

The role of turbulence in CR phenomenology

Presented by: Ottavio Fornieri

GRAN SASSO SCIENCE INSTITUTE

The general picture

Ottavio Fornieri - Science Fair 2022

GS SI

Anomalies in the details

Why studying CR physics?

Acceleration at the highest energies

Why studying CR physics?

Propagation through ISM plasma

Particle motion in magnetic fields

Gyro-motion of charged particles

S G S

Magnetic bottles

Pitch-angle scattering on **B**-fluctuactions

S

Properties of turbulence

Turbulent cascade in the inertial range

Turbulent cascade in the inertial range

Turbulent cascade in the inertial range

Kolmogorov's approach

$$\frac{E_{\rm K}/V}{\tau_{\rm turn}} \sim \frac{\rho v_{\ell}^2}{\ell/v_{\ell}} = {\rm const}$$

$$v_{\ell}^3 \sim \ell \quad \Rightarrow \quad v_{\ell} \sim \ell^{1/3} \quad \Rightarrow \quad v_k \sim k^{-1/3}$$

$$\downarrow \downarrow$$

$$k \cdot E(k) \sim \rho v_k^2 \quad \Rightarrow \quad E(k) \sim k^{-5/3}$$

 $k^{-5/3}$

From turbulence to CR diffusion

$$D(E) = \frac{1}{3} \cdot \frac{c r_L}{k_{res} \cdot E(k_{res})} \Rightarrow D(E) \sim \frac{r_L}{r_L^{-1} \cdot r_L^{\alpha}}$$

$$D(E) = \frac{1}{3} \cdot \frac{c r_L}{k_{res} \cdot E(k_{res})} \Rightarrow D(E) \sim \frac{r_L}{r_L^{-1} \cdot r_L^{\alpha}}$$

$$D(E) \sim \frac{r_L}{r_L^{-1} \cdot r_L^{\alpha}} = 0.33$$

$$O(E) \sim \frac{\delta}{10^{31}} = 0.33$$

$$O(E) \sim \frac{\delta}{10^{31}} = 0.33$$

$$O(E) \sim \frac{10^{31}}{10^{31}} = 0.33$$

$$O(E) \sim \frac{10^{31}}{10^{31}} = 0.33$$

$$O(E) \sim \frac{r_L}{r_L^{-1} \cdot r_L^{\alpha}} = 0.33$$

 $D(E) \sim E^{2-\alpha} \equiv E^{\delta}$

S G

MHD decomposition

 \mathbf{k} = wave vector of the fluctuation

$$\begin{aligned} k^{2}v_{A}^{2} - k_{\perp}^{2}c_{s}^{2} & 0 & -k_{\perp}k_{\parallel}c_{s}^{2} \\ 0 & \omega^{2} - k_{\parallel}^{2}v_{A}^{2} & 0 \\ -k_{\perp}k_{\parallel}c_{s}^{2} & 0 & \omega^{2} - k_{\parallel}^{2}c_{s}^{2} \end{aligned} \begin{cases} \delta u_{x} \\ \delta u_{y} \\ \delta u_{z} \end{cases} = 0 \end{aligned}$$

S

Damping of the fast modes

Damping of the fast modes

Distribution of the turbulent power

Conclusion...

Cosmic-ray phenomenology

Resulting CR diffusivity

Resulting CR diffusivity

Take-home message

Accurate measurements require detailed knowledge of the microphysics of CR transport in our Galaxy.

Backup slides

Ottavio Fornieri - Science Fair 2022

G S S I

Why studying CR physics?

•

Very energetic particles

Unique probe of extreme astrophysical phenomena

S G S

Damping of the fast modes

$$\lambda_{\text{Coul}} \approx 1.3 \cdot 10^{-5} \left(\frac{\text{cm}^{-3}}{n_{\text{ISM}}}\right) \cdot \left(\frac{T}{10^4 \text{ K}}\right)$$

Collisional damping

Collisionless damping

 $+ \frac{q}{\varphi} + \frac{$

$$\lambda_{\text{Coul}}^{\text{disk}} \approx 1.3 \cdot 10^{-5} \text{ pc}, \qquad \lambda_{\text{Coul}}^{\text{halo}} \approx 1.3 \cdot 10^{2} \text{ pc} \simeq L_{\text{inj}}$$

$$n_{\text{disk}} = 1 \text{ cm}^{-3} \qquad T = 10^{4} \text{ K} \qquad T = 10^{6} \text{ K}$$

Inferred CR density from pion decay

Inferred CR density from pion decay

$$C_{R} = \frac{W_{p}(\geq 10E_{r})}{V_{crossed}} = \frac{W_{p}(\geq 10E_{r})}{M_{tot}} \cdot n_{H} \approx 1.8 \cdot 10^{-2} \left(\frac{\eta_{N}}{1.5}\right)^{-1} \left(\frac{L_{y}(\geq E_{r})}{10^{34} \operatorname{erg} \cdot \operatorname{s}^{-1}}\right) \left(\frac{M_{tot}}{10^{6}M_{\odot}}\right)^{-1} \operatorname{erg} \cdot \operatorname{cm}^{-3} \quad \mathbb{G} \quad \mathbb{S} \quad \mathbb{I}$$

$$E_{\text{flux}} = \int_{E_{\text{min}}}^{E_{\text{max}}} dE E \cdot \left(\frac{dN_{\gamma}}{dE} \frac{c}{4\pi}\right) \left[\frac{E}{L^2 \cdot T}\right]$$
$$\Rightarrow \quad L_{\gamma} = E_{\text{flux}} \cdot 4\pi d^2 \quad \left[\frac{E}{T}\right]$$

Inefficiency of Alfvén modes

$$\int dk_{\parallel} E(k_{\parallel}) = \int dk_{\perp} E(k_{\perp})$$

$$E^{\text{GS}}(k_{\perp}) \sim k_{\perp}^{-5/3} = k_{\perp}^{-1.67}$$

$$k_{\parallel} \sim k_{\perp}^{2/3} \implies k_{\parallel}^{3/2} \sim k_{\perp}$$

$$\rightarrow \frac{dk_{\perp}}{dk_{\parallel}} = \frac{3}{2} k_{\parallel}^{3/2 - 1} = \frac{3}{2} k_{\parallel}^{1/2}$$

 $dk_{\perp} E(k$

$$\begin{aligned} k_{\perp} &= \int \frac{3}{2} \, k_{\parallel}^{1/2} \, dk_{\parallel} \, E(k_{\perp}) \, = \\ &= \frac{3}{2} \int k_{\parallel}^{1/2} \, dk_{\parallel} \, k_{\perp}^{-5/3} \, = \frac{3}{2} \int dk_{\parallel} \, k_{\parallel}^{1/2} \, \left(k_{\parallel}^{3/2}\right)^{-5/3} \end{aligned}$$

