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Outline

Context:
Superfluid helium, atomic Bose-Einstein condensates

Turbulence:
with and without quantum mechanical constraints
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Quantum fluids

Context:
• Liquid helium, cold atomic gases
• Macroscopic occupation of the ground state (BEC)

Key properties:

• Superfluidity (no viscosity)

• Quantised vorticity
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Quantum vortex line

Macroscopic wavefunction Ψ(x, t) =
√
n(x, t)e iφ(x,t)

Velocity v(x, t) = (~/m)∇φ(x, t), Density n(x, t) = |Ψ(x, t)|2

Circulation is quantised

∮
C
v · dr =

h

m
= κ

A vortex is a hole around which the phase φ changes by 2π
Core size ξ and velocity v = κ/(2πr) are fixed

Density Phase Velocity

Carlo F Barenghi Quantum Turbulence



Quantum vortices vs ordinary (classical) vortices

• Quantum vortices are stable topological defects;
circulation and core radius are fixed

• Classical vorticity: ω = ∇× v (v = velocity)
Circulation and core size are arbitrary.
Vorticity decays (unless it is forced)

Dω

Dt
= (ω · ∇)v + ν∇2ω
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Turbulence

Turbulence consists of vortices
(Leonardo da Vinci 1510)
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Turbulence

Applications:
-Life sciences (blood flow in the aorta)
-Engineering (airflow around wings, air-fuel

mixture in engines)
-Geophysics (oceans, atmosphere)
-Astrophysics (Earth’s and Sun interiors,

interstellar gas)

Challenges:

-Mathematics: the equations, written long ago, are deceptively
simple (singularity problem: the $ 1,000,000 Clay prize)

-Physics: Turbulence is a problem of nonlinear statistical physics:
a huge number of coupled degrees of freedom/length scales
excited simultaneously
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Kolmogorov’s 1941 theory (K41)

The energy spectrum E (k) is the
distribution of kinetic energy Ekin over
the length scales 2π/k (k= wavenumber)

Ekin =
1

V

∫
V

v2

2
dV =

∫ ∞
0

E (k)dk

E (k) = Cε2/3k−5/3

ε = −dEkin/dt (dissipation rate)

C ≈ 1

Re = UD/ν (Reynolds number)

Energy is injected at large scale D, cascades to larger and larger k
in the inertial range and becomes heat at the Kolmogorov scale η.

η/D ≈ Re−3/4
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Turbulence: helium vs atomic vs classical

Helium (SHREK, Grenoble)
Atomic BECs

(Henn & Bagnato PRL 2009)

Seymour Narrows, Vancouver

Classical turbulence,
Grant & al 1961
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Quantum turbulence: how is it generated ?

(Prague) (Paris)

(Grenoble)
(Lancaster)
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Quantum turbulence: what does it look like ?

A small patch of quantum
turbulence in superfluid helium

Cooper, CFB & al

Quantum turbulence in an
atomic BEC

White, CFB & al, PRL 2010
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Quantum turbulence: what does it look like ?

Quantum turbulence in the
quench of a Bose gas

Stagg, Parker & CFB, PRA 2016

Quantum turbulence in a
two-component Bose gas
Takeuchi & al, PRL 2010

Carlo F Barenghi Quantum Turbulence



Turbulence: helium vs atomic BECs vs classical

Compare length scales:
D = system’s size, η = Kolmogorov length,
` = average inter-vortex distance, ξ = vortex core size

Atomic BECs:
D/ξ ≈ 10 to 100
D/` ≈ 1 to 10

Liquid helium (SHREK, Grenoble):
D/ξ ≈ 8× 109

D/` ≈ 104 to 105

Classical turbulence (Grant & al 1961):
D/η ≈ 2.5× 106

Opportunities:
• Liquid helium: more intense than classical
• Atomic BECs: crossover chaos-turbulence
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Kolmogorov spectrum in quantum turbulence

The k−5/3 law has been observed in superfluid helium
at length scales larger than the inter-vortex distance `

Maurer & Tabeling, EPL 1998
at T = 2.3K , 2.08K and 1.4K

Salort & al, EPL 2012

Additional evidence from decay measurements
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Kolmogorov spectrum in quantum turbulence

E (k) ∼ k−5/3 arises from polarisation of vortex lines for k < 2π/`
(Baggaley, CFB & al, PRL 2012)

Total lines: E (k) ∼ k−5/3

Polarised: E (k) ∼ k−5/3

Unpolarised: E (k) ∼ k−1

Classical turbulence:
Total: E (k) ∼ k−5/3

Coherent: E (k) ∼ k−5/3

Incoherent: E (k) ∼ k2

(Farge & al, PRL 2001)
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Turbulent velocity statistics

• Classical turbulence: Gaussian
• Quantum turbulence: power-laws

(Paoletti & al PRL 2008, White & al PRL 2010)
• Cross-over from Gaussian to power-law:
∆ = measurement region, ` = average inter-vortex distance

∆ < ` (left): power-laws ∆ > ` (right): Gaussians

(Baggaley & CFB, PRE 2011, LaMantia & Skrbek, EPL 2014)
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A second kind of quantum turbulence: Vinen turbulence

Another form of turbulence, called Vinen turbulence, has also
been observed in:

• 4He experiment (Walmsley & Golov, PRL 2008)
• 3He experiments (Bradley & al, PRL 2006)
• simulations of Walmsley & Golov’s experiment

(Baggaley, CFB & Sergeeev, PRB 2012)
• simulations of counterflow (T1) turbulence in 4He

(Baggaley, Sherwin, CFB & Sergeev, PRB 2012)
• simulations of thermal quench of a Bose gas

(Stagg, Parker & CFB, PRA 2016)
• simulations of turbulence in atomic BECs

(Cidrim, CFB & Bagnato, PRA 2017)
• simulations of dark matter (Mocz & al, MNRAS 2017)
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Vinen vs Kolmogorov

• Kolmogorov: E (k) peaks at low k , E (k) ∼ k−5/3 for k < δ,
coherent structures, L ∼ t−3/2, Ekin ∼ t−2

• Vinen: E (k) peaks at intermediate k,
E (k) ∼ k−1 at larger k , L ∼ t−1, Ekin ∼ t−1,
velocity correlation decays rapidly with r

Interpretation of Vinen turbulence:
turbulence without a cascade, random-like flow
(CFB, Sergeeev & Baggaley, Sci Rep 2016)
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Vortex reconnections

Without reconnections there would be no turbulence

In quantum fluids vorticity consists
of individual vortex lines, thus
reconnections are isolated events

Are there universal laws of
reconnections ?

Experimental observations of quantum vortex reconnections:
• Bewley & al (PNAS 2008) in superfluid helium
• Serafini & al (Phys Rev X 2017) in atomic BECs
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Vortex reconnections

δ(t) = minimum distance between reconnecting vortex lines

From experiments and simulations we predict and find two scaling
laws: δ(t) ∼ t1/2 and δ(t) ∼ t

Crossover determined by balance between:
(1) interaction of reconnecting vortex strands
(2) individual driving of the vortices

(curvature, density gradients, boundaries/images)

(Galantucci, Parker, Baggaley & CFB, submitted)
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Conclusions: Quantum turbulence

• New physics, and new light onto an old problem

• There seems to be two kinds of quantum turbulence:
Kolmogorov turbulence (the skeleton of classical turbulence ?)
Vinen turbulence (turbulence without a cascade ?)

• Universality of vortex reconnections:
Scaling laws of minimum vortex separation vs time

Reviews of quantum turbulence
In helium: CFB, Skrbek & Sreenivasan, PNAS 2015
In atomic BECs: Tsatsos, CFB & al, Phys Reports 2016
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