Istituto Nazionale di Fisica Nucleare

Analog models of physical
phenomena

‘

Massimo Mannarelli
INEN-LNGS
massimo@Ings.infn.it

Astro-colloquium
I’Aquila 26 Jan 2022


mailto:massimo@lngs.infn.it

Outline

@ Introduction to analog models

@ Gravity analogs

@ Barotropic fluid

@ Hawking radiation

® Conclusions

References

MM and C. Manuel, PhyS.ReV.D 77 (2008) 103014

MM, C. Manuel and B. A. Sa'd, Phys.Rev.Lett. 101 (2008) 241101

M. A. Escobedo, MM and C. Manuel, Phys.Rev.A 79 (2009) 063623

MM and C. Manuel, Phys.Rev.D 81 (2010) 043002

MM, C. Manuel and L. Tolos, Annals Phys. 336 (2013) 12-35

MM, D. Grasso, S. Trabucco and L. Chiofalo Phys.Rev.D 103 (2021) 7, 076001



How to solve problems...

[

3.
Try harder!

Use approximations!

Use numerical methods!

Ask others to join!

Take a different perspective: use analogies




Maybe your problem can be rephrased (mapped)
as a different solvable problem

In some cases, we have not direct access
to the physical system.

But we can realize the analog one in a lab
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BH analog in a lab




The richness of physics

Particle
physics

Condensed

matter

Nuclear

physics

General
relativity

Atomic

gas



Some analogies
Particle propagation €= Wave propagation

Higgs mechanism <l  Meissner effect

Neutrino oscillations

Kaon oscillations

B-meson oscillations  Light polarization

Phonon in a fluid <= Photons in GR



The realm of the analogy 1

In most cases the analogy 1s about kinematics not dynamics
The analogy holds in restricted energy regions, for restricted processes

® Higgs-Anderson mechanism

Sponantenous breaking
of a local symmetry

=  Gauge field acquire mass M

Range of the gauge field propagation ~ 1/M

Anderson effect
analogous magnetic field screening in
superconductors

Higgs mechanism
or W and Z bosons of the

The 1nteractions of photons, Z and W bosons are completely different
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The realm of the analogy 11

® Particle-wave duality (analogy)

Propagation of wave propagation

massless bosons analogous in hydodynamics
62
atzj c?Viy =0

This analogy 1s valid in the absence of interactions.

Including interactions the particle behavior 1s different: scattering,
quantum corrections etc.
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Gravity analogs

If we can rephrase a given problem as a geometrical problem
we can look for a solution using the analogy with
general relativity (GR)
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A particle in a moving medium

= 5’ ; .‘;‘-N -

i

Our particle: the phonon

C
= —_—

B
—

Phonon velocity in the comoving frame ¢, =c i with [A|* =1

Velocity of the fluid v
dx

— = CsNN+V

dt

Phonon velocity in the lab frame



A simple geometrical picture

dx . n
Rewrite i + v as cndt =dx —vdt
Square 1t ngtz — (dX — th)Z =
Null geodesic gupdztdr” =0
. 2o | v
acoustic metric Guv — v 7

Note that {/—g =+/—detg = c,



Acoustic metric

Promoting to special relativity we have that

8w =My + (CS2 — 1) vV, where v, =y, —V)

S

flat spacetime in-medium effects



Particle in a moving medium <%  Particle in gravity

To which extent does 1t hold?
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Bending trajectories v

5 free-falling
elevator
93 / ¢ ,
.(&H *
@ =
I
L ([ §
A bent trajectory (&e »
.. dy v :
y] dx ¢ (@
X

A velocity space gradient produces the analog of light bending
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Space gradients to emulate gravity

Gravity

Galileo

An analog model

Vy = Cs dx = cdt
b
v=k— dy= k= df dy = 2 dx
CS CS Cg
traject e
= —X
rajectory Yy 202

k is related to the “surface” acceleration
17



Horizon fluid velocity gradient l

“® & @
J(C
e

Horizon

Trapped

surface
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Is gravity an emerging phenomenon?

Gravity as emerging from a more fundamental theory has
been proposed by many, including Sakharov

In Einstein’s theory of gravitation one postulates that
the action of space-time depends on the curvature (R is the
invariant of the Ricci tensor):

S(R) = - Te-f (dx)V 2R (1)

The presence of the action (1) leads to a “metrical elas-
ticity” of space, i.e., to generalized forces which oppose the
curving of space.

Here we consider the hypothesis which identifies the
action (1) with the change in the action of quantum fluctu-
ations of the vacuum if space is curved. Thus, we consider
the metrical elasticity of space as a sort of level displacement
effect (cf. also Ref. 1)."



An interesting
one page reading

Vacuum quantum fluctuations in curved space and the theory of gravitation

A.D. Sakharov

Dokl. Akad. Nauk SSSR 177, 70-71 (1967) [Sov. Phys. Dokl. 12, 1040-1041 (1968). Also S14,

pp- 167-169]
Usp. Fiz. Nauk 161, 6466 (May 1991)

In Einstein’s theory of gravitation one postulates that
the action of space-time depends on the curvature (R is the
invariant of the Ricci tensor):

S(R) = - T;‘—Gf(dx)\/_—_—gk. )

The presence of the action (1) leads to a “metrical elas-

ticity” of space, i.e., to generalized forces which oppose the
curving of space.

Here we consider the hypothesis which identifies the
action (1) with the change in the action of quantum fluctu-
ations of the vacuum if space is curved. Thus, we consider
the metrical elasticity of space as a sort of level displacement
effect (cf. also Ref. 1)."

In present-day quantum field theory it is assumed that
the energy-momentum tensor of the quantum fluctuations of
the vacuum T'% (0) and the corresponding action S(0), for-
mally proportional to a divergent integral of the fourth pow-
er over the momenta of the virtual particles of the form fk?*
dk, are actually equal to zero.

Recently Ya. B. Zel’dovich® suggested that gravitation-
al interactions could lead to a “small” disturbance of this
equilibrium and thus to a finite value of Einstein’s cosmolo-
gical constant, in agreement with the recent interpretation of
the astrophysical data. Here we are interested in the depend-
ence of the action of the quantum fluctuations on the curva-
ture of space. Expanding the density of the Lagrange func-
tion in a series in powers of the curvature, we have (4 and
B~1)

(R)=Z(O)+Afkdk-R+Bf%R2+... ) 2)

The first term corresponds to Einstein’s cosmological
constant.

The second term, according to our hypothesis, corre-
sponds to the action (1), i.e.,

1
G= - {eramar A~ 1 (3

The third term in the expansion, written here in a provi-
sional form, leads to corrections, nonlinear in R, to Ein-
stein’s equations.?

The divergent integrals over the momenta of the virtual
particles in (2) and (3) are constructed from dimensional
considerations. Knowing the numerical value of the gravita-
tional constant G, we find that the effective integration limit
in (3) is

ko ~10% eV ~10*3cm™1

In a gravitational system of units, G=fi=c=1. In
this case k, ~ 1. According to the suggestion of M. A. Mar-
kov, the quantity k, determines the mass of the heaviest par-

394 Sov. Phys. Usp. 34 (5), May 1991

ticles existing in nature, and which he calls ““maximons.” It
is natural to suppose also that the quantity k, determines the
limit of applicability of present-day notions of space and cau-
sality.

Consideration of the density of the vacuum Lagrange
function in a simplified “model” of the theory for noninter-
acting free fields with particles M ~ k, shows that for fixed
ratios of the masses of real particles and “ghost” particles
(i.e., hypothetical particles which give an opposite contribu-
tion from that of the real particles to the R-dependent ac-
tion), a finite change of action arises that is proportional to
M?R and which we identify with R /G. Thus, the magnitude
of the gravitational interaction is determined by the masses
and equations of motion of free particles, and also, probably,
by the ‘“momentum cutoff.”

This approach to the theory of gravitation is analogous
to the discussion of quantum electrodynamics in Refs. 4 to 6,
where the possibility is mentioned of neglecting the Lagran-
gian of the free electromagnetic field for the calculation of
the renormalization of the elementary electric charge. In the
paper of L. D. Landau and I. Ya. Pomeranchuk the magni-
tude of the elementary charge is expressed in terms of the
masses of the particles and the momentum cutoff. For a
further development of these ideas see Ref. 7, in which the
possibility is established of formulating the equations of
quantum electrodynamics without the “bare’” Lagrangian of
the free electromagnetic field.

The author expresses his gratitude to Ya. B. Zel’dovich
for the discussion which acted as a spur for the present pa-
per, for acquainting him with Refs. 3 and 7 before their pub-
lication, and for helpful advice.

> Here the molecular attraction of condensed bodies is calculated as the
result of changes in the spectrum of electromagnetic fluctuations. As
was pointed out by the author, the particular case of the attraction of
metallic bodies was studied earlier by Casimir.?

A more accurate form of this term is f(dk/k) (BR?
+ CR*R, + DR™"R,,,. + ER ™™ R, ) where 4, B, C, D, E~1.
According to Refs. 4 to 7, fdk /k ~ 137, so that the third term is impor-
tant for R 2 1/137 (in gravitational units), i.e., in the neighborhood of
the singular point in Friedman’s model of the universe.

'E. M. Lifshits, ZhETF 29:94 (1954); Sov. Phys. JETP 2:73 (1954),
trans.

2H. B. G. Casimir, Proc. Nederl. Akad. Wetensch. 51:793 (1948).

3Ya. B. Zel’dovich, ZhETF Pis’ma 6:922 (1967); JETP Lett. 6:345
(1967), trans.

*E. S. Fradkin, Dokl. Akad. Nauk SSSR 98:47 (1954).

3E. S. Fradkin, Dokl. Akad. Nauk SSSR 100:897 (1955).

SL. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR
102:489 (1955), trans. in Landau’s Collected Papers (D. ter Haar, ed.),
Pergamon Press, 1965.

7Ya. B. Zel’dovich, ZhETF Pis’ma 6:1233 (1967).

0038-5670/91/050394-01$01.00 © 1991 American institute of Physics 394




Gravity analogs
using a barotropic fluid



Starting from Euler equations

Description of the fluid
Lo . dp
Continuity equation 57 + V- (pv) =0
ov
Fuler equation J9, < 5 - (v - V)V> =1

Characteristics of the fluid

e barotropic p = p(p)
e inviscid f=—Vp

® irrotational v=V¢



Small perturbations

Fluctuations around a background conﬁguration

p = potepr+O()
p = Do T €p1 0(62)
¢ = ¢o+ep1+ O() Vo=V, V=V,
Bulk J L Acoustic perturbation

% + V- (pv) =0 general

0

0Ly, (povy) = O bulk

ot

ap;

— + V- (pvp) + V- (p;vy) =0 perturbation



Small perturbations

Combining linearized Euler and continuity equations:

o o B o
o (032P0 (% + vp - V¢1)> - V- (POV¢1 — ¢, % povo (% + Vo - V¢1>) =0

op
where CS2 =—
dp
r 2
P 2
vo =0, py=const, ¢, = const v, — 2V, =0
[
N y

The non uniform medium changes the propagation



The gravity analog emerges

0 B %, _ 0
o (Cs ?po (% + vp - V¢1)) -V (poWbl — ¢ % povo (% + vp - Wﬁl)) =0

Solving this equation... i.

Rewrite the above equation as

GR bike

4 )
1
=500 (V=99""0,61) =0




The gravity analog at work

R-mode instability of rotating stars Quick spin down of pulsars

Gravitational
AVAVAVAV e
N Radiation
elastic phonon-
vortex scattering ®

Analytic cross section

Lindblom, astro-ph/0101136
Andersson, Kokkotas
Int.J.Mod.Phys.D10:381-442,2001

Dissipative processes damp this mode

® @ ® o phonon
.

superﬂuid vortex

.o T
SIn“ —

A

do ¢ COS?
dd N 2T EH tan2

N D

MM, C. Manuel and B. A. Sa'd, Phys.Rev.Lett. 101 (2008) 241101
26



Acoustic vs GR

e The sound waves propagation can be described as that of a scalar
field in an emerging GR background

® The background however does not obey the Einstein
equations, it indeed obeys the Euler equations!

One can certainly calculate the Ricci and Einstein tensors of the fluid
using the acoustic metric.
However, they do not satisfy the Hilbert-Einstein equation.



Schwarzschild acoustic metric?

oM oM\ !
ds? = — (1 _ —> dr® + (1 _ —> dr? + r2(d6? sin2 0de?)

r

r

Schwarzschid radius R, = 2M

Fluid with
radial flow

Does the fluid analog exist?



Acoustic metric

4 )
ds? = L ( (2 — v?)dt? + 2v - dx dt + dr® + r*(d§* + sin? 0d¢2))
Cs
- J

Painleve’—Gullstrand representation of Schwarzschid metric

[

\_

2GM
d82:—(1— G

r

)dt2i

2GM

(A

drdt + dr?® + r?(d0? + sin® 0d¢?)

\

J

VX ——

1

r

divergent flow at the origin

Abandon the 3D spherical geometry



Hawking radiation

S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975)

W. Unruh, Experimental black hole evaporation, Phys.Rev.Lett. 46, 1351 (1981).



1 o o o
Black Hole (BH) v g Hawking emission
|‘ \@‘
' 3
inside outside
quantum
tunneling
vacuum
fluctuation

See for instance
Parikh, Wilczek Phys.Rev.Lett. 85 (2000) 5042



BH thermodynamics
A particle/nuclear physics perspective

WKB tunneling amplitude 1" ~ o—2ImS

Fout

where S = J p,dr using the geodesic equation Im S = 4z M

Fin

[ T ~ e—SﬂMa) — e—a)/T T — 1 J

dM
BH entropy variation  dS =—— =— = 38zMdM

AzR> A
Area law S =47M? = 25 :Z




A dim emission

hc’ M
— ~ 6 X — | K
g M M 1
T = — g=—=—=—
27 R? 4AM? 4M

=

2M

r

1__>'

H

If an acoustic hole is realizable and if it emits the Hawking radiation

is it detectable?

By analogy, the temperature of an acoustic hole

T ~

Boson isotope with a
large mass: °'Rb

mc? ~ 107°K

T =

1 d|c,— V]|

27 on

The speed of sound is small
c, ~ mms—1




Quick recap

To have an horizon we need a transonic flow

vV >cC

V=_c S

\)

It cannot be 3D

® We need to embed quantum effects
® Measure a dim phonon emission

® How to avoid turbulence? Use a Bose-Einstein condensate!



Bose-Einstein condensate (BEC)

It 1s a coherent state of matter with a “thermodynamically” large number of particles
in the same quantum state

BOSONS@ low temperature in a potential well

— 0 0 @ A

00 0@ @

—-0—@ ®

—0-0—— @
o o
T >T. T ~T. "<

( )
Requirements:

1. Particles must be bosons
2. Cold system: A fight between thermal disorder and quantum coherence
3. Particles must be stable

\. v,
24§




Ultracold atoms in an optical trap

b
Yot § R
RO

%%
RO
RS O

(AN w""f \ &
\ 4.“'5

%95

M. Matthews JILA

Velocity distribution of ’Rb atoms T. ~ 200 nK

1. 8"Rb is bosonic

2. can be cooled

3. has a lifetime of about 1010 years (the experiment lasts ~ 10°s)




Quantum effects

Quantum effects in the analog picture

fluid velocity gradient I

Vv < Cqg V = Cg V > Cq
outside ' inside
o» ¢
Horizon

The phonon to escape has to do quantum tunneling



Setup: trapped BEC condensate

horizon
region =0,

CS=C1>V CS=C2<V

Carusotto et al New J. Phys. 10 103001 (2008)

Instead of changing the velocity, change the speed of sound



Detection strategy

The phonon emission perturbs the system producing long-range density
correlations

Parametric plot of the density-density correlation function

120

100

emitted phonons 80
60

-50 0 50 100
x/§1
Carusotto et al New J. Phys. 10 103001 (2008)



Experimental observation

experiment numeric

0.20

10.15

10.10

0.05

0.00

-0.05

-0.10

-0.15

black hole position effect of phonon emission on the density

Image obtained by 4600 repetitions of the experiment

Fitted Hawking temperature ~ 107K

Steinhauer, Nature Phys. 12 (2016) 959



Kinetic theory

From GR

R. W. Lindquist, Annals of Physics 37, 487 (1966).
J. Stewart, Lecture Notes in Physics, Lecture Notes in Physics No. v. 10 (Springer-Verlag, 1969).

To the analog model

MM and C. Manuel, Phys.Rev.D 77 (2008) 103014
MM, D. Grasso, S. Trabucco and L. Chiofalo Phys.Rev.D 103 (2021) 7, 076001



Lagrangian formulation

Consider the Lagrangian for a scalar hield & = Z(¢,0,¢)

background “phonon”
Scale separation o(x) = Po(x) + €p1(x)

long-wavelength “short-wavelength”

Expand the action

e [ 4 [ 0°L ( 0°L 0°L ) ]
Si = 510l + 5 | 40 | s avgataan ™ %0+ (Gagoan ~ G009 )

W_/

Phonon’s action S|¢1] = /d4$\/7( 70, 910,01 — M(§O¢1¢1)

42



Phonon distribution

Since phonons are bosons and are emitted at a temperature T we
expect that they have a Bose-Einstein distribution f

of

ox“

of
op?

Solution of Llf]=p“ — T Zypﬂ p’ = Cl[f]

for C[f] = 0

Assuming fx,p) =

eXp(p'uﬁ,u) -1

Pr,+ P, =0 solution pr=(p,0)



Thermodynamics

Knowing the distribution function we can obtain the thermodynamics

distribution function

~

b= | pH
Phonon number e [P f(x,p)dP “—— integral measure

Energy momentum tensor TI’)’h” = J ptp* f(x,p)dP

Entropy sgh = — Jp“ [f Inf—(1+f)In(l +f)] dP

44



Transport of “phonon” number

Covariant conservation 9,1y — / C|fldP

collision integral

1

V=9

1 Ocg
cs OV

az/\/j —

Where I, =

We keep C[f]=0

Change in the number of phonons due to the background non uniformity!



Hawking temperature

radius variation
due to phonon
emission

A

Associate an entropy to the sonic hole S = 22
C

. : C 1 Fu
Entropy variation due to horizon shrinking AS, = 2JZ'EA7‘H

C

The phonon emission results in an entropy loss of the horizon

46



The entropy flux

The entropy lost by the horizon is gained by the phonon gas

ASph —_ ASH

The actual entropy flux

From the Fluid q To the Phonon gas

by means of the horizon

There are dissipative processes localized at the horizon

47



Entropy balance

: "H
Entropy loss of the fluid ASy = 27rL—gArH
Entropy gain of the phonon gas = dnrg d, s, Ary
/ \ .
number of degrees of freedom Sph = 612Cx

| c,— | v|
-5 e 7= ({0



Conclusion

@ There is a large number of physical
systems linked by analogies

@ We can use them to solve some
problems or to reproduce phenomena of
unreachable systems

® We focused on Hawking radiation in
superfluids, but this was just an example

49



your attention!

massimo@Ings.infn.it
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Not only fluids

10.
11.

12.

Dielectric media: A refractive index can be reinterpreted as an effective metric, the Gordon metric. (Gordon [2],
Skrotskii [3], Balazs [4], Plebanski [5], de Felice [6], and many others.)

. Acoustics in flowing fluids: Acoustic black holes, aka “dumb holes”. (Unruh [7], Jacobson [8], Visser [9], Liberati

et al [10], and many others.)

Phase perturbations in Bose—Einstein condensates: Formally similar to acoustic perturbations, and analyzed
using the nonlinear Schrodinger equation (Gross—Pitaevskii equation) and Landau—Ginzburg Lagrangian; typical
sound speeds are centimetres per second to millimetres per second. (Garay et al [11], Barceld [12] et al.)

. High-refractive-index dielectric fluids (“slow light”): In dielectric fluids with an extremely high group refractive

index it is experimentally possible to slow lightspeed to centimetres per second or less. (Leonhardt—Piwnicki [13],
Hau et al [14], Visser [15], and others.)

Quasi-particle excitations: Fermionic or bosonic quasi-particles in a heterogeneous superfluid environment.
(Volovik [16], Kopnin—Volovik [17], Jacobson—Volovik [18], and Fischer [19].)

Nonlinear electrodynamics: If the permittivity and permeability themselves depend on the background elec-
tromagnetic field, photon propagation can often be recast in terms of an effective metric. (Plebanski [20],
Dittrich—Gies [21], Novello et al [22].)

Linear electrodynamics: If you do not take the spacetime metric itself as being primitive, but instead view the
linear constitutive relationships of electromagnetism as the fundamental objects, one can nevertheless reconstruct
the metric from first principles. (Hehl, Obukhov, and Rubilar [23, 24, 25].)

Scharnhorst effect: Anomalous photon propagation in the Casimir vacuum can be interpreted in terms of an
effective metric. (Scharnhorst [26], Barton [27], Liberati et al [28], and many others.)

Thermal vacuum: Anomalous photon propagation in QED at nonzero temperature can be interpreted in terms
of an effective metric. (Gies [29].)

“Solid state” black holes. (Reznik [30], Corley and Jacobson [31], and others.)

Astrophysical fluid flows: Bondi—Hoyle accretion and the Parker wind [coronal outflow] both provide physical
examples where an effective acoustic metric is useful, and where there is good observational evidence that
acoustic horizons form in nature. (Bondi [32], Parker [33], Moncrief [34], Matarrese [35], and many others.)

Other condensed-matter approaches that don’t quite fit into the above classification [36, 37].
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