INITIUM: an Innovative Negative Ion Time projection chamber for Underground dark Matter searches

Many thanks to L. Passamonti, R. Tesauro and all the Technitians for their help!

.....it could really work??? (cit.)

S

G

S

The GSSI CYGNO group

E. Baracchini, G. Dho, F. Di Giambattista, D. Marques, A. Prajapati, S. Torelli

MANGO with field cage & ²⁴¹Am source

Source distance from field cage varied depending on dinstance: track length cut varied accordingly (see later)

A first qualitative look by eye...

Electron drift (ED)

A first qualitative look by eye...

Electron drift (ED)

Negative ion drift (NID)?

He:CF₄ 60:40 1 kV/cm

0.88 atm

He:CF₄:SF₆ 59:39.4:1.6 0.4 kV/cm

Same mixture as published data with NITEC at 0.8 atm (JINST 13(2018) 04, P04022)

Qualitatively: diffusion depends on gain?

He:CF₄ 60:40 1 kV/cm

He:CF₄:SF₆ 59:39.4:1.6 0.4 kV/cm

Qualitatively: diffusion depends on gain?

Analysis strategy

- Track reconstructed with autumn2021 code
- Fit reconstructed tracks transverse profile (Flaminia's algorithm)
- Tracks selection:
 - track length > 150 (300) pixels (depending on source position)
 - track slimness < 0.3
 - # of peaks in the transverse profile == 1 (select single tracks)
 - Chi2/nDOF of transverse fit profile < 5 (remove additional multiple tracks)
- Sigma of track profile and track integral fitted with Gaussian to estimate diffusion and gain

Gain studies

N. B. 1.35 cm source position was considearbly further than the others, hence the lowest overall integral

Gain studies

N. B. 1.35 cm source position was considearbly further than the others, hence the lowest overall integral

N. B. 1.35 cm source position was considearbly further than the others, hence the lowest overall integral

Gain studies: zoom in

Electron drift clearly shows saturation

Negative ion drift (?) shows gain consistent with exponential behaviour

N. B. 1.35 cm source position was considearbly further than the others, hence the lowest overall integral

Gain studies: zoom in

Integral

NID Integral

Electron drift clearly shows saturation

Negative ion drift (?) shows gain consistent with exponential behaviour

Diffusion studies

Nearly instensitive to diffusion as a function of distance because dominated by difusion between GEMs

Diffusion studies: it is a matter of gain?

gain at 2.25, 3.15 and 4.05 cm

Diffusion coefficient (sigma_T) and constant term between GEMs (sigma_0)

Electron drift

Negative ion drift ?

TMath::Sqrt(sigma_0^2 + sigma_T^2*x)

Dominated by diffusion as a function of gain between GEMs? ...still showing different behaviours...

sigma_T & sigma_0 versus gain

From Giorgio's studies on ⁵⁵Fe spot size He:CF₄ 60:40 sigma0 vs gain ± 1 um/V

Negative ion drift ?

electron drift less compatible with sqrt behaviour at larger gain

975 V @ 1.3 cm gain compatible with 1665 V gain at 2.25, 3.15 and 4.05 cm

Electron drift Negative ion drift ?

Electron drift

Negative ion drift ?

The PMT issue

No signals on PMT with NID! (but signals ok with electron drift....)

source

Filters studies

Neewer - Set di Filtri Gel trasparenti per la correzione del Colore per Luce Stroboscopica da Studio - 30x30cm 8pz - colori Rosso, Giallo, Arancione, Verde, Viola, Rosa, Blu Chiaro, Blu

Scuro Visita lo Store di Neewer

Prezzo: **17,99€ √prime** e Resi GRATUITI ✓ Tutti i prezzi includono l'IVA.

Nuovo (6) da 17,99 € √prime

Taglia: Confezione da 8

 Confezione da 8
 11-Pack

 17,99 €
 18,49 €

 ∨prime
 ✓prime

 Spedizione GRATUITA con consegna presso punti di ritiro.

 Dettagli

 Marchio
 Neewer

 Descrizione rivestimento
 Rivestimento multiplo

 Tipo di effetto filtro foto
 Miglioramento

color	wavelength interval	frequency interval
red	~ 625-740 nm	~ 480-405 THz
orange	~ 590-625 nm	~ 510.480 THz
yellow	~ 565-590 nm	~ 530-510 THz
green	~ 500-565 nm	~ 600-530 THz
<u>cyan</u>	~ 485-500 nm	~ 620-600 THz
blue	~ 440-485 nm	~ 680-620 THz
violet	~ 380-440 nm	~ 790-680 THz
	Continuous spect	rum
400	500 600	700 800
	Designed for monitors with g	<u>amma</u> 1.5.

Red transmits only red frequencies and so on

ED behaviour consistent with expectations

NID seems more "dumped" than ED for orange filter....BUT there were some problems with gas mixture, so likely need to retake data

Conclusions & outlook

- He:CF₄:SF₆ 59:39.4:1.6 seems to behave differently from classical electron drift (ED)
 - Requires more than 70% larger GEM voltage to obtain comparable light yield
 - Gain vs V_{GEM} dependence is 1/2 w.r.t ED
 - Gain does not saturate
 - Diffusion between GEMs is ± 170 um independent of gain (w.r.t. a 1.7 um/V dependence of ED)
 - Diffusion coefficient of ± 100 um/sqrt(cm) (ED data dominated by diffusion but typically 140 um/sqrt(cm))
 - Can't see signals on PMT at comparable light yield
 - Same mixture and same GEM voltages as data published with NITEC at only 10% larger pressure: GEM voltages compatible with E/p scaling
 - Several indication of negative ion drift behaviour
- Is it really negative ion drift (NID)? Further studies are required
 - Measure GEM charge signals with preamplifiers and demonstrate longer time development with NID?
 - Install longer ± 20 cm field cage "a la GIN"?
 - Study PMT light with a GaAs window PMT? (3 months delivery)

Ideas for tests or improved analysis are more than welcome!!!