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The thermal block
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The thermal block
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The thermal block
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- trial/ansatz spaces: X =Y = H{ ()
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The thermal block
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p=1

Hp >0,p=1,.., P,
Qy Qs Qg upn =0,

f:92— R external force

Ql QQ Qg + variational form:
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S

- trial/ansatz spaces: X =Y = H{ ()
- solve for many parameters p = (pu1, ..., up)T
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RBM in a nutshell
1) PPDE: L,u, = fuin X, peP ~ by(u,v) = fu(v) Yoe X

\ 4
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RBM in a nutshell
1) PPDE: L,u, = fuin X, peP ~ by(u,v) = fu(v) Yoe X
2) detailed discretization (e.g. FEM NV = nj, “huge”): XV c X

o — | < Vu
+ complexity O(N)
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RBM in a nutshell
1) PPDE: L,u, = fuin X, peP ~ by(u,v) = fu(v) Yoe X

2) detailed discretization (e.g. FEM A = n;, “huge”): XV < X
o —w) | < evp
- complexity O(N)
3) reduced space Xy < XV, N « N — offline
- error estimate: u) —ul) | < An(u)
- offline training: Pyain < P finite
- select ™V, ..., ™) e P by maximizing An (1), 1t € Pain
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RBM in a nutshell
1) PPDE: L,u, = fuin X, peP ~ by(u,v) = fu(v) Yoe X
2) detailed discretization (e.g. FEM NV = nj, “huge”): XV c X @

o — | < Vu
- complexity O(N)

3) reduced space Xy < XV, N « N — offline }"
- error estimate: |u) —ul| < An(u)
- offline training: Pyain < P finite
- select ™V, ..., ™) e P by maximizing An (1), 1t € Pain

- determine “snapshots” ¢ := u;}f,,v), i=1,.,N il 4
© Xn :=span{¢® :i=1,.., N} %ﬁ@

)
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RBM in a nutshell

o

1) PPDE: L,u, = fuin X, peP ~ by(u,v) = fu(v) Yve X %
2) detailed discretization (e.g. FEM N = n;, “huge”): XV c X

e —w) | < evp A
- complexity O(N) %
3) reduced space Xy ¢ XV, N « N —offline ’%@
- error estimate: |lu — ul| < An () -
- offline training: Pyain < P finite P
- select ™V, ..., u™) € P by maximizing An (1), 1t € Pain J%w
- determine “snapshots” ¢ := uﬁfi), i=1,..,N .
© Xy :=span{€® :i=1,.., N} oty

4) online: peP
- compute u), — complexity O(N?®) independent of A\

“online efficient”
- certification via An ()
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Why does that work? — Separation of parameter & variables
- variational form: w e X := H}(Q): b(u,v;p) = (f,v) Voe X

P
+ “affine decomposition” : b(u,v; 1) = Z Hp f Vu - Vvdz
p=1 Qp
=0, () =bp(uw)
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Why does that work? — Separation of parameter & variables
- variational form: w e X := H}(Q): b(u,v;p) = (f,v) Voe X
P
+ “affine decomposition” : b(u, v; u) = Z Hp f Vu - Voudz

p=1

- stiffness matrix

P
V=D D )i o [Z

= Z Up(1) By

© B, € RV*V (small)
- each entry requires O(N') computations (costly)
- precompute offline and store as N x N matrix
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Why does that work? — Error estimation 1

* P = pp = po > 0 (otherwise not well-posed)
- the problem is coercive:

P P
b(u,u;,u)zZupJ Vu~Vudm>u02J Vu - Vudzx
p=1 Qp p=1"p

= HOJ Vu-Vudr = u0|u|%11(9) > Cu0||u||§{1(m = a=Cup
Q

b(u, v; 1) < oo |ul 51 () [V 7 ()
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Why does that work? — Error estimation 1

* P = pp = po > 0 (otherwise not well-posed)
- the problem is coercive:

P P
b(u,u;,u)zZupf Vu~Vudx>uOZJ Vu - Vudzx
p=1 Qp p=1"p

= Hof Vu - Vudr = polulin ) = Cpoluling = a=Cu
Q

b(u, v; 1) < oo |ul @y llv] 21 (0)

- error/residual-relation:
b(uy —ufy,u# —uﬁj;,u)
||Uu - U;JYHHI(Q)
b(uﬂ B Uﬁ]av;ﬂ) (fa 'U) - b(uﬁ],v;u)

sup ———F——~ = sup
vex  vlEv o) veX o] 1 ()

afu, — uﬁ[”Hl(Q) <

N

= ||7’fLVHH71(Q)
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Why does that work? — Error estimation 2

- error/residual-relation:
1
gy — w0y < EHT/JJV‘|H*1(Q) =: An(p)

+ separation of parameter and variables
Q
I I3-100) = X5 P (1) Ry

g=1

~ Apn(p) can be computed online-efficient
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Why does that work? — linear approximation

+ benchmark: Kolmogorov N -width

dn(P) = inf inf N _
N(P) XycX, cllﬂn(XN)=N ?12713 U]\}EXN ||UM UN”X

- affine decomposition: b(u, v; 1) Z 0

Theorem (Buffa, Maday, Patrera, Prud’homme, Turinici, 2012; Ohlberger, Rave 2016)
Let b(-, -; ) be bounded, coercive and affine decomposable, then

dn (P) < Cexp(—eNYRQ") (1)
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Why does that work? — The greedy method |

Algorithm (Greedy)

1: choose ;") € Pyain, compute £ .= uﬁ{l)
2: for n=1,... do
3: pFY) = arg max Ay (u)

JEPlrain

f(n+1) = U’L\{n+1)

4:
5: possibly (bi-)orthogonalize
6 If Ax(p™+1) < tol STOP
7: end for
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Why does that work? — The greedy method Il

Theorem (Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszcyk 2011)
Let0 < v < 1,do(P) < M. Then

with C := ¢/2(4q)®, q := [2°F14~1]2.
< if dy(P)<Me *N" N >0, M,a,a > 0, then

max [u —ulY|x < C M exp(—cN?)

where 8 := 295, 0 < 0 < 1, ¢ := min{|log 0], (4¢) ~“a},
C := max{e°Ns , q1/2}, ¢ := [2y710711%, No := [(8¢)**1].
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Where do we stand

The RBM works perfectly for
+ linear, coercive problems
- affine decomposition

But what about...

* noncoercive problems
- time-depend

* transport

© wave

+ Schrédinger
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Variational formulations — non-corecive |

* PPDE: L, u, = f,
« L, € L(X,Y’) isomorphism
+ X, Y Hilbert spaces
« pe P c RF compact parameter set

- variational form:
uy € X 0 bluy,vyp) = fu(v) YveY

+ X: trial/ansatz space

- Y test space

* bu(s,)=0b(,5p) : X x Y — Rbilinear form
© fu(:) : Y — Rlinear form (f, € Y”)

()
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Variational formulations — non-corecive Il

Example
(a) thermal block...
(b) parabolic: @ =« R%, I := (0,T), Qr :=1 x

Lyu = u — pAu, u(0) = 0,uj00 =0
— Time-stepping (POD-Greedy) ~~ growth over time 4

— Consider space-time variational formulation:
* integrate over space and time:

f J (ue(t, z) — pAu(t, z)) v(t,x) dedt =
rJo

= LJQ we(t, z) v(t, ) de dt — ,LLL Lz Vu(t,z)) - Vo(t, z) dz dt

=:by (u,v)=b(u,v;u)

~ trial and test space-time functions
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Variational formulations — non-corecive lll

- Let V be a function space on Q with norm || - |v (e.g. H5(Q), | - 1)
 Lebesgue-Bochner spaces:

Lo(L; V) := {v I -V \|v\|i2(1;v) = L Hv(t)H%/ dt < oo}
HYL;V):={ve Lo(I; V) : vy =0 € La(I; V)}
Hioy(I;V):={ve H(I;V): v(0) = 0}
X := Hipy(I; V') n Lo(I; V)
Y = Lo(L;V) (i.e., f € Lo(I; V")
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Variational formulations — non-corecive IV

(c) transport:
s QcRYorQ=R?
© Lyu:=wu + pVu, u(0) =uo
- weak form not obvious!

(d) wave equation:
c QcRYorQ=R*
o Lpu:i=uy + pAu , u(0) = uo, u(0) = vg
- weak form not obvious!
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Variational formulations — non-corecive V

Boundedness
In all cases, we can show:

J0<C < w: |bu(u,v)| < Cllulx |v]y

Theorem (Banach—Necas)
* let b,(-,-) be bounded, f, € Y’, then
(2) admits a unique solution u, € X s.t. |u,|x < ¢|fully- if and only if

(i) 3IB>0: sup bu(u, V)
vey [vlly

(i) forany0+veY 3JueX: by(u,v)+0

> B ulx forallue X

Moreover ¢ = 5~1.
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Variational formulations — non-corecive VI

Corollary

- under conditions of Banach—Ne¢as—Thm.
- let vV (1) be some approximation to u(y)

1 bu(u, —uY,v
1) — ¥ () < sup 22— 0¥
veY [vlly

1 flo;p) — bu(uﬁf, v)

< — sup
vey lvlly

)
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Variational formulations — non-corecive VIi
Example (continued)

(b) parabolic: L, = u; + pA
(i) shown by Faedo-Galerkin approximation
(i) consider supremizer: T, : X — Y defined by (T),u,v)y = b,(u,v),

then (A = —A)

bu(u,v) = (up + p Au,vy = (A uy + pu, Av)

= (A + pu,0) vy = (Tuw, 0) o vy = (Tau,v)y

=:T,u

which implies that T,u = A u; + pu .
Then (...)
bu(u, Tyu) = |ulx [Tyuly — ~ B=1!
(c) transport: no idea yet
(d) wave equation: no idea yet



[CRE/ECM  The Reduced Basis Method in Space and Time: Limits and Perspectives | Beyond coercivity — inf-sup-stable problems

Petrov—Galerkin methods |

Form a discretization:
- trial: XV < X, dim X" = N < o0 — large, but detailed
« test: YV c YV dim YV = N < o for simplicity

LBB condition

Definition

XN, YN satisfy the LBB condition if

b (uN N
inf  sup % =>p3>0
wWexN yneyn [uMN]x oM ]y

independent of V' — 0.
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Petrov—Galerkin methods Il

Example (continued)
(b) parabolic:
+ Sa:: piecewise linear finite elements in time
* Qa¢: piecewise constant finite elements in time
+ V4 piecewise linear finite elements in space
C XN =S @V
YN = Qar® Vi
- this yields Crank-Nicolson
* ~» B =1 forheateq.

(c) transport: still no idea yet
(d) wave equation: still no idea yet

1
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Petrov—Galerkin methods Il

Remark

(a) One may choose YV :=T},(X\') — but there are other choices
(b) LBB ensures well-posedness of discrete problem

uﬁ[EXN: bﬂ(uﬁ/,v’v) =fu(vN) N ey

and [ x < B fullyr

(®)

Jup —u) | x < Bl vy
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Petrov—Galerkin methods IV

Theorem (Xu, Zikatanov, 2003)
* let b,(-,-) be bounded with constant 0 < C' < o
+ let LBB hold with constant s

Then,
C
w20l < 5 dnkfow = oV
cf=C=1=
C
e = lx = 5 nd g = = o
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Reduced Basis Method - revisited |
- use XV, YV as “truth” discretization
- first construct Xy < XV, N = dim Xy « N (typical by greedy, see later)

+ then construct corresponding Y (could be Yy (1))
* ~» reduced problem

ULVEXN : bu(ug,vN) =fu(’UN) ’UNEYN (6)
* recall:

1
ey = ullx < EIITLVHY' = An(p) , @)

where

Fu(0N) = bu(uy, V) ®)

[rlyr = sup
g N ey N [Ny
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Reduced Basis Method — revisited Il

+ assume —as usual- “affine decomposition” (otherwise do EIM)

Qb

by, v) = Y (1) by (u, v) 9
q=1
Qf

Fuw) = D705 (1) fo(v) (10)
g=1

* determine Xy := span{ul(,,, ..., whx }

by snapshots uly,, for uV e Sy := {p®), ..., uM} < P
- using a training set Pyain < P of size Niain
+ construct test space Y (1)
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Reduced Basis Method — revisited Il

Remark

+ The computation of Ay (u) is online efficient:

+ O(N°*) independent of N/
- use Riesz representation
B e.g. by Successive Constraint Method (SCM)

* Problem: “square root effect”:
Iy = 1N Iy = v/
- Riesz representation: (7, y)y =7, (y) Yy

- Y is a Hilbert space:

7 ”Y = (fu uuu vfu Blﬂlﬁ]
N

= [£ull¥ + 1Bua I3 — 2(fu, Butiy)v

)y

ey = VIR

+ computation of «/ is also online efficient
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And the benchmark? |

Theorem (Ohlberger/Rave 2016 — slightly generalized)

Let b(-, -; u) be bounded, inf-sup stable and affine decomposable, i.e.,

b(u, v; p) Zﬂb

Let Xy, Yy are LBB-stable, then

dn(P) < Cexp(—eNYQ")
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And the benchmark? Il

Theorem (Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszcyk 2011)
Let0 <~ <1, do(P) <M. Then

with C := ¢/?(4q)?, q := [2°Ft1y~1]2.
< if dy(P)<Me*N" N >0, M,a,a > 0, then

gleagc ||uﬁf — 'U«i:,”X < C M exp(—cNP)

where 3 := 25,0 <0 < 1, c:= min{|log 0], (4¢)"“a},
C = max{eCNOﬁ,ql/Q}, q:=[2y71071)%, No := [(8¢)**1].
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Where do we stand

The RBM works perfectly for
+ linear, coercive problems
- affine decomposition
+ parabolic problems (using space-time variational form)

But what about...
* transport
© wave
+ Schrédinger
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3 H H
Beyond ’nice’ problems |

Theorem (Ohlberger, Rave, 2016)

For Example (c) — transport — with Q = (0,1), w(0, z; ) = 0, u(t,0; ) = 1, it
holds

dn({u(t, 1) : te [0,1]}) > %N‘m .
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Beyond ’nice’ problems Il

Theorem (Greif, U., 2019)
For Example (d) — wave —with Q = R, I = R™, vo = 0 and,

uo(x) := {1_1

1
ZN_l/z <dn({u,: pel0,1]}) <

)

0
0,

\\/ //\

it holds
(N —-1)"Y2.

N —

Remark Using POD-Greedy and energy-based estimators

for the wave equation yielded N~ 7/ in experiments.
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Beyond ’'nice’ problems Il

Remark
Both cases admit easy solutions:
(c) transport:

ultrzi ) = wole = pt) (12

(d) wave (d’Alembert, for vg = 0):

[uo(z + pt) + uo(z — pt)] (13)

N | =

ult, x5 p) =

Next targets:
1) well-posed variational formulations (even with 5 = 1)
2) develop efficient numerics
3) Ridge approximations
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Ultra-weak formulations |

Reconsider Example (c) — transport
* Lyu = uy + pVu, u(0) = 0 (for simplicity)
cu(t,z) =0,xel_ Iy :={zreodl:1-1s0}
- integrate w.r.t. time & space and do integration by parts (; = I x Q):

(Luu, )y = JJ Lyu(t,z)v(t,x) dr dt
1Ja
— (u, VU) 1,00, + 1 J f u(s)v(s)dsdt
1Jr,

= (U,L:’U)Lz(QI) if o(T) = 0,v(t)p, =0
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Ultra-weak formulations Il

- setCp = {ve CY Q) : v(T) = 0,v(t)r, =0Vte I}
° XZZLQ(QI),QIIIXQ

vy = |Lfvl L, 00, ¥ = closy, Oz

o) oy 4

Lemma
The bilinear form b,,(-, -) is bounded and inf-sup-stable with C' = 5 = 1.
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Ultra-weak formulations Il

Discretization???
+ double greedy (Dahmen, Schwab, Welper)
- alternative (Brunken, Smetana, U.):
- choose test first: YV c Y, dim Y = N < o
- then, set XV := L¥YV

N N
~ inf  sup bu(uZ, v )

WNexN weyn [uN[x oV ]y

+ example:

YN = Sar ® Vir, © Cg = {ve C%Qr) : v(T) = 0,0(t)r, = 0Vie I}

1

* Sas,r: piecewise linear finite elements o* with o*(T) = 0
¢ Vhr, : piecewise linear finite elements ¢; with ¢i[r, =0
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Ultra-weak formulations IV

Some issues
- stiffness matrix

(BM) . (e) = (Li(0" @ 41), LE(0* ® 7)) 1 q
leads to

BN = Apne @ My, + (Nas @ NT + NX, @ Ni) + 1> May ® Ay,

— Ay stiffness matrix
— My: mass matrix
— Ng: nonsymmetric matrix (¢, 7)

- inf-sup = 1, but x(B") may be large
- we need efficient numerical solvers (see below)
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Ultra-weak formulations V

Reduced Basis Method
- error estimator

Fu@™) = (uff, LoV ) ()
An(w) = [ ooy = sup (P
H w Il (YN) TNy N HL,’KZUNHL;»(QI)

- can be computed online efficient

* since f, is affine decomposable
- if L)} is affine decomposable

- via Riesz representation

- square root effect

- Greedy
- determine ¢(™ = uﬁf(n) as before
* note, that £¢(™ = ij(nm(") with (™ € Yy

- either build Yy by (™
* or use supremizers (also online for new )
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Ultra-weak formulations VI

Example (d) — wave
© Lyu = ugy — pAu, for simplicity w(0) = u¢(0) = 0, ujpn = 0
* Ly = L, but with adjoint terminal conditions w(7") = u;(7') = 0
‘ C%,o ={ve C*(Q): v(T) =w(T) = 0,vj00 = 0}
© X = Ly(Q)

- Y= cIosH.”yC%O Nvlly = Ll o))
cagainpg=C=1

Y = H2(Q) n H ()

- same issues as before (Henning, Palitta, Simoncini, U.)
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Ultra-weak formulations VII

Remark — Natural regularity
For transport and wave, we have

ug € Ly and not more = w(¢) € Ly Vt and not more!

~ ultra-weak seems to be “the right” ansatz for low regularity!
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Some numerics |

Example 2: Parabolic

RKSM LR-FGMRES+RKSM CN
Np Ny Its “mem rank(Ug ) Time (s) Its Lmem rank(Us ) Time (s) Direct Iterative
41300 300 13 14 9 25.96 4 74 10 82.89 123.43 59.10
500 13 14 9 30.46 4 75 11 83.93 143.71 78.01
700 13 14 9 28.17 4 86 11 89.99 153.38 93.03
347361 300 14 15 9 820.17 4 78 9 2319.67 14705.10 792.42
500 14 15 9 828.34 4 80 9 2384.39 15215.47 1041.47
700 14 15 7 826.93 4 97 9 2327.76 15917.52 1212.57
+ RKSM: Rational Krylov Space Method

+ LR-FGMRES-RKSM: Low-Rank preconditioned GMRES
+ CN: Crank Nicolson
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Some numerics Il

Example 3: Transport

Basis of V" Basis of X" = B*h
1F 1 5[
0.5( 1 ol
oL - —5
0 0.5 1 0 0.5

Rate of convergence

Linear FE Quadratic FE 1
1/h | Lo-error rate Lo-error rate
4 0.03311 — 0.00247 — | 08}

8 0.01664 | 0.99274 0.00062 | 1.98932
16 0.00833 | 0.99817 0.00016 | 1.99729
32 0.00417 | 0.99954 || 3.896e-05 | 1.99932 | 4
64 0.00208 | 0.99989 || 9.741e-06 | 1.99983
128 | 0.00104 | 0.99997 | 2.435e-06 | 1.99996 | 0.2

256 | 0.00052 | 0.99999 || 6.088e-07 | 1.99999 ! !

0.6 |~
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Some numerics lll

Model Reduction -1-

| | Test Case 1 | Test Case 2 | Test Case 3
by | (1 D)T (cos p,sinp)” | (cos p,sinp)”
P | [0.01,1] [02,2 -02] [ [0.2,Z —0.2]
c | =0 =1 =1
0.5
1, _ { Ty
1, T=Y
]-v =0 1- Y, <0.5
g =0
0, y=0 0, =05
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Some numerics IV

Model Reduction -2-

problems — transport and wave equation

Test Case 1 Test Case 2 Test Case 3

o 0 1\\ T \HHH‘ T \HHH‘ 7] 0 !\\ T \HHH\ T \HHH\ ] 0 1\\ T \HHH\ T \HHH\
5 10 10 10
o
S 102 H 1072 1102 .
2

100 10! 102 100 10! 102 100 10! 102

N N N

| ----- h=1 =16;--h71 =32, —h=1 =64; h~! =128; -~ h~1 = 256; — h~! =512 |
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Some numerics V

Example 4: wave 1d

10°

GMRES+LYAP  |backslash
Nj, Ny lts.rank(Us) Time (s) Time (s) 102
256 256| 16 13 0.21 1.17
512 36 35 1.51 2.39
1024| 81 74 20.97 12.61 10
512 256| 26 31 0.61 2.30
512| 40 43 2.64] 5.09 106 ==
1024 81 74 20.97| 12.61 "--.\_N
1024 256| 50 59 3.55 482 "~ e
512 68 72 10.12 11.13 10 - -
1024{102 92 54.15 24.28]
1OWO 2‘0 4‘0 6‘0 8‘0 10‘0

Iterations

+ LYAP: Generalized Lyapunov (i.e., Sylvester) equation solver
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Some numerics VI

Condition numbers

Inf-sup optimal case General case

10" 1 1000 [
10 - H 10tk
100 - 10t -
107 - 1 107
10°% - 1 10% |
1071 b L L LA 107 e T T ]
1073 1072 10~! 1073 1072 107!
hunax humax
Bs = Naoy ® Mj, + May ® N, “general” case, 15
§ At h At h>

Bs=Qa: ® M}, + Nat ® N} + NA, ® Nj, + Ma; ® Qp, “optimal”  (16)
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Some numerics VIi

Example 4: wave 3d

| Case 1 | Case2 |
uO(r) (1 - %T) ’ ]]'r<\/§/5 ]lr<\/§/5
u eC(Ix\CHI x Q) | ¢CI x Q)

Case 1: Continuous, but not continuously differentiable: ¢ = 1

Refinement ] 2 3 4 5
Unknowns I &"Aie 51 57 1% 7o
mesteppng |t Bl e
Space-Time L error 5.31 - 10—2 4481072 | 345-102 | 2.50-10 2
PCG (KIM; 'K») xvﬁgrgwfn[ss] 9.59 - 10*9 9.73 - 10*; 2.17 - 10; 1.07 - 102
PCG (Sylvester) Xvﬁgriwfn[j] 3.01 - 10—; 3.85 - 10—; 1.55 - 1?; 8.57 - 1?;
Galerkin zvﬁgrt;T:n[ss] 2.24 - 10—; 6.21 - 10—:5 1.20 - 1(132 1.61 - 12411
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Some numerics VIl

Case 1: Continuous, but not continuously differentiable: various ¢

Ly error

L, error

=16
: T T T T T T T
10| ° Gaewn ||
! & CG (yhestor) 10 F 10"
+ CG (KIM; 'Ks)
100 © Tmestepping | o 0| 100
107! 4 1w E 1071
1072 bt L ! 4 j02b ! ! ! 1021t L !
2 E 1 5 2 3 1 5 2 3 5
Refinement Refinement Refinement
[ T T T T L . T T T T T T T T T T T T
101 ©  Galorkin 10 [ 1w [
& CG (Sylvester)
+ CG (KIM; 'Ks)
100 o Tmestepping | 3 100 f 100 F
107 ERC 107ty
10-2 I I I I I 0-2 I I I I I I 10-2 I I | I I
107% 1072 107t 100 10t 102 10° 10°% 1072 1070 100 w0t 102 10° 102 107! 10° 10! 10% 10*
Wall time [s] Wall time [s] Wall time [s]

Figure: Case 1: Continuous solution, ¢? = 1,4, 16 (left, center, right).
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Some numerics IX

Case 2: Discontinuous

2=1 =16
- Galerkin ' T T T T L T T
10tk & CG(sywestor) | | . | .
. - CO (KIM; 'Ky) 10 10
s & Time stepping \\
5
S 100 \\ ER G 4 100k
S S —
R —— T ) ! ¢ e T : ! !
2 3 1 5 2 3 1 5 2 3 1 5

Refinement

T T T
- T T T T T T T T T T T T T
10t & CG(Syhester | |
_ + GO KIM; 'Ky) 101 E 1 wE
I3 <o Time stepping
o
e el ——
107" bl i i = Tt s 107 b i i L £ i Cordd 107! bt I I I I I
0% 102 107" 10° 10t 107 10° 10°% 1072 1070 100 10t 102 10° 1072 107! 10° 101 10% 10°
Wall time [s] Wall time [s] Wall time [s]

Figure: Case 2: Discontinuous solution, ¢* = 1,4, 16 (left, center, right).
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Ridge function approximations |

Example — again
(€) 1d: w(t, z) + pug(t, x), w0, z) = up(z)

u(t, z; p) = uo(x — pt)

(d) 102 ugyt, ©) — pigs (t, ), u(0, ) = uo(x), us(0,2) =0
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Ridge function approximations Il

Definition — Ridge function
LetaceR% be Randv: R — R. Then,

w: - R, w(z) :=v(a"z +b) (17)

is called ridge function with profile v, direction a and offset b.
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Ridge function approximations Il

Definition — Linear/Ridge expansion

Let M, N € N and
© Xn:=span(®y) € Lo(Q), Dn := {01, ..., oN}
* V= {v1,...,om} © La(Q) set of profiles

N M
Un,um = {u(;(x) = Z a; pi(x) + Z 5 vj(a;!—x +b;), a;,bj,c;eR, a5 € Rd}
i=1

Jj=1

Some u; € Un v is called Linear/Ridge approximation
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Ridge function approximations IV

Example — again
(€) uu(t,x) = uox + put) = 1 vi(al (t,z) + b1), i.e.,

© 6121

° V1 = Uo

° a’{=(—/,b,1)
© b1=0

A) w(tx) = S[uo(w — pt) + uo(w + pit)]
_ 1
* Cl =C = 3
* V1 = V2 = Uo

‘ a’{:(_ﬂa 1)!ag: (Mal)
cbi=b2=0

General: dof for UN,M: Q1,...,N € R, A1, ...,a) € Rd, bl, ,bM e R,
c1,y..,cpr € R

~ total number: N + M (d + 2)
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Ridge function approximations V
Linear/Ridge optimization
Idea:
* given u € Ly(2), determine

uy = argmin{|u — usllo : us € Un,m} (19)

* given u € P, determine

*

uy (u) = argmin{| f, — Lyus|o : us € Un,m} (20)
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Ridge function approximations VI
Lemma

Let u € Ly(R2), @y, Vs are given.
Set A := [(vs,5)]igs B := [wi,v5(a] - +b5)]s55

C := [vj(a] - +b;),vj(aj, - +bjr)]; -
Then, o and ¢ are given by

(o ) ()~ ()

~~ (19) reduces to an optimization problem in R(¢+1)M
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Ridge function approximations VII

Optimization problem

Case | u(zy, x2) | v1(§) | v2(§)

1| 1.6 cos(10z1 + Fa2) + 0.8 cos(10z1 — 5x) | cos(10) | cos
2 | cos(z1 + 2x2) + cos(z1 — 0.5 x2) cos(§) cos
3 | 5|z — 322 — 2| + 0.6 (z1 + 522)? [ &2




[CEIEEM  The Reduced Basis Method in Space and Time: Limits and Perspectives | Beyond “nice” problems — transport and wave equation

ions VIII

t

ion approxima

Ridge funct

A particle-grid algorithm

Moe » o, o

h.-of-o ofn.\ou [}
-, LA -
. v L
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Ridge function approximations IX

A particle grid algorithm
- associate directions/offsets to particles
* in dimension (d + 1)M
© map to (—1,1)@+OM
* arrange in a grid
+ use particle swarm methodology on that grid



Page 57/59 The Reduced Basis Method in Space and Time: Limits and Perspectives | Beyond “nice” problems — transport and wave equation

Ridge function approximations X

Case ‘ PPDE ‘ parameter s ‘ no. iterat. K | Lo-error
1 | Thermal block | (0.1,10,1,0.6) 1| 5.1019¢ — 15
1 | Thermal block | (10,2,0.1,0.5) 1 | 1.4446e — 14
1 | Thermal block | (0.4,2,0.3,5) 1| 6.0861le — 15
2 | Transport 1/4 12 | 7.1348e — 05
2 | Transport 1/4 66 | 4.6205e — 16
" 2 Transport [ 1 |19 [ 3.0119e — 05
2 | Transport 1 70 | 9.3829e — 17
" 2| T ransport |4 | 24| 6.1985e—05
2 | Transport 4 67 | 0
3 | Wave 1/4 20 | 7.6682e — 05
3 | Wave 1/4 83 | 8.9850e — 16
3| Wave [ 121 | 8.2400e —05
3 | Wave 1 86 | 3.1765e¢ — 16
3| Wave [ 47 |7 T 28| 43012 —05
3 | Wave 4 83 | 8.9850e — 16
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Ridge function approximations XI

10°

1071

102

Lo-error

1073

1074

| |
0 20 40 60 80 100 120 140 160 180 200
lterations

Figure: 3d planar wave.
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Summary

The Reduced Basis Method — a short introduction
@ The thermal block
@ RBM in a nutshell
@ Why does that work?

Beyond coercivity — inf-sup-stable problems
@ Variational formulations
@ Petrov—Galerkin methods
@ The RBM revisited
@ And the benchmark?

Beyond “nice” problems — transport and wave equation
@ The Kolmogorov N-width
@ Ultra-weak formulations
@ Some numerics
@ Ridge function approximations
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