NUmerical methods for Compression and LEarning

Distance to singularity for matrix polynomials

Given a regular matrix polynomial, an interesting problem consists in the computation of the nearest singular matrix polynomial, which determines its distance to singularity. We consider - only for simplicity - the quadratic case $\lambda^{2} A_{2}+\lambda A_{1}+A_{0}$ with $A_{2}, A_{1}, A_{0} \in \mathbb{C}^{n \times n}$ and look for the nearest singular quadratic matrix polynomial $\lambda^{2}\left(A_{2}+\Delta A_{2}\right)+\lambda\left(A_{1}+\Delta A_{1}\right)+\left(A_{0}+\Delta A_{0}\right)$. Whenever the singularity of the polynomial is determined by the property that the perturbed matrices $\left(A_{2}+\Delta A_{2}\right),\left(A_{1}+\Delta A_{1}\right),\left(A_{0}+\Delta A_{0}\right)$ have a common null (right/left) kernel, it can be shown that the perturbations have a low-rank property, which can be exploited in the computation. The algorithm we propose is a two-level procedure for a matrix nearness problem, where in an inner iteration a gradient flow drives perturbations to stationary points and in an outer iteration the perturbation size is optimized.

Primary authors: GNAZZO, Miryam (Gran Sasso Science Institute); Prof. GUGLIELMI, Nicola (Gran Sasso Science Institute)

Presenter: GNAZZO, Miryam (Gran Sasso Science Institute)
Session Classification: Poster

