Galactic Cosmic Rays with the DAMPE space mission

F. Alemanno, F. Barbato, I. De Mitri, A. Di Giovanni, M. Di Santo, M. Fernandez Alonso, D. Kyratzis, <u>A. Parenti,</u> L. Silveri, L. Wu

8th Astroparticle Physics Scientific Fair

15 February 2021

Scuola Universitaria Superiore

The DAMPE detector

- Plastic Scintillator Detector (PSD):
 - 2 X/Y planes of scintillator bars
 - Charge measurement + Gamma-ray ID

• Silicon Tracker (STK):

- 6 Si planes + W converter
- Tracking + Additional charge measurement

• BGO calorimeter (BGO):

- 14 layers of BGO bars $(32 X_0)$
- Energy measurement + e/p separation

• Neutron detector (NUD):

- 4 tiles of boron loaded scintillator
- Further e/p separation

DAMPE physics goals

- Multi-purpose CR detector with the aim of:
 - Studying Galactic Cosmic Ray spectra and composition
 - Searching for Dark Matter signatures in lepton and photon spectra
 - Performing high energy gamma-ray astronomy

• Key DAMPE features:

Acceptance	~0.3 m ² sr
Calorimeter thickness	32 $\rm X_0$ and 1.6 $\rm \Lambda_I$
e/γ energy range	10 GeV - 10 TeV
CR nuclei energy range	40 GeV - 200 TeV
e/γ energy resolution	1.2% at 100 GeV
e/γ angular resolution	0.2 deg at 100 GeV

Galactic Cosmic Rays with the DAMPE space mission

Galactic CR nuclei

CR nuclei analysis:

- Charge measurement with the PSD
- Background rejection with additional information from the STK
- Energy measurement with BGO

Results:

- p, He spectra published: new features unveiled
- A lot more science to be done!
 - Light component
 - Medium to heavy mass primaries
 - Secondaries

Andrea Parenti

Galactic Cosmic Rays with the DAMPE space mission

Light component

- Most abundant CR nuclei, measurements extend to hundreds of TeV
- Hardening at few hundred GeV, propagation effect?
- Softening at tens of TeV, origin? Charge or mass dependence?

Galactic Cosmic Rays with the DAMPE space mission

Light component (2)

Proton + Helium:

- Negligible background, reach even higher energies than single p, He spectra
- Hardening and softening visible
- Possible comparison between direct and indirect experiments

Medium mass primaries

• AMS and CALET seem to have a different normalization... DAMPE?

 10^{3}

 10^{2}

Kinetic Energy [GeV/n]

10

Heavy mass primaries

Iron:

- Heavy mass primary, most abundant nucleus with highest charge: insight into CR acceleration and propagation (test models at high Z)
- Similar behaviour to He, C and O
- AMS and CALET still seem to have a different normalization... DAMPE?

Secondary cosmic rays

Lithium, Beryllium and Boron:

- Li, Be and B are mainly produced by primary CRs interacting with the interstellar medium
- Fundamental to probe propagation and investigate the origin of the hardening
- Extend measurement to higher energies than AMS-02

Secondary over primary ratio

Boron over Carbon:

- Secondary over primary ratios such as B/C, Be/C, ... are useful to determine CR diffusion parameters
- DAMPE aims at extending the B/C measurement beyond the TeV/n scale

Conclusions

- The study of **Galactic Cosmic Rays** is a rich and active physics field.
- Latest spectral measurements, including those of **DAMPE**, show a complex picture with many new features.
- A lot more to come! Measurements at higher energy and of heavier mass nuclei are necessary to provide a better understanding of galactic CRs origin and propagation.