JUNO experiment and the neutrino mass hierarchy measurement

Alessandro Paoloni

GSSI Astroparticle Physics Colloquia

24th November 2021

Neutrino oscillation landscape

Neutrino flavor oscillation induced by quantum mechanics. Three neutrino flavors in weak interaction CC coupling v_{α} (α =e, μ , τ). v_{α} are linear combinations of neutrino mass states vi (i=1,2,3), eigenstates for vacuum propagation. The mixing matrix is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} c = \cos 9 \\ s = \sin 9 \end{bmatrix}$$

Majorana phases omitted because unobservable in neutrino oscillations.

$$\begin{array}{l} \text{Oscillation probability} \quad P_{\alpha \rightarrow \beta} = \delta_{\alpha \beta} - 4 \sum_{i>j} \operatorname{Re}(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin^2 \left(\frac{\Delta m^2_{ij} L}{4E} \right) \\ \text{in vacuum:} \\ + 2 \sum_{i>j} \operatorname{Im}(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin \left(\frac{\Delta m^2_{ij} L}{2E} \right) \end{array}$$

Many experiments have observed neutrino oscillations..... Their results imply that neutrinos are massive with not degenerate masses.

Open issues in neutrino physics

Nowadays, 5 parameters well (few %) measured:

- $\Delta m_{21}^2 \approx 7.4 \ 10^{-5} \ eV^2$
- |∆m²₃₁| ≈ 2.5 10⁻³ eV²
- $\sin^2 \theta_{12} \approx 0.3$
- $\sin^2 \theta_{23} \approx 0.5$
- $\operatorname{Sin}^2 \theta_{13} \approx 0.02$

Global fit papers: ArXiv 2006.11237 (Valencia group) ArXiv 2007.14792 (Schwetz, Maltoni et al.) ArXiv 2107.00532 (Lisi, Capozzi et al.)

But still open issues:

- •Neutrino mass ordering (normal, inverted) and absolute value?
- •Mass mechanism and why are so low ?
- •CP violation (δ) and $\theta_{_{23}}$ octant degeneracy ?
- •Neutrino Dirac or Majorana particle (neutrinoless double β decay) ?
- •Other BSM physics: sterile neutrinos, Non Standard Interactions, CPT....

Neutrino mass hierachy measurement

Observe interfence effects of oscillations driven by $\pm \Delta m_{31}^2$ and those driven by other quantities of known sign: 1) Δm_{21}^2 (medium baseline reactor, as JUNO) 2) $G_F N_e E$ (v-matter effects in atmospheric and Long-Baseline accelerator experiments).

Fit measured neutrino spectrum for the determination of one (or more) parameter(s) assuming NO or IO, and compare χ^2_{min} (IO) with χ^2_{min} (NO).

 Δm_{ee}^2 combination of Δm_{31}^2 and Δm_{32}^2 introduced for reactor neutrino analysis.

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

$$|-|\Delta m_{\mu\mu}^2| = \pm \Delta m_{21}^2 (\cos 2\theta_{12} - \sin 2\theta_{12} \sin \theta_{13} \tan \theta_{23} \cos \delta)$$

Sign dependent on NMO

Neutrino mass hierachy measurement

 Δm_{31}^2 oscillation amplitude interference with Matter Effect or Δm_{21}^2 amplitude

Neutrino mass hierachy measurement perspectives

Caveat:

The sensitivities are from one of the first phenomenological papers on the matter. The sensitivities are estimated by its authors and are not the ufficial ones from collaborations.
 Experiments and starting dates are out-dated. Look only at the NMH sensitivity vs time for different techniques.

3) **NOvA** is running (as **T2K**). **JUNO** fully funded: detector completion before end of 2022. **HyperK/T2HK, ORCA** and **DUNE** approved, but completion foreseen years after JUNO start.

Neutrino mass hierachy measurement perspectives

Long baseline experiments: band reflects different δ (CP violation) phase values. **Atmospheric neutrino experiments**: band reflects θ_{23} between 40° and 50°.

Asimmetry between Normal and Inverted hierarchy sensitivity. **JUNO**: energy resolution between 3% and 3.5% at E=1 MeV (no $\delta \in \theta_{23}$ dependence).

Sinergy JUNO-Atmospheric/Long-Baseline v_{μ} disappearance experiments, 5 σ at reach in 2–7 years: ArXiv:1911.06745 - PINGU+JUNO, ICECUBE upgrade (7 near strings)+JUNO

ArXiv:2108.06293 – ORCA + JUNO 7

ArXiv:2008.11280 - Juno+NovA+T2K

Nuclear Reactors as antineutrino source

Nuclear reactors are a pure anti- v_e source from β -decay of fission daughters. Low energy: E < 10 MeV.

Flux: $\approx 6 \text{ anti-}v_{e} \text{ per fission. } 2*10^{20} \text{ anti-}v_{e} \text{ per Gw}_{th}$.

Commercial reactors are powered with a fuel mixture (^{235}U , ^{239}Pu , ^{238}U , ^{241}Pu). A precise estimation of anti- v_e flux on the experimental site requires knowledge of fuel composition evolution in time.

Detected anti-v_e spectrum: $S(E) \sim \sum_{j} f_{j}(E) * S_{j}(E) * P_{ee}(E) * \sigma(E) * \epsilon(E)$ $f_{j}(E) = \text{isotope j fission fraction}$ $S_{j}(E) = \text{isotope j fission spectrum}$ $P_{ee}(E) = \text{oscillation survival probability}$ $\sigma(E) = \text{Inverse Beta Decay cross section}$ $\epsilon(E) = \text{selection efficiency}$

Reactor neutrinos predictions

Summation (ab initio) method: The spectrum is derived using the nuclear database for thousands of β nuclides. 10% uncertainty. Conversion method: Based on measurement of electron energy spectrum, fitted with >30 virtual branches. 2.5% uncertainty.

Used by most reactor neutrino experiments. Re-analized in 2011 (+5% flux increase).

Other papers (not exhaustive list): 9 Phys.Rev.C 83 054615 (2011) (Mueller,Lasserre et al.), Phys.Rev.C 84 024617 (2012) (Huber)

Reactor neutrinos predictions

Antineutrino Energy (MeV)

Summation (ab initio) method: The spectrum is derived using the nuclear database for thousands of β nuclides. 10% uncertainty. **Conversion method:**

Based on measurement of electron energy spectrum, fitted with >30 virtual branches. 2.5% uncertainty.

Used by most reactor neutrino experiments. Re-analized in 2011 (+5% flux increase).

Other papers (not exhaustive list): 10 Phys.Rev.C 83 054615 (2011) (Mueller,Lasserre et al.), Phys.Rev.C 84 024617 (2012) (Huber)

Reactor neutrinos anomalies

Recent reactor neutrino experiments in disagreement with model predictions:

- Integrated flux deficit: so called Reactor Anti-neutrino Anomaly, RAA. sterile v ?
- Spectral shape difference: 5 MeV bump.
- Individual isotope spectra normalization in fuel evolution: from IBD rate vs time.

Neutrino oscillation measurements safe (near detectors, oscillation pattern). See papers by Daya Bay (largest statistics), RENO, Double CHOOZ and other experiments. As well as arXiv:2110.06820 (C. Giunti et al.) for a comparison of different model predictions.

Reactor neutrinos IBD

• Antineutrino detection through IBD (Inverse Beta Decay).

Distance to Reactor (m)

- Relatively large cross section
- Background rejection using coincidence between positron (prompt) and neutron (delayed) signals
- $E_{prompt} = E_v 0.8$ MeV (neglecting n recoil kinetic energy)

History and perspectives of reactor neutrino physics:

- Neutrino discovery (Reines & Cowan, 1956)
- θ_{12} and Δm_{21}^2 meaurement (KamLAND, 2003)
- Precision θ_{13} measurement (Daya Bay, RENO, Double Chooz)
- Neutrino mass hierarchy around the corner (JUNO)

Reactor antineutrino disappearance

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

 $\begin{array}{rcl} \Delta m_{31}^2 &=& \Delta m_{32}^2 + \Delta m_{21}^2 \\ \mathrm{NH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \mathrm{IH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{array}$

Oscillation probability independent of CPV phase and θ_{23} . 13 Also matter effect negligible (@L=53 km), at least for NMH measurement.

JUNO experiment location

JUNO (Jiangmen Underground Neutrino Observatory) is a multipurpose anti- v_{a} detector near Kaiping (South China).

Baseline (\approx 52.5 km) from Yangjian and Taishan reactors (8 cores) optimized in the region of maximum Δm_{21}^2 -driven oscillations.

Total power: 26.6 Gwth.

Detector installation expected to finish in 2022.

JUNO experiment detector concept

10⁵ events required in 6 years of data taking: 20 ktons of liquid scintillator in a sphere of about 35 m diameter.

Energy resolution $3\%/\sqrt{E(MeV)}$:

• High liquid scintillator light yield and transparency.

• High photocatode coverage and photon detection efficiency.

Energy scale uncertainty < 1%:

- Calibration systems
- Stereo-calorimetry

JUNO will be the largest scintillator detector ever built !

Experiment	Daya Bay	Borexino	KamLAND	JUNO
LS mass (tons)	20 /detector	~300	~1,000	20,000
Nb of collected p.e. per MeV	~160	~500	~250	~1200
Energy resolution @ 1 MeV	~7.5%	~5%	~6%	~3%

JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania
Chile	PCUC	China	USTC	Italy	INFN di Frascati
Chile	SAPHIR	China	U. of South China	Italy	INFN-Ferrara
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		

Collaboration established in 2014. At present 77 institutions, more than 600 collaborators.

JUNO signal and background

Preliminary selection cuts:

- Fiducial volume: R<17.2 m
- Prompt energy: $0.7 \text{ MeV} < \text{E}_{p} < 12 \text{ MeV}$
- Delayed energy: $1.9 \text{ MeV} < \dot{\text{E}}_{d} < 2.5 \text{ MeV}$
- Prompt-delayed time difference: $\Delta T < 1$ ms
- Prompt-delayed distance: $\Delta R < 1.5 \text{ m}$

	Efficiency (%)	IBD Rate (day^{-1})
All IBDs	100	57.4
After Selection	82.2	47.1

JUNO simulation preliminary

• Muon VETO criteria for rejection of cosmogenic ⁹Li/⁸He background.

After selection cuts:

Background	Rate (day^{-1})		
Geo-neutrinos	1.2		
Accidentals	0.8		
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	1.4		
Fast neutrons	0.1		
$^{13}\mathrm{C}(lpha,\mathrm{n})^{16}\mathrm{O}$	0.05		

JUNO simulation preliminary

JUNO Physics reach (1)

JUNO designed to reach better than 3 σ precision on MH determination. But also other measurements possible:

• Oscillation parameters determination (θ_{12} , Δm_{21}^2 , Δm_{31}^2) at sub-% level (limited by systematics).

JUNO Physics reach (2)

JUNO designed to reach better than 3 σ precision on MH determination. But also other measurements possible:

- Oscillation parameters determination (θ_{12} , Δm_{21}^2 , Δm_{31}^2) at sub-% level.
- Neutrino observation from natural sources and exotic searches (Lorentz-Invariance-Violation, Proton decay).

More details in J. Phys. G43 (2016) n.3, 030401 8B Solar neutrino paper: Chin. Phys. C45 (2021) Atmospheric neutrino paper: Eur. Phys. J. C 81 (2021) 887

JUNO Experiment

700 m overburden

Calibration box

Water Cerenkov veto: 35 kton of water and 2400 20" PMTs

Earth magnetic field compensating coils: residual field < 10%

Pool dimensions:

- Height 44 m
- Diameter 43.5 m

Jop Tracker: 3 layers of plastic scintillator strips (from OPERA)

Central detector: 20 kton of Liquid Scintillator contained inside an acrylic sphere.

Stainless Steel Truss: In water, holding 17612 20" PMTs 25600 3" PMTs (78% photo-coverage)

JUNO CDR: arXiv:1508.07166 (2015)20 Update in arXiv:2104.02565

Civil engineering status

External campus 28 January 2021

Water pool 30 September 2021

Liquid scintillator

JUNO liquid scintillator composition: LAB + PPO (2.5 g/l) + bis-MSB (3 mg/l)

LAB/scintillator purification in four steps:

- Al₂O₃ filtration column (optical properties improvement)
- Distillation (heavy elements removal/transparency improvement)
- Water extraction (U/Th/K radioisotopes removal)
- Steam/Nitrogen stripping (Gaseous impurities -Ar,Kr,Rn- removal)

Dedicated underground detector (OSIRIS) for purity measurement

Jnderground

 Reactor neutrinos $^{238}\text{U}/^{232}\text{Th} < 10^{-15} \text{ g/g}$ 40 K < 10⁻¹⁶ g/g ²¹⁰Pb < 10⁻²² g/g Solar neutrinos $^{238}\text{U}/^{232}\text{Th} < 10^{-17} \text{ g/g}$ 40 K < 10⁻¹⁸ g/g 210 Pb < 10⁻²⁴ g/g

OSIRIS Detector

Online Scintillator Internal Radioactivity Investigation System

See also Eur. Phys. J. C (2021) 81:973

 10^{3}

Liquid scintillator facilities status

Distillation system assembly

LS ground hall, LN2 towers and 5 kt LAB tank ready on external laboratory. First LAB batches delivered. Al₂O₃ filtration plant installed.

Distillation and stripping plants delivered. Installation of underground systems ready to start.

Stripping system assembly

Central detector: steel truss and acrylic vessel

- The Stainless Steel Structure is connected to the acrylic vessel and it is the support of the PMTs.
- Rooted on the water pool concrete floor
- Supporting bars to hold the acrylic vessel
- Mechanical precision for 3 mm PMT clearance
- Earthquake safe structure
- Steel radiopurity U/Th/K \leq ppb

The acrylic vessel built by bulk polymerization of 265 panels (12 cm thickness) for a total weight around 600 tons.

- Maximal stress < 3.5 MPa
- Thermal expansion matching: $21 \degree C \pm 1 \degree C$
- Transparency > 96%
- Acrylic radiopurity U/Th/K < 1 ppt

See JHEP11 (2021) 102 for radioactvity control strategy in JUNO.

Large PMT system

JUNO will use 20" Photomultipliers as its main photodetection system. Water-proof potting (voltage divider) and implosion protection.

- 15000 MCP-PMTs from NNVT (Microchannel plates) with larger PhotoDetection Efficiency (energy measurement)
- **5000 dynode PMTs** from Hamamatsu with better Transit Time Spread (vertex reconstruction and tracking in Central Detector)

From Hamamatsu R12860 datasheet

Large PMT performances

Large PMT production and testing at PanAsia facility (ZhongShan) finished. Design PDE value (critical for mass ordering measurement) reached.

Large PMT electronics

The Large PMTs are read-out with full waveform digitization and operated (HV setting) independently. The signal is digitized near the voltage divider.

Dynamic range: 1-4000 pe Noise: 10% @ 1 pe Resolution: 10% @ pe , 1% @ 100 pe Failure rate: <0.5% over 6 years

Under Water Electronics

Dry Electronics

Small PMT system

JUNO will use also 3-inch PMTs as a complementary photo-detection system to improve the control of systematics and increase the dynamic range in photon-counting mode.

25600 PMTs from HZC company (Hainan, PR China). Production and test completed.

128 PMTs connected to one underwater box, to reduce the electronics channel number. FE electronics based on CATIROC chip.

Independent physics measurements:

- Muon tracking (+ shower muon calorimetry)
- Solar neutrino oscillation parameters measurements
- Supernovae neutrino read-out

Calibration system

To keep energy scale uncertainty below 1%, **four calibration systems**: **Automatic Calibration Unit (ACU):** 1D along z-axis. **Cable Loop System (CLS):** 2D plane inside vessel. **Guide Tube (GT):** 2D plane inside vessel. **Remotely Operated Vehicle (ROV):** 3D anywhere inside vessel.

Source list Type Sources/Processes Radiation 137Cs 0.662 MeV γ ^{54}Mn 0.835 MeV γ ^{60}Co $1.173 + 1.333 \; {
m MeV}$ γ 40 K 1.461 MeV γ 68 Ge e^+ annihilation 0.511 + 0.511 MeV ²⁴¹Am-Be neutron + 4.43 MeV ($^{12}C^*$) n, γ 241 Am- 13 C neutron + 6.13 MeV ($^{16}O^*$) n, γ $(n,\gamma)p$ 2.22 MeV γ $(n,\gamma)^{12}C$ 4.94 MeV or 3.68 + 1.26 MeV γ

System strategy:

- Different sources (LS non-linearity)
- Tunable light source: electronics non-linearity
- Many locations (detector non-uniformity) More details in JHEP 03, 004 (2021)

Veto system

VETO system to handle the cosmogenic background Made by a **water Cerenkov** and a **Top Tracker**. **Earth magnetic shielding coils** are also part of the system.

Water Cerenkov Detector

- Around the Central Detector
- Shields environment radioactivity and neutrons induced by cosmic rays
- Instrumented with 2400 20" PMTs
- 35 kton ultra-pure water with circulation
- Muon efficiency > 99%

Top Tracker

- Made of scintillator strips refurbished from OPERA.
- Already on JUNO site.
- Precise muon tracking of 1/3 of the muons crossing the Central Detector
- New electronics (based on MAROC3 chip)

TAO

(Taishan Anti-neutrino Observatory)

Measure anti-neutrino spectrum at % level to provide:

- a model-independent reference spectrum for JUNO
- a benchmark for investigation of the nuclear database

2.6 ton (1 ton FV) Gd-doped LS detector at 30 m from a Taishan reactor core (4.6 GW) Full coverage SiPM read-out (50% PDE) Liquid Scintillator and SiPM operated at -50 °C Effective light yield: 4500 p.e./MeV \rightarrow energy resolution ~ 1.8%/ \sqrt{E} (MeV)

TAO CDR: arXiv:2005.08745

Summary and Conclusions

Neutrino mass hierarchy measurement just around the corner with different experimental techniques.

Reactor neutrino disappearance will play an important role (no $\theta_{_{23}}$ and

 $\delta_{_{CP}}$ dependence).

JUNO will be the largest reactor anti-neutrino detector ever built (20 kton of liquid scintillator) with an unprecedented energy resolution (3% @ E=1 MeV).

Civil engineering on the way (water pool civil construction completed, surface laboratory active).

Production/assembly of detector components going on.

Installation is starting, detector completion expected before the end of 2022.

The experiment has been designed for a vast research program in

- particle physics: neutrino mass ordering and sub-% precision measurement of oscillation parameter ($\theta_{12}, \Delta m_{21}^2, \Delta m_{31}^2$)
- Astrophysics/Geophysics (neutrinos from natural sources)