Sosuke Horikawa 8th Astroparticle Physics Scientific Fair: 2021/2022 14 February 2022, GSSI

DarkSide-20k

DARKSIDE

A 50-ton Liquid Argon Time Projection Chamber for Dark Matter searches

DarkSide-20k: A 50-ton LAr TPC for direct DM searches

Will be the largest DM detector

Outer cryostat ("Proto-DUNE") Atmospheric argon (AAr), 700 t

Proto-DUNE, CERN

DarkSide-20k: Why do we need the large detector ? **Direct DM (WIMP) search experiment**

- WIMP exclusion curves
 - Current best limit: $\sim 4 \cdot 10^{-47}$ cm² at ~30 GeV/ c^2 WIMP mass (XENON1T)

target mass x time

DarkSide-20k

Global Argon Dark Matter Collaboration (GADMC) Present goal: DarkSide-20k

- >500 collaborators from ~100 institutions from all over the world
- Join the expertise from LAr-based DM lacksquareexperiments

- **Future goal: ARGO at SNOLAB**
 - O(1000) t·y, several 100 tonnes of UAr
 - To reach the neutrino floor
 - Conceptual studies in progress

Dual-Phase LAr Time Projection Chamber Working principle of DarkSide-20k

S2: Charge extracted in the gas phase producing delayed Time scintillation light (localised)

Detection of charge/light signals by the top and bottom photodetectors

VUV scintillation photons (128 nm) converted to visible blue photons by WLS (TPB) on the TPC inner surfaces

Drift time: Z-coordinate

S1: Prompt scintillation light

3D imaging of event: Z (time) and XY (CM of the S2 signal)

Liquid Argon As the WIMP target

- High density cryogenic liquid: BP = 87 K
- High scintillation and ionisation yield
- Available in large quantity
- Outstanding ER (electronic-recoil) BG discrimination
 - Pulse Shape Discrimination (PSD)
 - Fast (6 ns) and slow (1.5 µs) scintillation, Fast/Slow
 - >10⁸ discrimination power demonstrated (DEAP-3600)
 - Additionally, by Light/Charge in dual phase TPC

Drawback: β-emitting isotope ³⁹Ar 1 Bq/kg in atmospheric argon

7

Underground Argon Key to large-scale LAr DM detectors

• Discovery of argon with low ³⁹Ar ($\tau_{1/2}$ = 269 y) content in an underground well in Colorado, by DarkSide-50

 This opened the door to large-scale LAr DM detectors: <0.1 ER leakage over 200 t-y exposure at DS-20k

demonstrated using the first module

TPC / Neutron Veto Integrated design

Instrumental background-free experiment: <0.1 neutron BG expected over 200 t-y exposure

Entire TPC "cage" structure made of Gadolinium loaded acrylic for neutron veto

Radio-pure detector material and components carefully selected following extensive "screening" campaigns

"Clevios" transparent conductive polymer for transparent cathode, anode, field shaping electrodes

Veto working principle

Silicon Photomultiplier Array State-of-the-art photodetector

- Developed by FBK & DarkSide Group
- Low radioactivity
- Excellent single-photoelectron resolution

2000

• High PDE (>50% at RT, 420 nm)

Continuous active area over $2 \times \sim 12 \text{ m}^2$ to be covered entirely with SiPM arrays

SiPM mass production at LFoundry in Avezzano

Transitioning to the construction phase Nuova Officina Assergi (NOA)

- A "factory" is under construction at LNGS
 - Clean rooms with industrial machineries for:
 - Mass production of the photodetector units:
 - Wafer tests → Tile & FEB → PDU
 - TPC assembly

IGS eries for: ector units:

11

R&D at LNGS with GSSI students **Detailed characterisations of SiPMs**

- Time resolution, PDE, optical crosstalk ... at room and cryogenic temperatures
- SiPM response to LAr scintillation light
 - Using a (5-cm)³ single-phase "micro-DS" prototype \rightarrow Demonstrated LY of ~12 pe/keV_{ee}

Essential inputs to the simulation and the preparation for the physics analysis

Ready for building DarkSide-20k And beyond ...

- Transitioning to the construction phase
 - Construction starting in 2022
 - Data taking from 2025
- R&D at LNGS
 - SiPM R&D
 - Time resolution
 - SiPM development for a higher PDE
 - To increase the light yield
 - More efficient WLS
- MC simulation and analysis software
- DArT, ARIA, ...

Interesting opportunities for the PhD program within DarkSide-20k, also R&D towards our future goal, **ARGO**, hitting the neutrino floor !

For more information, contact us

