

Background simulations for CYGNO detector

Giulia D'Imperio

20-21/12/21 CYGNO Collaboration Meeting

CYGNO collaboration meeting 2021 Gran Sasso Science Institute, L'Aquila, Italy

Signal and backgrounds for dark matter search

Background sources:

- → Radioactivity of detector and setup materials
- → Radioactivity of surroundings (laboratory environment)
- → Cosmic rays and secondary reactions (need to go underground, LNGS 3700 mwe)

Background components

- Internal radiogenic neutrons/gammas (origin: radioactivity of the materials in setup)
- External radiogenic neutrons/gammas (origin: radioactivity of rocks and concrete of the lab)
- External cosmogenic neutrons (origin: muon interactions)

Internal backgrounds

Radioactivity of materials

GEANT4 implementation of the detector

- natural radioactivity: U, Th and K
- radon
- cosmogenically activated isotopes
- alpha, beta, gamma, neutrons can come from radioactivity

→ usually the most worrisome backgrounds are internal (externals can be shielded)

→ Careful evaluation of the material activities is important to predict the background

Radioactivity of cameras

• Body and lens of ORCA Flash from M. Laubenstein measurements @LNGS

Camera Lens (glass) Reference		Limit/Me	Activity (Bq/kg) mas	ss (kg)
U238 (Th234)	Laubenstein @LNGS	М	4.22E+00	3.843
U238 (Ra226)	Laubenstein @LNGS	М	1.92E+00	3.843
U235	Laubenstein @LNGS	М	1.45E-01	3.843
Th232 (Ra228)	Laubenstein @LNGS	М	3.61E-01	3.843
Th232 (Th228)	Laubenstein @LNGS	М	3.65E-01	3.843
K40	Laubenstein @LNGS	М	5.15E+01	3.843
Cs137	Laubenstein @LNGS	L	2.67E-02	3.843
Co60	Laubenstein @LNGS	L	4.64E-02	3.843
La138	Laubenstein @LNGS	М	2.44E+00	3.843

Camera Body	Reference	Limit/Me	Activity (Bq/kg) ma	ss (kg)
U238 (Th234)	Laubenstein @LNGS	М	3.16E+00	3.98E+01
U238 (Ra226)	Laubenstein @LNGS	М	8.13E-01	3.98E+01
U235	Laubenstein @LNGS	М	1.81E-01	3.98E+01
Th232 (Ra228)	Laubenstein @LNGS	М	9.49E-01	3.98E+01
Th232 (Th228)	Laubenstein @LNGS	М	9.49E-01	3.98E+01
K40	Laubenstein @LNGS	М	8.59E-01	3.98E+01
Cs137	Laubenstein @LNGS	М	4.07E-02	3.98E+01
Co60	Laubenstein @LNGS	L	5.42E-03	3.98E+01

Alternative material for lens: fused silica

Camera Lens (fused	Reference	Limit/Me	Activity (Bq/kg) mas	ss (kg)
U	Haereus Suprasil: http	M	1.23E-04	3.843
Th	Haereus Suprasil: http	M	4.07E-05	3.843
К	Haereus Suprasil: http	M	3.10E-04	3.843

Background from camera body

Using activities from M.Laubenstein measurements @LNGS

- ER rate [1-20] keV = 4.5x10⁵ cts/yr
- NR rate [1-20] keV = 0 cts/yr

Background from camera lens

Using activities from M.Laubenstein measurements @LNGS

- ER rate [1-20] keV = 1.7x10⁶ cts/yr
- NR rate [1-20] keV = 0 cts/yr

Radiopure lens made of fused silica:

- ER rate [1-20] keV = 68 cts/yr
- NR rate [1-20] keV = 0 cts/yr

Radioactivity of acrylic box

• U, Th, K activities from M.Laubenstein measurements @LNGS (upper limits)

Acrylic	Reference	Limit/Me	Activity (Bq/kg) ma	ass (kg)
U238 (Ra226)	Laubenstein @LNGS	L	3.50E-03	2.01E+02
Th232 (Ra228)	Laubenstein @LNGS	L	5.00E-03	2.01E+02
Th232 (Th228)	Laubenstein @LNGS	L	4.50E-03	2.01E+02
K40	Laubenstein @LNGS	L	3.50E-02	2.01E+02

• SNO acrylic much lower radioactivity (from radiopurity.org database)

Acrylic	Reference	Limit/Me	Activity (Bq/kg) ma	ass (kg)
U	SNO: https://www.rad	L	2.96E-04	2.01E+02
Th	SNO: https://www.rad	L	5.69E-05	2.01E+02
к	SNO: https://www.rad	L	7.12E-05	2.01E+02

Radioactivity background from Acrylic Box

Using activities from M.Laubenstein measurements @LNGS (upper limits)

- ER rate [1-20] keV < 3.6x10⁵ cts/yr
- NR rate [1-20] keV < 6.1x10³ cts/yr

With radiopure acrylic (SNO):

- ER rate [1-20] keV < 1.2x10⁴ cts/yr
- NR rate [1-20] keV < 76 cts/yr

Radioactivity of GEMs

• Activities from M.Laubenstein measurements @LNGS

GEM	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)
U238 (Th234)	Laubenstein @LNGS	М	1.63E-01	0.7
U238 (Ra226)	Laubenstein @LNGS	М	3.25E-02	0.7
U235	Laubenstein @LNGS	L	1.58E-02	0.7
Th232 (Ra228)	Laubenstein @LNGS	L	3.09E-02	0.7
Th232 (Th228)	Laubenstein @LNGS	L	1.56E-02	0.7
K40	Laubenstein @LNGS	L	3.58E-01	0.7
Cs137	Laubenstein @LNGS	L	8.13E-03	0.7
Co60	Laubenstein @LNGS	L	7.48E-03	0.7

• Activities from TREX paper

GEM	Reference	Limit/Me	Activity (Bq/kg)
U238	TREX https://link.sp	L	1.32E-02
Th232	TREX https://link.sp	М	5.45E-03
U235	TREX https://link.sp	М	2.80E-02
K40	TREX https://link.sp	М	6.31E-02
Co60	TREX https://link.sp	L	2.34E-03
Cs137	TREX https://link.sp	L	1.56E-03

Radioactivity background from GEMs

Using activities from M.Laubenstein measurements @LNGS

- ER rate [1-20] keV = 5.1x10⁵ cts/yr
- NR rate [1-20] keV = 5.0x10³ cts/yr

With TREX GEM:

- ER rate [1-20] keV = 3.6x10⁵ cts/yr
- NR rate [1-20] keV = 4.3x10³ cts/yr

NOTE: GEM frames are not included in this simulation

Fiducialization

- GEM energy deposits from nuclei in one of the CYGNO drift regions (checked → they are all alphas)
- GEANT4 saves the info if the alpha is primary (from alpha radioactivity) or secondary (ex. He nuclei in the gas)
- Secondary alpha are ~16% of the total and with same distribution of primary
- All contained in the first ~5 cm of gas
 expect to reject almost all NR with fiducialization

Quick qualitative study, more detailed study needed, but looks promising...

Radioactivity of cathode

• Activities from TREX copper

Copper Cathode	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)
238U	Cu from TREX: https://	L	1.20E-05	0.98408
232Th	Cu from TREX: https://	L	4.10E-06	0.98408
40K	Cu from TREX: https://	М	6.10E-05	0.98408
60Co	Cu from TREX: https://	L	2.40E-04	0.98408
137Cs	Cu from TREX: https://	L	2.90E-04	0.98408

- Standard copper activities can be 10x higher
- Cosmogenic activity NOT taken into account: ⁵⁷Co, ⁵⁸Co, ⁵⁴Mn

Radioactivity background of cathode

Using activities from TREX copper

- ER rate [1-20] keV = 3.6x10³ cts/yr
- NR rate [1-20] keV = 0.8 cts/yr

- Standard copper activities can be 10x higher
- Cosmogenic activity NOT taken into account: ⁵⁷Co, ⁵⁸Co, ⁵⁴Mn

Radioactivity of field cage

• Activities from TREX copper

Copper Field Cage	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)
238U	Cu from TREX: https://	L	1.20E-05	42.4915
232Th	Cu from TREX: https://	L	4.10E-06	42.4915
40K	Cu from TREX: https://	М	6.10E-05	42.4915
60Co	Cu from TREX: https://	L	2.40E-04	42.4915
137Cs	Cu from TREX: https://	L	2.90E-04	42.4915

- Standard copper activities can be 10x higher
- Cosmogenic activity NOT taken into account: ⁵⁷Co, ⁵⁸Co, ⁵⁴Mn

Radioactivity background from FC

NOTE: Resistors are not included in the simulation

Using activities from TREX copper

- ER rate [1-20] keV = 2.0x10³ cts/yr
- NR rate [1-20] keV = 1.5 cts/yr

- Standard copper activities can be 10x higher
- Cosmogenic activity NOT taken into account: ⁵⁷Co, ⁵⁸Co, ⁵⁴Mn

Summary of internal backgrounds

• ER rate [1-20] keV = 2.3x10⁶ cts/yr

• NR rate [1-20] keV = 1.1x10⁴ cts/yr

CameraBody

CameraLens

Cathode

GEM

tot NR

20

FieldCage

AcrylicBox

25

Energy deposit NR [keV]

30

Summary of internal backgrounds

	CYC	GNO	CHIN	отто [*]	
Summary Table	NR/yr 1-20 keV	ER/yr 1-20 keV	NR/yr 1-20 keV	ER/yr 1-20 keV	Reference
GEM (LNGS)	5.07E+03	5.09E+05	1.00E+03	1.01E+05	Laubenstein@LNGS
GEM (TREX)	4.27E+03	3.61E+05	8.44E+02	7.14E+04	T-REX GEM
AcrylicBox (LNGS)	6.07E+03	3.61E+05	1.56E+03	9.32E+04	Laubenstein@LNGS
AcrylicBox (SNO)	7.67E+01	1.17E+04	1.98E+01	3.02E+03	SNO acrylic
CameraBody	0.00E+00	4.46E+05	0.00E+00	8.81E+04	Laubenstein@LNGS
CameraLens (LNGS)	0.00E+00	1.07E+06	0.00E+00	2.12E+05	Laubenstein@LNGS
CameraLens (fused silica)	0.00E+00	6.68E+01	0.00E+00	1.32E+01	Haereus "Suprasil"
Cathode (Cu)	8.58E-01	3.63E+02	1.69E-01	7.18E+01	T-REX copper
Field Cage (Cu)	1.51E+00	2.00E+03	2.99E-01	3.96E+02	T-REX copper
Total (LNGS)	1.11E+04	2.39E+06	2.57E+03	4.94E+05	
Total (low rad)	4.35E+03	8.21E+05	8.64E+02	1.63E+05	

- NR for the low-rad option mostly come from GEM → could be reduced with fiducialization
- ER for the low-rad option mostly come from GEM and Camera body

* Rates for CHINOTTO are obtained scaling from CYGNO numbers

External background and shielding studies

Ambient gammas

- Gammas mostly from K, U chain and Th chain
- Spectrum measured by SABRE collaboration(*)
- used as input for CYGNO simulations

Without shield **10¹⁰ evts/yr** in the CYGNO detector → need shielding with **attenuation power 10⁻⁶-10⁻⁷**

(*) in agreement with H. Wulandari et al. Astroparticle Physics 22 (2004) 313–322 21

Materials

Materials considered for the shielding:

- copper → high density, compact shield, can be produced very radiopure, ...but expensive (~25 euro/kg)
- water → radiopure, cheap, ...low density, need large volume
- **lead** → high density, compact shield, ...but very radioactive and secondary neutrons

Other materials used in low background experiment

• **polyethylene** - similar shielding properties to water but more expensive

Focused our study on copper+ water shield.

Attenuation of Cu + water

Approximate calculation (not full MC simulation, use tables for gamma attenuation at $E^{\sim}MeV$)

We need $\sim 10^{-6} - 10^7$ gamma attenuation:

- Cu thickness limited by cost
- water thickness limited by space

Shielding options studied

1) 200 cm water shield + 5 cm copper shield

2) 110 cm water shield+ 10 cm copper shield2x2 LIME modules (CHINOTTO)

Gamma flux

G. D'Imperio - CYGNO Collaboration meeting - 21/12/21

Gamma flux attenuation

1) 200 cm water shield + 5 cm copper shield

External gamma background

Ambient neutrons

- Ambient neutrons from radioactivity in the rock
- Spectrum from CUORE MC
 - → measurements Belli/Arneodo (radiogenic,
 E<10 MeV) and Hime (cosmogenic E>10 MeV)

Neutron background shield (option 1)

- Neutron flux entering shield 2.3x10⁻⁹ cm⁻² s⁻¹ •
- Secondary gamma flux from neutron • interactions $2x10^{-9}$ cm⁻² s⁻¹

 10^{-3}

10-5

10-6

10 10-8 10^{-9}

 10^{-10} 10^{-11} 10⁻¹² ≡

10^{−13} 10^{-14}

10⁻¹⁵

Flux [n/cm²/s] 10^{-4}

 \rightarrow for comparison external gamma flux is 10⁻⁷

Rates at low energy 1-20 keV:

- NR rate [1-20] keV = 4.3 cts/yr
- ER rate [1-20] keV = 4.7 cts/yr

Summary

- Total internal background in CYGNO using low radioactivity materials is of the order of 10⁵ ER/yr and 10³ NR/yr
- Internal background is dominated by GEMs and cameras
 - need to optimize materials for low background experiments
 - fiducialization could reduce the NR rate
- External gamma background with a shielding of 2m water+5 cm Cu is reduced to <10³ ER/yr
- External neutron background is of <10 NR/yr
 - background due to secondary gammas is negligible
- Time to write a paper summarizing these results

Backup

Lead shield radioactivity

- The highest background contribution from lead is ²¹⁰Pb
- ²¹⁰Pb is not in equilibrium with ²³⁸U decay chain
- half life of ²¹⁰Pb is quite long (22 years)
- ²¹⁰Pb daughters have shorter half life, therefore they are in equilibrium with ²¹⁰Pb
- commercial lead has typically several 100 Bq/kg of ²¹⁰Pb.
 OPERA lead available at LNGS has 80 Bq/kg, CUORE roman Pb has <4 mBq/Kg activity
- 210 Pb \rightarrow 100% BR beta decay with q-value 63.5 keV
- ²¹⁰Bi → 100% BR beta decay with q-value 1162.1 keV
 → bremsstrahlung gives significant contribution to bkg
- ²¹⁰Po → 100% BR alpha q-value 5407.4 keV

$T_{1/2}$	Isotope	$E_{\alpha}(\text{MeV})$	I (%)	Activity
$4.468\cdot 10^9y$	^{238}U	5-11-11-11-11-11-11-11-11-11-11-11-11-11		
24.1 d	$\downarrow \alpha$ ^{234}Th	4.18	99.9	A0
1.17 m	$^{\downarrow \rho}_{234m}Pa$			
$2.455 \cdot 10^5 y$	$\begin{array}{c} \downarrow eta \\ ^{234}U \end{array}$			
$7.538 \cdot 10^4 y$	$\downarrow \alpha$ ^{230}Th	4.75	99.8	A1
1600 u	$\downarrow \alpha$ ²²⁶ Ra	4.66	99.7	A2
3.8 <i>d</i>	$\downarrow \alpha$ ²²² Rn	4.78	94.4	A3
3.10 m	$\downarrow \alpha$ ²¹⁸ Po	5.49	99.9	A3
26.8 m	$\downarrow \alpha$ 214 Pb	6.00	99.9	A3
19.9 m	$\downarrow^{\beta}_{214}Bi$			
$164.3\mu s(*)$	$\downarrow^{\beta}_{214}Po$			
00.0	↓ α 210 D1	7.69	99.9	A3
22.3 y	1 B			
5.01d	$^{+}_{210}Bi$			
138.4 d	$\downarrow \beta$ ^{210}Po			
Stable	$\downarrow \alpha$ ^{206}Pb	5.30	100	A4

Radioactivity background of lead shield

- Energy deposit in CYGNO detector from lead shield radioactivity
- assume ²¹⁰Pb of OPERA lead (**2-3 times better than common lead**)
- U, Th, K activities from T-REX paper (arxiv 1812.04519)
- shielding made of 50 cm water + 5 cm Pb + 5 cm Cu

Activity [mBq/kg]	Rate [cts/yr]
0.33	11.2 10 ³
10 ⁵	1.97 10 ⁶
0.10	4.51 10 ³
1.2	4.6 10 ³
	Activity [mBq/kg] 0.33 10 ⁵ 0.10 1.2

Total rate 2 10⁶ cts/yr

A 5 cm-thick shield of lead for 1 m³ detector gives a large background, unless using archaeological lead.