
PenaltyHyperparametersOptimization in
Non-negativeMatrixFactorizationproblems

Laura Selicato
laura.selicato@uniba.it

Introduction

• Hyperparameters (HPs) direct impact on the performance of any algorithms and its reproducibility, especially in the context of unsupervised learning.

• How to automatically choose optimal penalization HPs in Non-negative Matrix Factorization (NMF)?
Bi-level approach: the selection of HPs is incorporated directly into the algorithm as part of the updating process.

• Proposal: a new algorithm AltBi for tuning penalization HPs in NMF problems.

AltBi

Algorithm 1: Alternate Bi-level

Data: X ∈ R
n×m
+ , factorization rank r.

Result: W ∈ R
n×r
+ , H ∈ R

r×m
+ , λ∗.

Initial W(0) ∈ R
n×r
+ , H(0) ∈ R

m×r
+ ,

L(0) = diag(λ(0)), T length of bunch ;
while (err > tol) & (iter < MaxIter) do

H = update(X,W,H);
for t in T do

(w(t),∇λtf) =

bi-level(X,∇
λt−1f,w(λ)(t−1),H);

end

λiter = update(λiter−1,∇
λiter−1f);

iter+ = 1;

end

Datasets

Model :

X ≈ Y = WH with W ∈ R
n×r
+ ,H ∈ R

r×m
+ .

• Arti�cial datasets:

1) factor W and H were generated randomly
as full rank uniform distributed matrices.

2) each column inW is expressed as real sinu-
soidal wave signal. H was generated as full
rank sparse matrix, sparseness level αH .

• Source signals taken from the �le
AC10_art_spectr_noi of MATLAB tool-
box NMFLAB for Signal Processing.

• Real re�ectance signals taken from the U.S.
Geological Survey (USGS) database.

Mathematics of our proposal method

Problem :
min

H≥0,W≥0
Dβ(X,WH) +R(LW). (1)

L = diag(λ) ∈ R
n×n is diagonal matrix of HPs associated with each row w ∈ R

r of W;
R : Rn×r → R is the penalization functions.

� W is �xed to estimate H;

� H is �xed to estimate W, incorporating the choice of HPs into the updating process.

Bi-level task on w ∈ R
r

min{f(λ) : λ ∈ Λ}
f(λ) = inf{E(w(λ), λ) : w(λ) ∈ argmin

u∈Rr

Lλ(u)} is the Response function.

The Error and Loss functions are E : Rr × Λ → R : (w, λ) 7→
m∑
j=1

dβ(Xj:,
r∑

k=1

wk(λ)Hkj) and

Lλ : Rr → R : w 7→
m∑
j=1

dβ(Xj:,
r∑

k=1

wkHkj) + λr(w), with r : Rr → R s. t.
n∑

i=1

λr(w) = R(LW).

• The bi-level problem veri�es the existence and convergence theorems under certain assumptions.

• The optimization for λ comes from the estimation of the gradient ∇λf , called Hypergradient

Results on real dataset

• All tests performed show similar behaviors compared with the standard unpenalized Multiplicative
Update (MU) and the standard penalized one (P-MU); no noisy perturbations were used:

1) Benchmark A was used with n = 1000, m = 50, r = 4.

2) Benchmark B was used n = 1000, m = 50, r = 4, αH = 0.1.

3) Benchmark C was used with n = 1000, m = 50, r = 5, αH = 0.1.

4) Benchmark D was used with n = 224, m = 3025, r = 5.
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Figure 1: Evolution of Response (left) and Objective (right) functions w.r.t. iterations

(a) SIR statistics estimating Wi,: and H:,j (b) Statistics of the sparseness measure

Conclusion

Novelty of our HPO proposal is including the
minimization of the penalization HP into the
optimization problem in a bi-level fashion. Re-
sults on existence and convergence of solution
to the considered tasks are also demonstrated;
numerical experiments and comparisons are
also promising.

All the experiments con�rmed the expected be-
haviour of AltBi in term of an identi�cation
problem. The SIR statistics for estimating the
spectral signatures in the matrix W and the
abundance maps in matrixH, obtained with Al-
tBi are signi�cantly better than those obtained
with MU and MU-P. Also in terms of Response
and Loss function performance and in terms of
added sparsity.
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