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The nonlinear Schrodinger equation

Consider the spatial domain A = T ford = 1,2, 3.
@ Study the nonlinear Schrédinger equation (NLS).

i0rpr(x) = (= A+r)oe(@) + [dyw(z —y)[6:e(y)]* g1 ()
¢o(x) = (x) € H*(A).

@ x> 0andw e L (A) is positive or w = §.

@ Sobolev space H* with norm || || z=(a) = [[(1 = A)*/2 f[|p2(a)-
@ Conserved energy

@) = [ dz(Vo@P + sio)l) + 5 [ dedylot) wlz - ) (6P

— An infinite-dimensional Hamiltonian system.
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Hamiltonian systems

A general Hamiltonian system is comprised of the following.
(1) Phase space I'. We denote its elements by ¢.
(2) Hamilton (energy) function H € C>°(I").
(3) Poisson bracket {-, -} : C>°(I") x C*>=(I") — C>°(I") satisfying
o Antisymmetry : {f,g} = —{9g, [}
o Distributivity : {f +g,h} = {f,h} + {9, h}.
o Leibniz rule: {fg,h} = {f,h}g + f{g,h}.
o Jacobi identity : {f,{g,h}} +{g,{h, F}} +{h,{f,g}} = 0.

The Hamiltonian flow ¢ — ¢, of H on I is determined by the ODE

d
&f(@) = {H, f}(¢+)

for f € C>=(I).
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NLS as a Hamiltonian system

(1) Phase space I = H*(A) for some s € R.
(2) Hamilton function is

H(¢) = /dm(\v¢(m)l2+ﬁl¢(m)|2) +%/dﬂrd?/|</>(ﬂf)l2w(ﬂfﬂ/)\d)(y)IQ-

(3) Poisson bracket is

{6(2),0(n)} = i0(z—y), {o(x),¢(y)} = {d(z),é(y)} = 0.

Hamiltonian equations of motion are given by the nonlinear Schrédinger
equation

i0,60(x) + (A — R)pr(z) = / dyw(z —y) |6 (w)]? be()
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Gibbs measures for the NLS

@ The Gibbs measure d;. associated to H is the probability measure on
the space of fields ¢ : A — C

w(de) == %efH(zb) do, 7 = /efH(@ do.

d¢ = (formally-defined) Lebesgue measure.
@ Formally, dy is invariant under flow of NLS:

(St)epp = p for Sy := flow map of NLS.

@ Difficulty: infinite-dimensional Hamiltonian system.
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Gibbs measures for the NLS: known results

@ Rigorous construction: CQFT literature in the 1970-s (Nelson,
Glimm-Jaffe, Simon), also Lebowitz-Rose-Speer (1988).

@ Proof of invariance: Bourgain and Zhidkov (1990s).

@ Application to PDE: Obtain low-regularity solutions of NLS ji-almost
surely.
Recent advances: Bourgain-Bulut, Burg-Tzvetkov,
Burg-Thomann-Tzvetkov, Cacciafesta- de Suzzoni, Deng,
Genovese-Lucéa-Valeri, Nahmod-Oh-Rey-Bellet-Staffilani,
Nahmod-Rey-Bellet-Sheffield-Staffilani, Oh-Pocovnicu, Oh-Quastel,
Oh-Tzvetkov, Oh-Tzvetkov-Wang, Thomann-Tzvetkov, Tzvetkoy, ...
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The Wiener measure and classical free field

@ Let Hy(¢) := [dz (|Ve(x)|? + k|¢(x)|?). Define the Wiener measure d.,

1
po(ds) = e @ dg, 2y = [e O ag,

0
@ Write a;, := (E(k’) and d2ay, := d Imay d Reay.

—((\k\ +r)|ak|? d2ak
Ho d(l5 H fe c(|k]2+r)|ak|? d2(lk

For ¢ € supp duo, (|k|% + 1)/26(k) has a Gaussian distribution.

¢ = 9" = Z m&m"’”, (gr) = i.i.d. complex Gaussians.
kezd

— Classical free field .
. . a .
@ Series converges almost surely in H'~2-<(A) since for s < 1 — g.

W SE |gk‘2 Ss—
Buol6 I3 = 3 (k2 +1) k(|+) e SRR H1 < oo,

keZa kezZd
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The classical system and Gibbs measures

@ The classical interaction is

W = %/dldy|q§w(1)\2w(i*y)|¢w(y)|2

@ In [0, +00) almost surely if d = 1 and w € L>(T") is pointwise
nonnegative.

@ In this case dy is a well-defined probability measure on 7'/2~=(T") which
satisfies
dp < dpo -

@ For d = 2,3, W is infinite almost surely even if w € L>(T%).
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The classical system and Gibbs measures

@ Perform a renormalisation in the form of Wick ordering. Formally
replace W by the Wick-ordered classical interaction

Wv = % /dm dy (|¢W(m)|2 — OO) w(z —y) (|¢w(y)‘2 - OO) .

@ Rigorously defined as limitin (), ., L™ (duo) of truncations

o
Wi = 5 [ dedy (65 @) = ex) wiz — o) (65 0)F — ex).

Qﬂik-x w 2
» 0k (x) 1= B9 (z)|” — oo
- X Vi i o

o W =W > 0 almost surely if w is pointwise nonnegative, i.e. w is of
positive type.
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The classical system and Gibbs measures

@ Classical Gibbs state p(-): Given X = X (w) a random variable, let

jXL W dpug /
X) = Xd
p(X) e W 1

@ The p-particle space: Denote by

9P = LE,, (A7)

the elements of L?(A?) which are symmetric in their arguments.
@ On »(P) define the classical p-particle correlation function -, by its
operator kernel

Vo(@1, s Tpi Y, Yp) = p(0 (y1) - 0 (yp) 9 (1) - - ¥ () -
@ For f e H '(A)let ¢(f) := (f,¢) 12, 0(f) == (&, f) 12
e Given fi,..., fy,g1,...,9, € H ' (\), we have
P(é(gl)é(gq)(b(fl)qb(fp)) = Opg <f1 Q- ® fp, ¥ ®"'®9q>-
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Derivation of Gibbs measures: informal statement

Formally, NLS is a classical limit of many-body quantum theory.
@ On H™) we consider the n-particle Hamiltonian

n

HM = Z(*Azi+/€)+l Z w(x; — ;).

i=1 1<i<j<n

@ Solve n-body Schrédinger equation
10,9, = H™v, ,
and obtain, as n — o
U, ~ ¢f" implies W, , ~ ¢7".

(Hepp (1974), Ginibre-Velo (1979), Spohn (1980), ... ).
@ Problem: Obtain Gibbs measure du as many-body quantum limit.
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The quantum problem

@ At temperature 7 > 0, equilibrium of (") is governed by the Gibbs state

n n
( )EfH( )/7 ; Z(TL) . Vl‘].E*H( )/ .
Z n

@ Goal: Obtain correlation functions v, in limit as 7 = n — oc.
@ Work on the Bosonic Fock space

F = @

neN

with quantum Hamiltonian

H, = 1@;1(").
T neN

@ On F define the grand canonical ensemble by

_ _ g™
PT::CHT:@CH /.
neN
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Second quantisation

@ Introduce quantum fields (operator-valued distributions) ¢, ¢X on F with

[¢+(z), 97 (y)] = %5(56—,@)7 [¢+(2),0-(y)] = [¢7(2),97(y)] = 0.

@ More precisely, for f € L?(A) define the creation and annihilation
operators b*(f) and b( f) acting on ¥ € F by

O (H) (2, ) = \}ﬁ;f(xi)w-ﬂ(ml,...,xi1,;1:1-“.,...,%),
0()®) P (@r, .. w0) = VaF T / da f(2) U (@2, ).
@ Take o&.(f) := 7 Y2b(f), &*(f) = 7 '/2b*(f) and write

S1(f) = / do f(z) 6% (x), - (f) = / dz f(z) 6. ().
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The quantum Gibbs state

@ Quantum Gibbs state p,(-): Given A € L(F) we define its expectation

Tr(AP;)
Tr(P.) -~

pr(A) =

@ On () define the quantum p-particle correlation function ~, , by its
kernel

77’,;0(3317-~-awp;y17--~7yp) - pT((bi(yl)(bi(yp)gb‘r(xl)¢T($p))
@ Given fi,..., fp,g1....,9, € L*(A) we have

pr(05(91) - - 97(9) ¢+ (f1) -+~ b (fp)) =
5;1)q<f1 X .f])377,1)91 Q- ®gq> .
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Derivation of Gibbs measures: statement of result

Theorem 1: Fréhlich, Knowles, Schlein, S. (CMP, 2017).

(i) Letd =1 and w € L>(T') be pointwise nonnegative. Then for all p € N
we have

Yrp — Yp aAS T — OO.

The convergence is in the trace class. (|| A1 := Tr|.AJ).

(i) Letd = 2,3 and w € L>(T?) be of positive type. The convergence holds
in the Hilbert-Schmidt class after a renormalisation procedure and with a
slight modification of the grand canonical ensemble P, (needed for
technical reasons).

Remark:
Our result applies on R?, d = 1,2, 3 if instead of —A + x we consider the
one-body Hamiltonian

h=—-A+x+v

for sufficiently confining v : R — [0, 00) .
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Related results

@ 1D result: previously shown using different techniques by
Lewin-Nam-Rougerie (J. Ec. Polytech. Math., 2015).
In higher dimensions, they consider non local, non translation-invariant
interactions.

@ Lewin-Nam-Rougerie (J. Math. Phys. 2018) : 1D non-periodic problem
with subharmonic trapping.

@ Lewin-Nam-Rougerie (preprint 2018) : 2D problem with
translation-invariant interaction without modified Gibbs state.
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The high-temperature limit in the free case

Examine the limit = — o in the free case w = 0.
@ Define the rescaled particle number operator by

N = %@nlﬁm) = /dxqﬁj(w)gbf(x).

neN

@ Compare with

@ We have
. 1 ifd=1
pT(NT) = Z BTN ~ lOgT ifd=2
ez T(em 7 —1) 2 ifd=3.

— Need to renormalise when d = 2, 3.
— p-(+) has a natural cut-offfor |k| > /7.
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Renormalisation in the quantum problem

Consider the quantum problem for d = 2, 3.
@ On F define the free quantum Hamiltonian

Hyg = %@Hé”),

neN
where H") = Z (=Ag, + R).
@ Given Ac L(F)le
_ Tr(Ae Hro)
pro(A) = (e Teo)

@ The Wick-ordered many-body Hamiltonian is
H. = H.o+W,, for

W= 5 [ Ay (63006, @) — 0:@) wle — 1) (6300 (0) — e:(0)).

® 0,(x) = pro(#:()6:(x)) = 0,(0) » 00 @s T 00,
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Proof of Theorem 1: perturbative expansion

@ Example: Consider the classical partition function

A(z) = /e’zw dpo

and the quantum partition function

Tr (eanT,o e~ (1=2n)Hy o—2zW> e*nHmo)

A, = , € |0,1/4].
(2) T ) ne(0,1/4]
Modification by n: In 2D and 3D we replace P, by

Pl = e Hroe=(1=2mHro=Wro=nHro oL (),

@ Our goal is to prove that
lim A.(z) = A(z) for Rez>0.

T—r00

@ Problem: The series expansions

A(z) = iamzm, A (z) = iamnzm

m=0 m=0
have radius of convergence zero.
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Idea of proof: Borel summation

@ Recover A(z), A-(z) from their coefficients by Borel summation.
@ Given a formal power series

A(z) = Zamz””’

m=0
its Borel transform is a,
B(z) = m220 mzm.
Formally we have
A(z) = /000 dte " B(tz).
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Application of Borel summation

For fixed M € N write

M—1 M—1
A(z) = Y amz™ + Ru(2), Ar(z) = Y armz™ + Ren(2).
m=0 m=0

By a result of Sokal (1980), it suffices to prove the following.
(i) The explicit terms satisfy

lam| + [arm| < C™ml,
and the remainder terms satisfy
|RM (Z)| + ‘RTJ\,{(Z)‘ < CA'JA1!|Z|M.

The bound on R, 5, requires  # 0in 2D and 3D.
(i) The quantum coefficients converge to the classical coefficients, i.e.

m arm = G .
T—00 :
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Estimating the explicit terms in the quantum setting

@ We consider n = 0.
@ Compute a, ,,, by repeatedly applying Duhamel’s formula

1
oXH2Y eX—l—z/ dt eX (1=t y ot(X+2Y)
0

for X = —H,oand Y = -1V, in expansion of A (z) .
@ We hence obtain

1 1 t1 b —1
Gy = ———Tr (=)™ [ dt; [ dts--- dtm
5 Tr (e,HT_()) ( ) A 1 /0 2 A

e*“*tl)HT,o W, e*(tlftz)HT,o W, - e*(tmfl*tm)Hmo W, e~ tm HT,0>
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The quantum Wick theorem

@ Rewrite a.,, using the quantum Wick theorem

1

m Tr((bi(xl) o (k) Pr (1) -+ D (k) efHT‘U)

ﬁ Tr(e=Hro) ((b () 0r (Yr(s)) € HT“’) .

reSk j=1

@ Factors are
ey (9 @or) e ) = Grlwiy),

where
1

e

is the quantum Green function.
@ Compare with the classical Green function

G = (-A+r)!
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The graph structure

@ The pairing of ¢, ¢, gives rise to a graph structure.
— Join vertices according to quantum Wick theorem.

@ 2m copies of ¢%, 2m copies of ¢..
— Total number of graphs is at most (2m)! = O(C™m/!?).

@ Main work: For fixed ¢4, ..., ,,, each graph contributes O(C™).
@ Obtain gain of -1 from the time integral

m!

-1 g3l tm—1 1
[ [ M [ = L
0 Jo Jo m!

@ Conclude that |a, | < C™ml.
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S
P

FIGURE. Some examples of the possible graphs when m = 2 in 2D and 3D.
No two vertically adjacent vertices are joined due to Wick ordering.
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The graph structure

From the iterated integral structure, it follows that we need to consider
time-evolved operators

()73(7A+H)
7(e(=A+r)/T _ 1) (t=>-1)

Srp 1= e AT (1> 0),

In particular, G, o =G, and S, o =1.

Forallt > —1 and x,y € A we have G ;(x;y) > 0.
Moreover, for allt > 0 and z,y € A we have S, ;(z;y) > 0.
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The graph structure

@ Difficulty: The Hilbert-Schmidt norm |G ;|| s is not bounded uniformly
int>—1.

@ We can only bound the operator norm uniformly in ¢.

@ Solution: Use positivity.

@ Example: Consider

/ day / dzow(zr —y1) Grp(z1;22) wW(Te — Yy2) G —i(T25 1) -
Td Jd
In absolute value, this is
< wll s pay / dzy / dzo Gro(z1;22) Gr—t(T2;21)
Jd Jd
which is
= ||’wHieo<W) /T]dlm /Tjdél'z Gro(z1;22) Gro(T2;71)

= |[wll7 vy 1GrollFrs -

— Bounded uniformly int > —1,7 > 1.
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Time-dependent correlations

@ Let (T, H.{-,-}) be a Hamiltonian system.
@ ;(dg) = Le M(?) dg, the associated Gibbs measure.
@ S, := flow map of H.

@ Given m € N, observables X!,..., X™ € C*(I"), and times
t1,...,ty, € R, define the m-partlcle time-dependent correlation
function

QX XMty /X (S, ¢) - X™(Sy. ) du

@ Goal: Obtain a derivation of Q,, from many-body quantum expectation
values in the setting where S; is the flow of the (cubic) NLS on T*.
S, is globally defined on I" := L?(T") (Bourgain, 1993).
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Time evolution of observables

@ Let¢ € £(H) be given. Define the lift of ¢ to an operator on F

0,(&) = /d:cl...da:pdyl...dypf(qu,...,xp;yl,...,yp)
o7 (1) 97 (wp) dr(y1) -+ D7 (yp) -

@ The time-evolved operator ! O, (¢) = 7@ (&) e 1TH-,
@ The random variable

(&) = /dxl...dajpdyl...dypf(ml,...,er;yl,...,yp)

G(1) - d(xp) d(yr) -+ d(yp) -

@ The time-evolved random variable

Ure(¢) = /dx1 coodepdyr o dyp &(T, - T YL, - Yp)

Sep(w1) -+ Sep(wp) Sed(yr) - -+ Sed(yp) -
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Microscopic derivation of time-dependent correlations

Theorem 2: Fréhlich, Knowles, Schlein, S. (preprint 2017).

Let w € L>(T") be pointwise nonnegative.
Given m € N, ¢/ € £($?3)) and times ¢;, we have

pr (T, (€)) - Wr O, (7)) = p(T1O(E)) - TmO(E™) as T oo,

Theorem 1 in 1D corresponds to Theorem 2 with m =1 and t; = 0.
Use

07(67(5)) - P(@(f)) = Tr ((’YT,p - 7[))5)
for ¢ € £(H?)) and argue by duality.
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Idea of proof: Truncation in particle number

@ Use an approximation argument and reduce to showing that
pr (WO, (EY) - W@, (E™)F(N;)) = p(WHO(EL) - U O(E™)F(N))

for appropriately chosen F' € C2°(R).
@ The general claim can be shown to follow from

pr(O-(OF(N;)) — p(O(E)F(N)) .

@ Presence of cut-off I does not allow direct application of Wick theorem.
@ Expand F'(N;) and F'(N).
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The local problem

@ A first attempt does not immediately yield the result of Theorem 2 for the
local (cubic) NLS

1004 (1) + Age(z) = [d¢()]* d¢ (),

i.e. forw = 9.
@ Instead, first prove Theorem 2 for the flow of the nonlocal (Hartree)
equation

10,07 (x) + Agy (x) = /dy w(z — y) |65 (y) | ¢5 (),
with w® € L>(T'), w® — § and with the same initial data.
@ Stability: For sufficiently regular initial data

67 — d¢ll2(ry =0 as e—0.

@ For proof of stability, use dispersion of NLS. Work in X" spaces

lullxoo = o™ ul s
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Thank you for your attention!
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