

Penetration of low-energy cosmic rays into clouds and disks

Alexei Ivlev

Max-Planck-Institut für extraterrestrische Physik

Garching, Germany

Outline

- Introduction
- Magnetic mirroring and focusing
- CRs in (very) dense regions
- Self-modulation of penetrating CRs
- Summary

Energy spectra of CRs

Energy densities in the ISM:

Air sowers

A natural laboratory for elementary particle physics

Giant molecular clouds

Protoplanetary disks

Image credit: NASA/JPL

Stages of star formation

Image credit: Google Images

Processes driven by *low-energy* CRs in clouds and disks

• Ionization in UV- and X-ray-shielded regions:

coupling of gas to magnetic field

⇒ magnetic braking, onset of rotational instabilities, ...

gas heating

⇒ cloud dynamics, chemistry, ...

desorption of ice

⇒ gas density, abundances of complex molecules, ...

dust charging

⇒ dust coagulation, chemical processes on grains, ...

• Formation of polyatomic molecules:

What about low-energy CRs?

Solar modulation: Voyager 1 data

Importance of sub-relativistic protons for ionization

Image credit: Daniele Galli

Comparison with observations

Critical uncertainties

- Knowledge of low-energy (≤ 1 GeV) CR spectra in interstellar medium ("boundary conditions" for clouds and disks).
- Choice of proper transport regimes for CRs penetrating into clouds and disks.

Self-consistent treatment of fundamental processes driven by CRs: ionization/heating, formation of disks, dust evolution ...

Magnetic mirroring and focusing

Silsbee et al., ApJ (2018)

Magnetic field in dense clouds

Kedron Silsbee (artistic view)

Padovani et al., 2013

Magnetic field in dense cores is enhanced by orders of magnitude

Mirroring and focusing

Field strength along the line

Field line can have arbitrary behavior within the cloud.

Relevant quantity is the strength of the field along the line.

Liouville theorem:
$$f(\mu, s) = f_i(\mu_i)$$

 $\mu = \cos \theta$
 $\frac{1 - \mu^2}{B} = \text{const}$

Particles belong to three groups:

- forward-moving: $0 \le \mu \le 1$
- mirrored: $-\mu_p(s) \le \mu \le 0$

• passed from the other side:
$$-1 \le \mu \le -\mu_p(s)$$

The entire sphere of 4π is filled \Rightarrow CR density is conserved

 $\mu_{\rm p} = \sqrt{1 - \frac{B(s)}{B_{\rm p}}}$

Magnetic pockets

CR density can be decreased drastically!

CRs in (very) dense regions

Padovani et al., A&A (2018)

Transport of CRs

CR protons up to $\sim 10^{15}$ eV are well magnetized at the scale of a problem, so their propagation is along the local magnetic field (coordinate *s*).

The CR distribution function $f(E, s, \mu)$ is governed by the transport equation:

$$\begin{array}{ll} \displaystyle \frac{\partial S}{\partial s} + \frac{\partial}{\partial E} \left(\dot{E}f \right) + \nu_{\mathrm{cat}} f = 0 \\ & \text{continuous catastrophic} \\ & \text{losses} \end{array}$$

$$\begin{array}{ll} \textit{Weak scattering:} & S \approx \mu v f & (\text{e.g., Coulomb collisions}) \\ \textit{Strong scattering:} & S \approx -D \frac{\partial f}{\partial s} + u f & (\text{e.g., MHD turbulence}) \end{array}$$

The solution critically depends on the scattering regime and the dominant mechanism of energy loss

CR ionization (weak scattering)

CR particles lose only a small fraction of their energy in each ionization collision \Rightarrow continuous losses.

Energy loss functions

For continuous losses it is convenient to introduce $L(E) = \dot{E}/\upsilon n_{\text{H2}}$, describing deceleration along the CR path with the effective column density $N = \int n_{\text{H2}} ds$.

Loss function L(E) determines the stopping range for a given CR species: $N(E) = \int_0^E \frac{dE}{L(E)}$

Attenuation of CR protons (free streaming)

Stopping range of CRs

Ionization mechanisms

Transition from the effective to line-of-sight column density

Zoom to lower N

Self-modulation of CRs

Ivlev et al., ApJ (2018) Dogiel et al., ApJ (2018)

Streaming instability (Lerche 1967; Kulsrud & Pearce 1969)

- Streaming CRs (with the flux velocity u >> v_A) resonantly excite MHD waves.
- The total momentum (CRs + waves) is conserved ⇒ CRs are isotropized.
- The wave excitation rate $\gamma_{CR} \propto p v (S v_A f)$.

Self-excited turbulence

- CRs in dense MCs experience strong attenuation.
- Hence, a steady flux of CRs is formed from diffuse interstellar medium into dense cores.
- This triggers streaming instability (*Lerche 1967; Kulsrud & Pearce 1969*), and thus generates self-excited MHD turbulence (*Skilling & Strong 1976; Cesarsky & Volk 1978, ..., Morlino & Gabici 2015*).
- Self-excited MHD turbulence is important for variety of processes at larger scales, e.g., CR escape from SN remnants (Aloisio & Blasi 2016), Galactic winds (Recchia et al. 2016), Galactic halo (Evoli et al. 2018), ...

Model setup: geometry

- We identify 3 characteristic regions, and focus on processes in the diffuse envelope.
- CRs propagate along the magnetic field \Rightarrow 1D equations.

Universal flux of self-modulated CRs

- According to Kulsrud & Pearce (1969), the excitation rate of MHD waves is $\gamma_{CR} \propto pv(S v_A f)$.
- In a free-streaming regime, $S(E) \sim v f_{IS}(E)$. Then the balance of the wave excitation and damping yields the threshold energy E_{ex} :

$$pv^2 f_{\rm IS}|_{E_{\rm ex}} = const$$

below which the turbulence is excited.

• For $E < E_{ex}$, we obtain a universal flux as long as $S/f_{IS} >> v_A$:

$$S(E) \approx const / (pv) \equiv S_u(E)$$

which does not depend on $f_{\rm IS}$.

• At lower *E*, the flux approaches the advection asymptote $v_{
m A} f_{
m IS}$.

Modulation of CR protons in CMZ

5 × local IS spectrum; $N_{\rm H2} = 10^{23} \, {\rm cm^{-2}}$; $n_{\rm H2}$ (envelope) = 10 cm⁻³

Summary

- A careful choice of the transport regime for interstellar CRs penetrating molecular clouds and disks is crucial for accurate calculation of the processes occurring in these dense objects.
- Interstellar CR spectra at energies below ${\sim}1~\mbox{GeV}$ remain highly uncertain.
- The CR spectra can be constrained by combined analysis of available observations:

H₃⁺ ions in cloud envelopes; gas-phase chemistry in low-density clouds; gas/dust temperature in dense cores.