

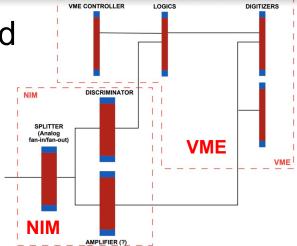
CHN(0

xperiment

Outline

- Group overview and activities
- Status of DAQ for LIME at LNGS
- Plans and development of the system for CYGNO

Group overview and activities

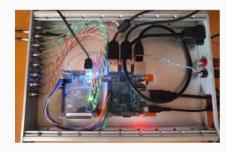

- Develop and maintain the trigger, data acquisition, and slow control system
- Meeting Wednesday 16:30 CET time:
 - DAQ mailing list cygno-daq@lists.infn.it
 - https://agenda.infn.it/category/1149/
 - Google Meet link room: https://meet.google.com/rri-ivwo-heg
 - Share folders for material, ideas, reports: <u>https://drive.google.com/drive/folders/1PFlbnkz3uSkQ_3XQ-Eya-OP4MKO2ckuj</u>
- Group members: Rafael Antunes Nóbrega, Amaro Lopes (UFJF), Herman Pessoa Lima Jr., Danilo Cardoso (CBPF), Giorgio Dho (GSSI), Francesco Renga, Francesco lacoangeli, Davide Pinci (Roma1), Stefano Piacentini, Andrea Messina (Sapienza)

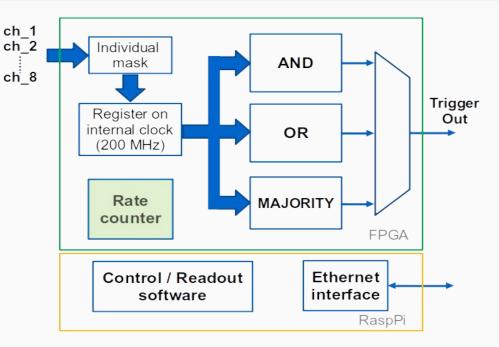
Hardware status for LIME underground

DAQ system based on USB for the camera + NIM and VME modules for analog signals:

- NIM: Splitting (N625), discriminating (N840) and amplification if needed
- VME: Fast digitization (V1742) for PMT, slow digitization (V1720) for the GEM, controller (V1718, V3718), and logic (V976 or custom trigger module)
- Two servers Xeon 16 core 4216 32 GB RAM+ 2x8 TB HD + NVIDIA RTX5000 24 GB

Trigger module for LIME/CYGNO




Custom firmware/software design:

- 8 digital input channels
- Trigger logic remotely configurable through Ethernet connection
- Trigger logic based on the CAEN V976 module (AND, OR, Majority)
- More functionalities under development (ex: rate counter)

STATUS: first prototype delivered to Rome in Oct/21:

Software status for LIME underground

• DAQ for 2 digitizers + camera has been implemented, debugged, and smoothly working.

 Dumping of run information (run log) into MySQL DB has been implemented and tested (DB structure and variables to be defined).

	Ru	n Status				
8124	ad Nov 7 20:57:42 20	2018 Stop: Wed Nov 7 20:58:10 2018				
Stopped Alarms: (Off Restart: 0	off Da	ta dir: /data2/drag	/data2/dragon/S1565/data		
1552340687 14:44:47	7.821 2019/03/11 [th	resh,INFO] Pro	gram thresh on ho	st smaug stoppe		
	Eq	uipment				
Equipment +	Status	Events	Events[/s]	Data[MB/s]		
HeadVME	Idle	0	0.0	0.000		
HeadScaler	Idle	2.754M	1.0	0.000		
TailVME	Idle	0	0.0	0.000		
TailScaler	Idle	0	0.0	0.000		
Epics	Frontend stopped	0	0.0	0.000		
Wiener	Ok	0	0.0	0.000		
	Loggii	ng Channel				
Channel	Events	MB writte	en Compr.	Disk Leve		
t0: run8119.mid	0	0.000	0.0%	77.8%		
Lazy Label	Progress	File Nam	e # Files	Total		
-drive	0%	run6895.m	id 34	0.0%		
		Clients		0.0%		
fe_head [lxdragon01.t		smentes (smaug.trium)	f col monacura	ensaue tolucef e		
	mnetbe	ismaug.cnum	mserver (mserver [smaug.triumf.cs fevScaler [smaug.triumf.cs		

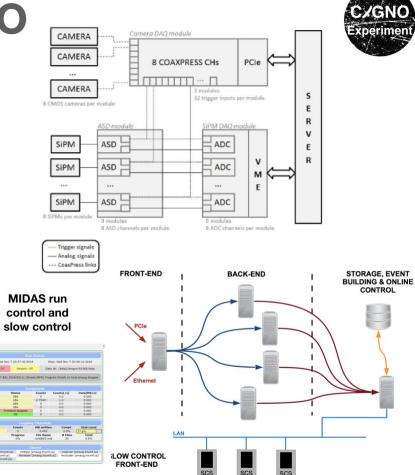
Slow Control status for LIME underground

Also implemented in MIDAS

- Hardware:
 - SCS3000 (PSI microcontroller for DAQ of external sensors)
 - CAEN HV mainframe
 - GAS system
- Software:
 - Managed by a single SC frontend application
 - Instantaneous readout and setpoint values stored in the online DB
 - Stream of values saved in history files (visualised in MIDAS)

Electr	ic Field	-							
Liecti	Inpu		Set		Demand [V]	Read [V]	Current [µA]	ወ	4
Drift field [kV/cm]	0	0	-0.063	HV0	2800.000	0.000	0.000	٠	C
Transfer field 1 [kV/cm]	0	0	0.100	HV1	50.000	0.000	0.000	٠	•
	0			HV2	20.000	0.000	0.000	٠	C
Transfer field 2 [kV/cm]			0.100	HV3	50.000	0.000	0.000	٠	•
VGEM 1 [V]	50	*	50	HV4	20.000	0.000	0.000	٠	C
VGEM 2 [V]			50	HV5	50.000	0.000	0.000	٠	•
VGEM 3 [V]			50	HV6	0.000	0.000	0.000	٠	0
Offset [V] 2800 0 SET ALL SET ZERO		2800	HV7	ODB key "/Equipment /CATHODE /Variables /Demand[0]" not found	ODB key "/Equipment /CATHODE /Variables /Measured[0]" not found	ODB key "/Equipment /CATHODE /Variables /Current[0]" not found	•	•	
ON ALL	OFF 4	ALL			• HV0 • HV • HV5	Settings 1 OHV2 OHV 0HV6 ALL C 0ISEGHV			
DRIFT ON OFF			Ramp Up Speed	[V/s] 1	00				
					Ramp Down Spe	ed [V/s] 1	00		
TRANSFER	ON		F		Trip Current [µA]	1	0		
GAIN	ON	OF	F		Trip Time [s]	1	*		
						1	0		

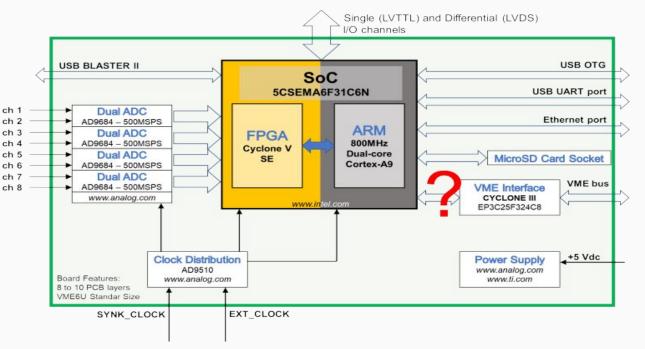
Trigger and DAQ for CYGNO


Two readout path:

- camera (one per module):
 - exposure 0.2-1 sec. 10MB of data;
 - run in continuum mode, 50 Mb/s
 - CameraLink PCIe frame grabber @ 2.5 GB/s (or USB3)
- photodetector (up to 8 channels per module):
 - + 12-bit digitisation @ 250 MS/s, $~\lesssim 1\mu$ s, 1 Mb/s

Two possible trigger levels:

- HW trigger: photodetectors with minimal logic (e.g. majority)
- **Software trigger:** reconstruction of images and waveforms on a farm of CPUs/GPUs based and trigger on interesting features (e.g. clusters), typically 1 evt/s

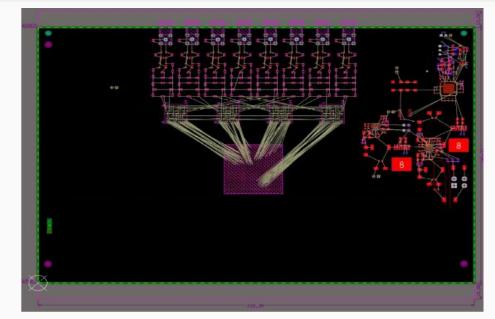

MIDAS used for Readout, Trigger and slow control

Custom digitizer for Photomultipliers

Custom hardware design:

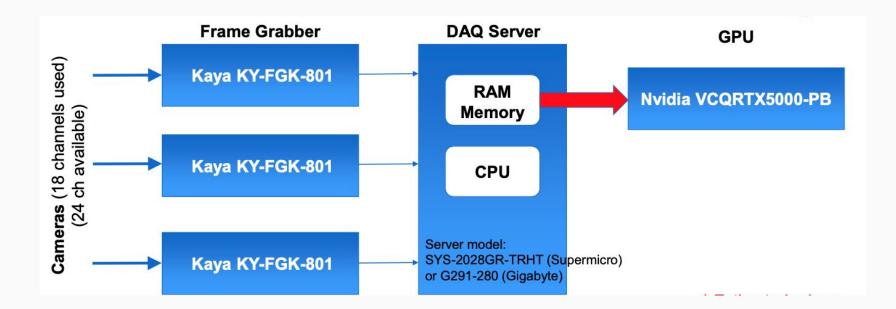
- 8 analog input channels
- 500 MSPS sampling rate
- Single-ended and Differential GPIO (General Purpose IO)
- <u>Flexible and programmable</u> processing capabilities using SoC FPGA with embedded ARM processor
- Ethernet and USB communication interface

IN PROSPESS

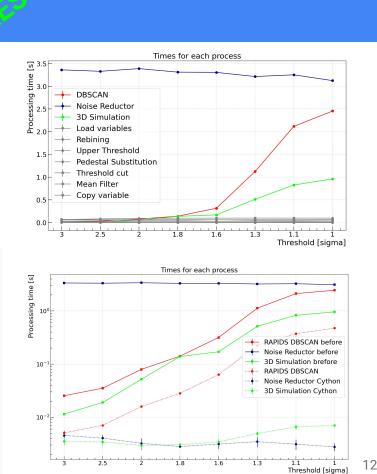

STATUS:

 Survey and selection of technologies/devices: ADC, FPGA, μC, clock, power. DONE

Custom digitizer for Photomultipliers


- Drawing of electrical schematics: analog/digital conversion circuit, ADC connections. DONE
- Defining and drawing ADC to FPGA data buses (16 x 4 LVDS channels). **DONE**
- Drawing of electrical schematics: FPGA circuit. **DOING**
- Learning and programming the FPGA ARM processor to implement the Ethernet and USB communication. **DOING**

First layout view (component placement and connections)


CAMERA readout system

CYGNO collaboration meeting, 20-21 December 2021

DAQ related studies

- Timing the preprocessing steps in the reconstruction searching for optimization candidates;
- Searched for a better way of optimizing the slowest processes:
 - DDBSCAN using GPU accelerated Rapids
 - Noise reductor and 3dsimulator* using Cython
- Tested with ⁵⁵Fe data achieving 15% decrease in total time with same results (only Cython tested)
- Test some simple algorithm to select candidates based on acquire images

* today, noise 3dsimulator is not used anymore

Conclusions

LIME:

- The software and hardware trigger and DAQ systems for LIME has been working for the runs at LNF, we are currently finalised the system at LNGS:
 - Hardware based on NIM/VME commercial modules (+ a remote trigger board)
 - DAQ, trigger, and slow control software based on MIDAS

CYGNO:

- Development of a custom board for the acquisition of the photodetectors
- Use a frame grabber to acquire the camera
- Development of a software preprocessing of the images on GPUs and possible use the output for a software trigger