \approx e^{-nI(x)}$$

Proof: Exponential tilting: Define the *tilted* distribution, with parameter $\lambda \in \mathbb{R}$,

$$\mathbf{E}(f(\xi^{\lambda})) := \frac{\mathbf{E}(f(\xi)e^{\lambda\xi})}{\mathbf{E}(e^{\lambda\xi})}$$

Upper/Lower bounds: Subtle "turbo-Markov-inequalities" for the tilted variables and optimisation for λ .

Exercise (HW): Compute the functions $\widehat{I}(\lambda)$ and I(x) for specific distributions of ξ :

BERN, BIN, GEOM, NEGGEOM, POI, UNI, GAU, EXP, GAMMA, BETA, ...,

We'll look for these phenomena holding or failing to hold for sums of <u>dependent</u> random variables (under Gibbs measures) naturally showing up in statistical physical models.

Why the Gibbs measure?

Exercise (HW): Let $\vec{X}_n = (X_{n,1}, \dots, X_{n,n})$ be a random vector sampled uniformly from the sphere

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n: x_1^2+\cdots+x_n^2=En\}.$$

Prove that

$$X_{n,1} \Rightarrow \text{GAU}(0,E), \quad \text{as } n \to \infty.$$

Exercise (HW): Let $\vec{X}_n = (X_{n,1}, \dots, X_{n,n})$ be a random vector sampled uniformly from the simplex

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n_+:x_1+\cdots+x_n=En\}.$$

Prove that

$$X_{n,1} \Rightarrow \text{EXP}(E^{-1}), \quad \text{as } n \to \infty.$$

Gibbs Sampling Principle:

Let $\xi_1, \xi_2, \dots, \xi_n$ be i.i.d. random variables whose exponential moment generating function is finite

$$\forall \lambda \in \mathbb{R} : Z(\lambda) := \mathbf{E}(e^{\lambda \xi_j}) < \infty.$$

Then (under reasonable regularity conditions)

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \mathbf{P} \Big(\xi_1 < x \Big| E - \varepsilon < \frac{\xi_1 + \dots + \xi_n}{n} < E + \varepsilon \Big) = Z(\lambda^*)^{-1} \mathbf{E} \Big(e^{\lambda^* \xi_1} \mathbf{1}_{\{\xi_1 < x\}} \Big),$$

where $\lambda^* = \lambda^*(E)$ is the unique $\lambda \in \mathbb{R}$ for which

$$Z(\lambda^*)^{-1}\mathbf{E}(e^{\lambda^*\xi_1}\xi_1) = E$$

Exercise (HW): Another probabilistic characterisation of the Gibbs measure.

Let ν_i be a reference measure on the set $\{E_i : i \in I\}$,

$$\mathbf{P}(\xi = E_i) = p_i, \qquad \sum_i p_i = 1$$

and

$$S := -\sum_{i} p_{i} \ln \frac{p_{i}}{\nu_{i}}$$
 $U := \sum_{i} p_{i} E_{i}$ $F := U - \beta^{-1} S$

In physical terms: S is the *entropy*, U is the *internal energy*, F is the *free energy*.

Prove that (given β) the unique probability measure which maximises F is

$$p_i^*(\beta) := Z(\beta)^{-1} e^{-\beta E_i} \nu_i$$

Hint: Use Lagrange multipliers.

The Ising Model:

$$\Lambda:=(\mathbb{Z}/L)^d,$$
 periodic boundary conditions $\Omega_{\Lambda}=\{-1,+1\}^{\Lambda},$ $\underline{\sigma}:=\left(\sigma(x)\right)_{x\in\Lambda}\in\Omega_{\Lambda}$ $\nu_{\Lambda}=$ counting measure on Ω_{Λ}

The Hamiltonian and the Gibbs measure:

$$H_{\Lambda}(\underline{\sigma}) := \underbrace{-\frac{1}{2} \sum_{x \sim y \in \Lambda} \sigma(x) \sigma(y)}_{\mathbb{Z}_2\text{-symmetry}} \underbrace{-h \sum_{x \in \Lambda} \sigma(x)}_{\text{symm. breaking}}$$

$$Z_{\Lambda,\beta,h} := \sum_{\underline{\sigma} \in \Omega_{\Lambda}} e^{-\beta H_{\Lambda}(\underline{\sigma})}$$

$$\mu_{\Lambda,\beta,h}(\underline{\sigma}) := \frac{\exp\{-\beta H_{\Lambda}(\underline{\sigma})\}}{Z_{\Lambda,\beta,h}}$$

Under the probability measure $\mu_{\Lambda,\beta,h}$, $\left(\sigma(x)\right)_{x\in\Omega_{\Lambda}}$ are identically distributed, dependent random variables. One expects that

- \circ for small β their qualitative behaviour is close to i.i.d.: WLLN, CLT, LDP hold.
- \circ for large β their qualitative behaviour may differ from i.i.d.

Main question: Existence of *spontaneous symmetry breaking* and/or *long range order* at low positive temperatures, large values of β ?

The spontaneous magnetisation: (mind the order of the limits!)

$$m_{\Lambda}(\beta, h) := \left\langle |\Lambda|^{-1} \sum_{x \in \Lambda} \sigma(x) \right\rangle_{\Lambda, \beta, h}$$
 per. b.c.
$$m(\beta, h) := \lim_{\Lambda \nearrow \mathbb{Z}^d} m_{\Lambda}(\beta, h)$$

$$m(\beta) := \lim_{h \to 0} m(\beta, h) \quad \left\{ = \atop \neq \right\} \quad 0$$
 ?

The long range order parameter: h = 0,

$$r_{\Lambda}(\beta)^{2} := \left\langle \left(|\Lambda|^{-1} \sum_{x \in \Lambda} \sigma(x) \right)^{2} \right\rangle_{\Lambda,\beta} \quad \text{per. b.c.}$$

$$r(\beta)^{2} := \lim_{\Lambda \nearrow \mathbb{Z}^{d}} r_{\Lambda}(\beta)^{2} \quad \left\{ = \atop \neq \right\} \quad 0 \quad ?$$

Fact: $r > 0 \Rightarrow m > 0$.

The Main Mathematical Results about Ising:

```
• [R Peierls (1936)], [TD Lee, CN Yang (1952)], [JG Kirkwood, ZW Salsburg (1953)], ... d \geq 2:: there exists \beta_{\rm C} \in (0,\infty) such that  ({\rm i}) \ \beta \in [0,\beta_{\rm C}) :: \qquad m=0, \ r=0.   ({\rm ii}) \ \beta \in (\beta_{\rm C},\infty) :: \qquad m>0, \ r>0.  • [L Onsager (1944)] d=2, \ h=0: Full solution: f(\beta):=\lim_{\Lambda \nearrow \mathbb{Z}^d} |\Lambda|^{-1} \log Z_{\Lambda,\beta} \checkmark.
```

The main ideas and technical ingredients:

- (i) Convergent expansions ("cluster expansions")& The Lee-Yang circle theorem.
- (ii) Peierls's contour method

Sketch of Peierls's contour argument

This is important for understanding the key difference between discrete and continuous symmetry breaking.

Let $\Lambda = [0, L]^2 \cap \mathbb{Z}^2$ and consider the Ising Hamiltonian with h = 0 and +-boundary condition (rather than periodic):

$$H_{\Lambda}(\underline{\sigma}) = -\frac{1}{2} \sum_{x \sim y \in \Lambda} \sigma(x) \sigma(y) - \sum_{x \in \partial^{-} \Lambda} \sigma(x)$$
bulk terms boundary terms

We prove

$$m_{\Lambda}(\beta) \geq \alpha > 0$$

uniformly in $\Lambda \nearrow \mathbb{Z}^2$.

Denote

$$\Lambda_{\pm}(\underline{\sigma}) := \{ x \in \Lambda : \sigma(x) = \pm 1 \}.$$

Then

$$|\Lambda| = |\Lambda_{+}(\sigma)| + |\Lambda_{-}(\sigma)|$$

$$\sum_{x \in \Lambda} \sigma(x) = |\Lambda_{+}(\sigma)| - |\Lambda_{-}(\sigma)|$$

and hence

$$m_{\Lambda}(\beta) = \frac{\left\langle \left| \Lambda_{+} \right| - \left| \Lambda_{-} \right| \right\rangle_{\Lambda,\beta}^{+}}{\left| \Lambda \right|} = 1 - 2 \frac{\left\langle \left| \Lambda_{-} \right| \right\rangle_{\Lambda,\beta}^{+}}{\left| \Lambda \right|}$$

Let

$$\mathcal{C}_{\Lambda} := \{ \text{simple contours in} \quad \underbrace{\Lambda^*}_{\text{Whittney dual of } \overline{\Lambda}} \}$$

For $\gamma \in \mathcal{C}_{\Lambda}$

$$\chi_{\gamma}(\underline{\sigma}) = \begin{cases} 1 & \text{if } \gamma \text{ is a countour of } \underline{\sigma} \\ 0 & \text{otherwise} \end{cases}$$

By isoperimetry

$$|\Lambda_{-}(\underline{\sigma})| \leq \sum_{\gamma \in \mathcal{C}_{\Lambda}} \frac{|\gamma|^2}{16} \chi_{\gamma}(\underline{\sigma})$$

and, thus

$$\langle | \Lambda_{-} | \rangle_{\Lambda,\beta}^{+} \leq \sum_{\gamma \in \mathcal{C}_{\Lambda}} \frac{|\gamma|^{2}}{16} \langle \chi_{\gamma} \rangle_{\Lambda,\beta}^{+}$$

This is a very generous upper bound!

Next, let

 $\Delta_{\Lambda,\gamma} := \{\underline{\sigma} \in \Omega_{\Lambda} : \gamma \text{ is a countour of } \underline{\sigma}\}$

 $\Delta_{\Lambda,\gamma}^* := \{\underline{\sigma} \in \Omega_{\lambda} : \gamma \text{ is edge-disjoint of all countours of } \underline{\sigma} \}$

$$R_{\gamma}: \Omega_{\Lambda} \to \Omega_{\Lambda}, \qquad (R_{\gamma}\underline{\sigma})(x) := \begin{cases} -\sigma(x) & \text{if } \gamma \text{ surrounds } x \\ +\sigma(x) & \text{otherwise} \end{cases}$$

Note that

- \circ R_{γ} is a *bijection* between $\Delta_{\Lambda,\gamma}$ and $\Delta_{\Lambda,\gamma}^*$
- \circ For $\underline{\sigma} \in \Delta_{\Lambda,\gamma}$

$$H_{\Lambda}(\sigma) - H_{\Lambda}(R_{\gamma}\sigma) = 2|\gamma|.$$

Hence

$$\langle \chi_{\gamma} \rangle_{\Lambda,\beta}^{+} = \frac{\sum_{\underline{\sigma} \in \Delta_{\Lambda,\gamma}} e^{-\beta H_{\Lambda}(\underline{\sigma})}}{\sum_{\underline{\sigma} \in \Omega_{\Lambda}} e^{-\beta H_{\Lambda}(\underline{\sigma})}} \leq \frac{\sum_{\underline{\sigma} \in \Delta_{\Lambda,\gamma}} e^{-\beta H_{\Lambda}(\underline{\sigma})}}{\sum_{\underline{\sigma} \in \Delta_{\Lambda,\gamma}^{*}} e^{-\beta H_{\Lambda}(\underline{\sigma})}} = e^{-2\beta|\gamma|}$$

and

$$\langle | \Lambda_{-}(\underline{\sigma}) | \rangle_{\Lambda,\beta}^{+} \leq \sum_{\gamma \in \mathcal{C}_{\Lambda}} \frac{|\gamma|^{2}}{16} e^{-2\beta|\gamma|}$$

Since

$$\#\{\gamma \in \mathcal{C}_{\Lambda} : |\gamma| = r\} \leq |\Lambda| \, 4^r$$

it follows that

$$\frac{\langle |\Lambda_-| \rangle_{\Lambda,\beta}^+}{|\Lambda|} \le \frac{1}{16} \sum_{r=4}^{\infty} r^2 e^{(\log 4 - 2\beta)r}$$

uniformly as $\Lambda \nearrow \mathbb{Z}^2$.

The $O(\nu)$, or Classical Heisenberg Model: $\nu \geq 2$,

$$\Lambda := (\mathbb{Z}/L)^d, \qquad \Omega_{\Lambda} = (S^{\nu-1})^{\Lambda}, \qquad \nu_{\Lambda}(d\underline{\sigma}) = \prod_{x \in \Lambda} d\underline{\sigma}(x)$$

The Hamiltonian and the Gibbs measure:

$$H_{\Lambda}(\underline{\sigma}) := -\frac{1}{2} \sum_{x \sim y \in \Lambda} \sigma(x) \cdot \sigma(y) - \varepsilon \sum_{x \in \Lambda} \sigma_{1}(x)$$

$$O(\nu) \text{-symmetry symm. breaking}$$

$$\mu_{\Lambda,\beta,\varepsilon}(d\underline{\sigma}) := (Z_{\Lambda,\beta,\varepsilon})^{-1} \exp\{-\beta H_{\Lambda}^{(\varepsilon)}(\underline{\sigma})\} \prod_{x \in \Lambda} \underline{d\sigma(x)}$$

$$Z_{\Lambda,\beta,\varepsilon} = \int_{(S^{\nu-1})^{\Lambda}} \exp\{-\beta H_{\Lambda}^{(\varepsilon)}(\underline{\sigma})\} \prod_{x \in \Lambda} d\sigma(x)$$

The spontaneous magnetisation:

$$m_{\Lambda}(\beta,\varepsilon) := \left\langle |\Lambda|^{-1} \sum_{x \in \Lambda} \sigma_{1}(x) \right\rangle_{\Lambda,\beta,\varepsilon} \stackrel{\text{per. b.c.}}{=} \left\langle \sigma_{1}(0) \right\rangle_{\Lambda,\beta,\varepsilon}$$

$$m(\beta,\varepsilon) := \lim_{\Lambda \nearrow \mathbb{Z}^{d}} m_{\Lambda}(\beta,\varepsilon)$$

$$m(\beta) := \lim_{\varepsilon \to 0} m(\beta,\varepsilon) \quad \left\{ = \atop \neq \right\} \quad 0$$

The long range order parameter: $\varepsilon = 0$,

$$r_{\Lambda}(\beta)^{2} := \left\langle \left(|\Lambda|^{-1} \sum_{x \in \Lambda} \sigma(x) \right)^{2} \right\rangle_{\Lambda,\beta} \stackrel{\text{per. b.c.}}{=} |\Lambda|^{-1} \sum_{x \in \Lambda} \left\langle \sigma(0) \cdot \sigma(x) \right\rangle_{\Lambda,\beta}$$
$$r(\beta)^{2} := \lim_{\Lambda \nearrow \mathbb{Z}^{d}} r_{\Lambda}(\beta)^{2} \quad \left\{ = \atop \neq \right\} \quad 0 \quad ?$$

Fact: $r > 0 \Rightarrow m > 0$.

Essential difference between Ising and $O(\nu)$: discrete vs. continuous symmetry No sharp contours \Rightarrow No Peierls argument

The Main Results about $O(\nu)$:

```
[ND Mermin, H Wagner (1966)],
[RL Dobrushin, S Shlosman (1975)]:
        0 d = 2:: at any \beta \in [0, \infty), m = 0 (and also r = 0).
[V Berezinski (1971-72)], [JM Kosterlitz, DJ Thouless (1972)],
[J Fröhlich, T Spencer (1981)]
        0 d = 2, \nu = 2:: \exists \beta^* < \infty \text{ s.t. } \beta > \beta^* \Rightarrow
          so-called topological vortex-binding phase (BKT phase)
[J Fröhlich, B Simon, T Spencer (1976)]:
        \circ d \geq 3:: there exists \beta_* < \infty, such that
          \beta > \beta_* \Rightarrow r > 0 (and also m > 0).
```

The Classical XXZ Model:

$$\Omega_{\Lambda} = (S^2)^{\Lambda}$$
 $\sigma(x) = (\sigma_1(x), \sigma_2(x), \sigma_3(x))$

The Hamiltonian:

$$H_{\Lambda}^{(\varepsilon)}(\underline{\sigma}) := -\frac{1}{2} \sum_{x \sim y \in \Lambda} \left(\underbrace{\sigma_1(x)\sigma_1(y) + \sigma_2(x)\sigma_2(y)}_{O(2)\text{-symmetry}} + u \underbrace{\sigma_3(x)\sigma_3(y)}_{\mathbb{Z}_2\text{-symmetry}} \right) \\ + \text{symmetry breaking terms}$$

Main Results:

- $\circ |u| > 1$:: the Ising-behaviour of σ_3 prevails.
- $\circ |u| = 1$:: this is exactly the O(3)-model.
- $\circ |u| < 1$:: O(2)-behaviour of (σ_1, σ_2) prevails.