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Dark Matter 
Introduction
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These observations shows 
that there is more mass than 
measured. 

Composition of the Universe

1. Galaxy’s rotation curve         2. Motion of galaxies

3. Gravitational Lensing         4. CMB measurements

❖ Observations from galactic to cosmological scales indicate 
that primary source of gravity is from Non Baryonic Mass

❖ It is Neutral
❖ Must be stable or have lifetime more than age of the Universe
❖ Must be weakly interacting

WIMPs Detection Challenge
❖ Low Recoil Energy

➢ Low energy threshold detector
❖ Low event rate

➢ Large mass
➢ Long term stability

❖ Background much higher than event rate
➢ Background control (Cleanliness, shielding, ..)
➢ Underground Operation (Reduces Muon 

induced neutron)
➢ Electron/Nuclear recoil Discrimination
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CYGNO/INITIUM 
Detector
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❖ Gaseous TPCs are 
inherently a 3D detector

❖ Tracking
❖ Head tail asymmetry
❖ dE/dX recognition
❖ Gas Flexibility

Drift Direction

Amplification 
Region  + Readout
(sCMOS + PMT) 

X-Y + Energy

Z + Energy

https://iopscience.iop.org/article/10.1088/1742-6596/1468/1/012039
https://iopscience.iop.org/article/10.1088/1748-0221/15/07/C07036

6

❖ CYGNO uses He:CF4 gas 
mixture

❖ 3 GEM stack is used for 
charge amplification

❖ INITIUM is a part of 
CYGNO project which 
focuses on the development 
of TPCs with negative ion 
drift using SF6 gas

https://iopscience.iop.org/article/10.1088/1742-6596/1468/1/012039
https://iopscience.iop.org/article/10.1088/1748-0221/15/07/C07036


Data analysis and 
simulation
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Digitization
❖ Interaction of the particles 

with gas is simulated using 
either GEANT4 (for ER) or 
SRIM (for NR)

❖ These tracks are then 
projected to a 2D plane  
and detector effects are 
also added (diffusion)

❖ Actual camera noise is 
added to the diffused track 
to obtained the simulated 
image of the track(a) Track w/o   (b) Track after         (c)  Noise        (d) Digitised 

     diffusion        diffusion       track
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Reconstruction

❖ Images are reconstructed with a density based algorithm 
called IDBSCAN

❖ Outputs of IDBSCAN are fed to Superclustering algorithm 
which joins the different cluster obtained from IDBSCAN to 
form a supercluster around the complete track

❖ Two Superclustering algorithms that we used are GAC ( 
Geodesic active contour) and Chan Vese

❖ Chan Vese works better than GAC in finding the 
supercluster for electron recoils.

❖ I worked on optimization of both these algorithms

https://inspirehep.net/literature/1805117 9
Reconstructed with GAC

Iterations of IDBSCAN

https://inspirehep.net/literature/1805117


Reconstruction efficiency and Energy Resolution with CV

❖ Reconstruction efficiency is 100% at 6 keV and above for both ER and NR.
❖ Energy Resolution of the data at 6 keV is around 14% and for MC at 6 keV it is around 14%. 10



Discriminating 
Variable

11



Variables

❖ Standard Deviation of Charge Distribution 2D(SDCD_2D):

➢ Electron recoils (ER) are longer, so the spread of charge is higher for ER when compared to 
Nuclear recoils (NR).

❖ Charge Uniformity 2D (ChargeUnif_2D):
➢ For each point within the charge distribution, find the average distance to all other points.
➢ ChargeUnif_2D is standard deviation of values computed in step 1.
➢ Electron recoils tend to have charge distribution which is dense in some areas and sparse in 

other areas, while nuclear recoils are generally uniform.
❖ Maximum Density 2D (MaxDen_2D):

➢ MaxDen is the value of most intense pixel from the image after rebinning it by a factor 2.
➢ Electrons lose their energy at a slower rate than nuclei, this suggests that electron recoils are 

travel greater distance between interactions resulting in more sparse energy distribution.

Observables for recoil identification in gas 
TPCs
arXiv:2012.13649v1
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Variables

❖ Cylindrical Thickness 2D (CylThick_2D):
➢ For each charge, calculate the squared distance from the principal axis.
➢ CylThick is the sum of all squared distances.
➢ It is a measure of how much a recoil track deviates from the trajectory approximated by the 

principal axis.
➢ Electrons experience far more scattering compared to nuclei, so principal axis approximates 

NR’s trajectory much more accurately than it does for ER.
❖ Length Along Principal Axis 2D (LAPA_2D):

➢ Project all the points in the charge distribution on to the principal axis.
➢ LAPA is the difference between maximum and minimum projected value.
➢ ER are longer compared to NRs, therefore projection is also longer. 
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Variables

❖ eta:
➢ MaxDen_2D divided by length (found by skeletonization)

❖ Light Density (delta):
➢ Integral of the track divided by number of pixels in the track.
➢ NR deposit higher energy over a short distance, therefore Light Density is higher for NR.

❖ Slimness:
➢ Ratio of minor over major axis of the ellipse which bounds the track.
➢ Electrons recoils suffer more scattering, so minor axis of the bounding ellipse is bigger when 

compared to NR which are generally straight.
❖ Skeleton length (thin_track):

➢ Length in pixels found by thinning procedure.

GEM-based TPC with CCD Imaging for Directional Dark 
Matter Detection
arXiv:1510.02170v3
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E Baracchini et. al., “Identification of low energy 
nuclear recoils in a gas TPC with optical readout”, 
arXiv:2007.12508v1



Length with Skeletonization

60 keV 
He recoil

(a) Supercluster (b)Track  (c)Thresholded track         (d) Skeleton 

30 keV 
electron 
recoil

Typically, directional detector use the diffused track length as length estimate, but that the REAL track 
length is more discriminating because is not affected by the diffusion. 15



Length comparison using different technique

MC Length: Length from MC simulation of track   Skeleton: Length found by skeletonization

Distance formula : Length using 2 point distance formula     Reconstructed length: Major axis of the ellipse bounding the track

MC Length 
[mm]

Distance 
formula 2D

Skeleton 
(After Recon.)

Reconstructed 
length [mm]

10 keV NR 0.25 0.25 0.61 7.4

30 keV NR 0.6 0.6 0.76 8.8

300 keV NR 2.8 2.35 2.05 11.22

30 keV ER 6.68 8.76 7.07 13.48

60 keV ER 21.43 29.53 20.1 24.5

100 keV ER 53.14 71.19 28.88 22.8

Reconstructed 
length is the 
current official 
length used in 
our analysis.

16



Some Variables in 2D and 3D

❖ In 3D, we can put a selection on energy and then other selection on the variables itself to 
increase the discrimination.

Variables in 2D

Variables in 3D

   eta vs CylThick    delta vs SDCD            MaxDen vs LAPA
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Discrimination of ER 
and NR using Neural 
Networks
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Artificial Neural Networks

X =  𝜮(Weights * inputs)
Output = f(X)
Where, f is the activation function

ErrorO = Actual - Predicted
Errorh  = WeightsT * ErrorO
Where, O refers to output layer 
and h refers to hidden layers

new Weights = old Weights - 𝛼 .

Where,  𝛼 is the step size (learning 
rate).
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Feedforward Patternnet for our problem

❖ Pattern net with 3 hidden layers 
of size [10,10,10] neurons were 
used.

❖ Data division [90:5:5]
❖ Training algorithm

➢ Levenberg Marquardt
❖ Loss: MSE
❖ Inputs: LAPA_2D, skel_track, 

SDCD_2D, CylThick_2D, 
MaxDen_2D, eta, sc_size, 
sc_nhits, sc_integral, sc_length, 
sc_width,delta, slimness

❖ Output: Nuclear recoil and 
Electron Recoil class

ER

NR

LAPA_2D

SDCD_2D

.

.

.
Slimness

❖ Energy Range : 1-40 keV for both ER and NR
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Result of DNN (ROC and CM)

ER
NR

1 - ER class Predicted = Output
2 - NR class True = Target 21Preliminary



Result of DNN 

E Baracchini et. al., “Identification of low energy nuclear recoils in a gas TPC 
with optical readout”, arXiv:2007.12508v1

(a)

(b)

❖ Figure (a) is distribution of 
delta variable for NR (Red: 
1-40 keV), ER (Blue: 1-40 
keV), ER (Green: 6 keV).

❖ Table (b) is the signal and 
background efficiency with 
different thresholds (data 
without any preselection).

Threshold Ɛs
total

[1-40] keV
ɛB

total

[1-40] keV

0.995 0.50 0.005

0.998 0.40 0.001

22Preliminary

[1-40] keV [6] keV



Convolutional Neural Networks

❖ Layers: 3 Convolutional layers
❖ Kernel size: 3
❖ Activation : ReLU 
❖ Optimizer : Adam

❖ Loss function: Cross Entropy
❖ Input : Images (2304x2304x1)
❖ Energy range: 1-100 keV
❖ Output : NR and ER class
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Result of CNN with input as simulated images

❖ This work was done with Gustavo Viera Lopez from Computer Science.

❖ Results of the classification is very 
similar to the results of the DNN with 
discriminating variables. 

❖ ER classification -> 92.3% with DNN
->91.6% with CNN

❖ NR classification -> 95.9% with DNN
      -> 97.6% with CNN

24
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Future Plans
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Future Plans 

❖ Include a larger sample for training (~ 5000 points at each energy sample)

❖ Adding these discriminating variables to a CNN

❖ Building a CNN for reconstruction of the track , and computing the variables 

like energy, length and so on.

❖ Combining the signal from PMT with CNN to obtain  3D track.

❖ Results of these studies will be further used to evaluate the actual 

experimental sensitivity including the expected background.
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Backup Slides
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Timeline of the project
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Noise Simulation

❖ ECDF (empirical cumulative distribution 
function) map for each pixel by reading 
the same pixels from all the images

❖ Then desired number of noise images 
can be generated with these ecdf maps 

❖ These images can be used for 
digitization of the simulated tracks and 
mean and rms of the noise distribution is 
used for noise suppression during the 
process of reconstruction of the images. 
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INITIUM
❖ Electronegative dopant is introduced in the 

gas mixture (like SF6)
❖ Primary ionization electrons captured by 

electronegative gas molecules at O(100) μm
❖ Anions drift to the anode acting as the 

effective charge carrier instead of the 
electrons and reducing both longitudinal and 
transverse diffusion to thermal limit

❖ Presence of multiple charge carriers with 
different mass give rise to difference in time 
signal, because anions with different mass 
drift with different velocities

Reduced Diffusion = Improved Tracking Capability

Start Together But drift at 
            different velocity

https://doi.org/10.1088/1748-0221/13/04/P04022
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CV vs GAC

❖ GAC algorithm looks for the local features (like change in gradient locally).
❖ For ER, energy deposition is not continuous, so GAC fails to reconstruct the complete track. 

❖ 6 keV He NR track 
reconstructed with Chan 
vese (a) and GAC (b) 
algorithm.

❖ Chan vese includes a lot 
of noise around the 
actual track, thus biasing 
the energy estimate.

(a) Chan vese (b)  GAC
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