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The nonlinear Schrödinger equation

Consider the spatial domain Λ = Td for d = 1, 2, 3.
Study the nonlinear Schrödinger equation (NLS).{

i∂tφt(x) =
(
−∆ + κ

)
φt(x) +

∫
dy w(x− y) |φt(y)|2 φt(x)

φ0(x) = Φ(x) ∈ Hs(Λ) .

κ > 0 and w ∈ L∞(Λ) is positive or w = δ.
Sobolev space Hs with norm ‖f‖Hs(Λ)

..= ‖(1−∆)s/2 f‖L2(Λ).
Conserved energy

H(φ) =

∫
dx
(
|∇φ(x)|2 + κ|φ(x)|2

)
+

1

2

∫
dx dy |φ(x)|2 w(x− y) |φ(y)|2 .

→ An infinite-dimensional Hamiltonian system.
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Hamiltonian systems

A general Hamiltonian system is comprised of the following.
(1) Phase space Γ. We denote its elements by φ.
(2) Hamilton (energy) function H ∈ C∞(Γ).
(3) Poisson bracket {·, ·} : C∞(Γ)× C∞(Γ)→ C∞(Γ) satisfying

Antisymmetry : {f, g} = −{g, f}.
Distributivity : {f + g, h} = {f, h}+ {g, h}.
Leibniz rule: {fg, h} = {f, h}g + f{g, h}.
Jacobi identity : {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The Hamiltonian flow φ 7→ φt of H on Γ is determined by the ODE

d

dt
f(φt) = {H, f}(φt)

for f ∈ C∞(Γ).
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NLS as a Hamiltonian system

(1) Phase space Γ = Hs(Λ) for some s ∈ R.
(2) Hamilton function is

H(φ) =

∫
dx
(
|∇φ(x)|2 + κ|φ(x)|2

)
+

1

2

∫
dx dy |φ(x)|2 w(x− y) |φ(y)|2 .

(3) Poisson bracket is

{φ(x), φ̄(y)} = iδ(x− y) , {φ(x), φ(y)} = {φ̄(x), φ̄(y)} = 0 .

Hamiltonian equations of motion are given by the nonlinear Schrödinger
equation

i∂tφt(x) + (∆− κ)φt(x) =

∫
dy w(x− y) |φt(y)|2 φt(x) .
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Gibbs measures for the NLS

The Gibbs measure dµ associated to H is the probability measure on
the space of fields φ : Λ→ C

µ(dφ) ..=
1

Z
e−H(φ) dφ , Z ..=

∫
e−H(φ) dφ .

dφ = (formally-defined) Lebesgue measure.
Formally, dµ is invariant under flow of NLS:

(St)∗ µ = µ for St
..= flow map of NLS .

Difficulty: infinite-dimensional Hamiltonian system.
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Gibbs measures for the NLS: known results

Rigorous construction: CQFT literature in the 1970-s (Nelson,
Glimm-Jaffe, Simon), also Lebowitz-Rose-Speer (1988).
Proof of invariance: Bourgain and Zhidkov (1990s).
Application to PDE: Obtain low-regularity solutions of NLS µ-almost
surely.
Recent advances: Bourgain-Bulut, Burq-Tzvetkov,
Burq-Thomann-Tzvetkov, Cacciafesta- de Suzzoni, Deng,
Genovese-Lucá-Valeri, Nahmod-Oh-Rey-Bellet-Staffilani,
Nahmod-Rey-Bellet-Sheffield-Staffilani, Oh-Pocovnicu, Oh-Quastel,
Oh-Tzvetkov, Oh-Tzvetkov-Wang, Thomann-Tzvetkov, Tzvetkov, ...
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The Wiener measure and classical free field

Let H0(φ) ..=
∫

dx (|∇φ(x)|2 + κ|φ(x)|2). Define the Wiener measure dµ0

µ0(dφ) ..=
1

Z0
e−H0(φ) dφ , Z0

..=
∫

e−H0(φ) dφ .

Write ak ..= φ̂(k) and d2ak
..= d Imak d Reak.

µ0(dφ) =
∏
k∈Zd

e−c(|k|
2+κ)|ak|2d2ak∫

e−c(|k|2+κ)|ak|2d2ak
.

For φ ∈ supp dµ0, (|k|2 + κ)1/2φ̂(k) has a Gaussian distribution.

φ ≡ φω =
∑
k∈Zd

gk(ω)

(|k|2 + κ)1/2
e2πik·x , (gk) = i.i.d. complex Gaussians.

→ Classical free field .
Series converges almost surely in H1− d2−ε(Λ) since for s < 1− d

2 .

Eµ0
‖φω‖2Hs =

∑
k∈Zd

(|k|2 + 1)s
E
(
|gk|2

)
|k|2 + κ

∼κ
∑
k∈Zd

(|k|2 + 1)s−1 < ∞ .
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The classical system and Gibbs measures

The classical interaction is

W ..=
1

2

∫
dx dy |φω(x)|2 w(x− y) |φω(y)|2 .

In [0,+∞) almost surely if d = 1 and w ∈ L∞(T1) is pointwise
nonnegative.
In this case dµ is a well-defined probability measure on H1/2−ε(T1) which
satisfies

dµ� dµ0 .

For d = 2, 3, W is infinite almost surely even if w ∈ L∞(Td).
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The classical system and Gibbs measures

Perform a renormalisation in the form of Wick ordering . Formally
replace W by the Wick-ordered classical interaction

Ww ..=
1

2

∫
dxdy

(
|φω(x)|2 −∞

)
w(x− y)

(
|φω(y)|2 −∞

)
.

Rigorously defined as limit in
⋂
m>1 L

m(dµ0) of truncations

W[K]
..=

1

2

∫
dx dy

(
|φω[K](x)|2 − %K

)
w(x− y)

(
|φω[K](y)|2 − %K

)
.

φω[K](x) ..=
∑
|k|6 K

gk(ω)√
|k|2 + κ

e2πik·x , %K(x) ..= Eµ0
|φω[K](x)|2 →∞ .

W ≡Ww > 0 almost surely if ŵ is pointwise nonnegative, i.e. w is of
positive type.
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The classical system and Gibbs measures

Classical Gibbs state ρ(·): Given X ≡ X(ω) a random variable, let

ρ(X) ..=
∫
X e−W dµ0∫
e−W dµ0

=

∫
X dµ .

The p-particle space: Denote by

H(p) ..= L2
sym(Λp)

the elements of L2(Λp) which are symmetric in their arguments.
On H(p) define the classical p-particle correlation function γp by its
operator kernel

γp(x1, . . . , xp; y1, . . . , yp)
..= ρ

(
φω(y1) · · ·φω(yp)φ

ω(x1) · · ·φω(xp)
)
.

For f ∈ H−1(Λ) let φ(f) ..= 〈f, φ〉L2 , φ̄(f) ..= 〈φ, f〉L2 .
Given f1, . . . , fp, g1, . . . , gq ∈ H−1(Λ), we have

ρ
(
φ̄(g1) · · · φ̄(gq)φ(f1) · · ·φ(fp)

)
= δpq

〈
f1 ⊗ · · · ⊗ fp , γp g1 ⊗ · · · ⊗ gq

〉
.
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Derivation of Gibbs measures: informal statement

Formally, NLS is a classical limit of many-body quantum theory.
On H(n) we consider the n-particle Hamiltonian

H(n) ..=
n∑
i=1

(
−∆xi + κ

)
+

1

n

∑
16i<j6n

w(xi − xj) .

Solve n-body Schrödinger equation

i∂tΨn,t = H(n)Ψn,t

and obtain, as n→∞

Ψn,0 ∼ φ⊗n0 implies Ψn,t ∼ φ⊗nt .

(Hepp (1974), Ginibre-Velo (1979), Spohn (1980), ... ).
Problem: Obtain Gibbs measure dµ as many-body quantum limit .
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The quantum problem

At temperature τ > 0 , equilibrium of H(n) is governed by the Gibbs state

1

Z
(n)
τ

e−H
(n)/τ , Z(n)

τ
..= Tr e−H

(n)/τ .

Goal: Obtain correlation functions γp in limit as τ = n→∞.
Work on the Bosonic Fock space

F ..=
⊕
n∈N

H(n)

with quantum Hamiltonian

Hτ
..=

1

τ

⊕
n∈N

H(n) .

On F define the grand canonical ensemble by

Pτ
..= e−Hτ =

⊕
n∈N

e−H
(n)/τ .

V. Sohinger (University of Warwick) Gibbs measures of NLS GSSI Conference 12 / 33



Second quantisation

Introduce quantum fields (operator-valued distributions) φτ , φ∗τ on F with

[φτ (x), φ∗τ (y)] =
1

τ
δ(x− y) , [φτ (x), φτ (y)] = [φ∗τ (x), φ∗τ (y)] = 0 .

More precisely, for f ∈ L2(Λ) define the creation and annihilation
operators b∗(f) and b(f) acting on Ψ ∈ F by

(
b∗(f)Ψ

)(n)
(x1, . . . , xn) =

1√
n

n∑
i=1

f(xi)Ψ
(n−1)(x1, . . . , xi−1, xi+1, . . . , xn) ,

(
b(f)Ψ

)(n)
(x1, . . . , xn) =

√
n+ 1

∫
dx f̄(x) Ψ(n+1)(x, x1, . . . , xn) .

Take φτ (f) ..= τ−1/2b(f) , φ∗τ (f) ..= τ−1/2b∗(f) and write

φ∗τ (f) =

∫
dx f(x)φ∗τ (x) , φτ (f) =

∫
dx f̄(x)φτ (x) .
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The quantum Gibbs state

Quantum Gibbs state ρτ (·): Given A ∈ L(F) we define its expectation

ρτ (A) ..=
Tr(APτ )

Tr(Pτ )
.

On H(p) define the quantum p-particle correlation function γτ,p by its
kernel

γτ,p(x1, . . . , xp; y1, . . . , yp) = ρτ
(
φ∗τ (y1) · · ·φ∗τ (yp)φτ (x1) · · ·φτ (xp)

)
.

Given f1, . . . , fp, g1, . . . , gq ∈ L2(Λ) we have

ρτ
(
φ∗τ (g1) · · ·φ∗τ (gq)φτ (f1) · · ·φτ (fp)

)
=

δpq
〈
f1 ⊗ · · · ⊗ fp , γτ,p g1 ⊗ · · · ⊗ gq

〉
.
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Derivation of Gibbs measures: statement of result

Theorem 1: Fröhlich, Knowles, Schlein, S. (CMP, 2017).
(i) Let d = 1 and w ∈ L∞(T1) be pointwise nonnegative. Then for all p ∈ N

we have
γτ,p → γp as τ →∞ .

The convergence is in the trace class. (‖A‖Tr
..= Tr |A|).

(ii) Let d = 2, 3 and w ∈ L∞(Td) be of positive type. The convergence holds
in the Hilbert-Schmidt class after a renormalisation procedure and with a
slight modification of the grand canonical ensemble Pτ (needed for
technical reasons).

Remark:
Our result applies on Rd, d = 1, 2, 3 if instead of −∆ + κ we consider the
one-body Hamiltonian

h = −∆ + κ+ v

for sufficiently confining v : Rd → [0,∞) .
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Related results

1D result: previously shown using different techniques by
Lewin-Nam-Rougerie (J. Éc. Polytech. Math., 2015).
In higher dimensions, they consider non local, non translation-invariant
interactions.
Lewin-Nam-Rougerie (J. Math. Phys. 2018) : 1D non-periodic problem
with subharmonic trapping.
Lewin-Nam-Rougerie (preprint 2018) : 2D problem with
translation-invariant interaction without modified Gibbs state.
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The high-temperature limit in the free case
Examine the limit τ →∞ in the free case w = 0.

Define the rescaled particle number operator by

Nτ ..=
1

τ

⊕
n∈N

nIH(n) =

∫
dxφ∗τ (x)φτ (x) .

Compare with

N ..=
∫

dx |φω(x)|2 .

We have

ρτ (Nτ ) =
∑
k∈Zd

1

τ
(
e
|k|2+κ
τ − 1

) ∼


1 if d = 1

log τ if d = 2

τ1/2 if d = 3 .

→ Need to renormalise when d = 2, 3.
→ ρτ (·) has a natural cut-off for |k| >

√
τ .

V. Sohinger (University of Warwick) Gibbs measures of NLS GSSI Conference 17 / 33



Renormalisation in the quantum problem
Consider the quantum problem for d = 2, 3.

On F define the free quantum Hamiltonian

Hτ,0
..=

1

τ

⊕
n∈N

H
(n)
0 ,

where H(n)
0

..=
∑n
i=1(−∆xi + κ).

Given A ∈ L(F) let

ρτ,0(A) ..=
Tr(A e−Hτ,0)

Tr(e−Hτ,0)
.

The Wick-ordered many-body Hamiltonian is

Hτ
..= Hτ,0 +Wτ , for

Wτ
..=

1

2

∫
dx dy

(
φ∗τ (x)φτ (x)− %τ (x)

)
w(x− y)

(
φ∗τ (y)φτ (y)− %τ (y)

)
.

%τ (x) ..= ρτ,0
(
φ∗τ (x)φτ (x)

)
= %τ (0)→∞ as τ →∞ .
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Proof of Theorem 1: perturbative expansion

Example: Consider the classical partition function

A(z) ..=
∫

e−zW dµ0

and the quantum partition function

Aτ (z) =
Tr
(
e−ηHτ,0 e−(1−2η)Hτ,0−zWτ e−ηHτ,0

)
Tr(e−Hτ,0)

, η ∈ [0, 1/4] .

Modification by η: In 2D and 3D we replace Pτ by
P ητ

..= e−ηHτ,0e−(1−2η)Hτ,0−Wτ e−ηHτ,0 , η 6= 0 .
Our goal is to prove that

lim
τ→∞

Aτ (z) = A(z) for Re z > 0 .

Problem: The series expansions

A(z) =

∞∑
m=0

amz
m , Aτ (z) =

∞∑
m=0

aτ,mz
m

have radius of convergence zero.
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Idea of proof: Borel summation

Recover A(z), Aτ (z) from their coefficients by Borel summation.
Given a formal power series

A(z) =
∑
m>0

αmz
m

its Borel transform is
B(z) ..=

∑
m>0

αm
m!

zm .

Formally we have

A(z) =

∫ ∞
0

dt e−t B(tz) .
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Application of Borel summation
For fixed M ∈ N write

A(z) =

M−1∑
m=0

amz
m +RM (z) , Aτ (z) =

M−1∑
m=0

aτ,mz
m +Rτ,M (z) .

By a result of Sokal (1980), it suffices to prove the following.
(i) The explicit terms satisfy

|am|+ |aτ,m| 6 Cmm! ,

and the remainder terms satisfy

|RM (z)|+ |Rτ,M (z)| 6 CMM !|z|M .

The bound on Rτ,M requires η 6= 0 in 2D and 3D.
(ii) The quantum coefficients converge to the classical coefficients, i.e.

lim
τ→∞

aτ,m = am .
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Estimating the explicit terms in the quantum setting

We consider η = 0.
Compute aτ,m by repeatedly applying Duhamel’s formula

eX+zY = eX + z

∫ 1

0

dt eX(1−t)Y et(X+zY )

for X = −Hτ,0 and Y = −Wτ in expansion of Aτ (z) .
We hence obtain

aτ,m =
1

Tr
(
e−Hτ,0

) Tr

(
(−1)m

∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm

e−(1−t1)Hτ,0 Wτ e−(t1−t2)Hτ,0 Wτ · · · e−(tm−1−tm)Hτ,0 Wτ e−tmHτ,0

)
.
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The quantum Wick theorem

Rewrite aτ,m using the quantum Wick theorem

1

Tr(e−Hτ,0)
Tr
(
φ∗τ (x1) · · ·φ∗τ (xk)φτ (y1) · · ·φτ (yk) e−Hτ,0

)
=

∑
π∈Sk

k∏
j=1

1

Tr(e−Hτ,0)
Tr
(
φ∗τ (xj)φτ (yπ(j)) e−Hτ,0

)
.

Factors are
1

Tr(e−Hτ,0)
Tr
(
φ∗τ (x)φτ (y) e−Hτ,0

)
= Gτ (x; y) ,

where
Gτ =

1

τ
(
e(−∆+κ)/τ − 1

)
is the quantum Green function.
Compare with the classical Green function

G = (−∆ + κ)−1 .
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The graph structure

The pairing of φ∗τ , φτ gives rise to a graph structure .
→ Join vertices according to quantum Wick theorem.
2m copies of φ∗τ , 2m copies of φτ .
→ Total number of graphs is at most (2m)! = O(Cmm!2).
Main work: For fixed t1, . . . , tm, each graph contributes O(Cm).
Obtain gain of 1

m! from the time integral∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm =
1

m!
.

Conclude that |aτ,m| 6 Cmm!.
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The graph structure

FIGURE. Some examples of the possible graphs when m = 2 in 2D and 3D.
No two vertically adjacent vertices are joined due to Wick ordering.
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The graph structure

From the iterated integral structure, it follows that we need to consider
time-evolved operators

Gτ,t
..=

e−
t
τ (−∆+κ)

τ
(
e(−∆+κ)/τ − 1

) (t > −1) .

Sτ,t
..= e−

t
τ (−∆+κ) (t > 0) ,

In particular, Gτ,0 = Gτ and Sτ,0 = I .

Lemma
For all t > −1 and x, y ∈ Λ we have Gτ,t(x; y) > 0 .
Moreover, for all t > 0 and x, y ∈ Λ we have Sτ,t(x; y) > 0 .
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The graph structure

Difficulty: The Hilbert-Schmidt norm ‖Gτ,t‖HS is not bounded uniformly
in t > −1.
We can only bound the operator norm uniformly in t.
Solution: Use positivity.
Example: Consider∫

Td
dx1

∫
Td

dx2 w(x1 − y1)Gτ,t(x1;x2)w(x2 − y2)Gτ,−t(x2;x1) .

In absolute value, this is

6 ‖w‖2L∞(Td)

∫
Td

dx1

∫
Td

dx2Gτ,t(x1;x2)Gτ,−t(x2;x1) ,

which is

= ‖w‖2L∞(Td)

∫
Td

dx1

∫
Td

dx2Gτ,0(x1;x2)Gτ,0(x2;x1)

= ‖w‖2L∞(Td) ‖Gτ,0‖
2
HS .

→ Bounded uniformly in t > −1, τ > 1.
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Time-dependent correlations

Let (Γ, H, {·, ·}) be a Hamiltonian system.
µ(dφ) ..= 1

Z e−H(φ) dφ, the associated Gibbs measure.
St

..= flow map of H.
Given m ∈ N , observables X1, . . . , Xm ∈ C∞(Γ), and times
t1, . . . , tm ∈ R, define the m-particle time-dependent correlation
function

Qµ(X1, . . . , Xm; t1, . . . , tm) ..=
∫
X1(St1φ) · · · Xm(Stmφ) dµ .

Goal: Obtain a derivation of Qµ from many-body quantum expectation
values in the setting where St is the flow of the (cubic) NLS on T1.
St is globally defined on Γ ..= L2(T1) (Bourgain, 1993).
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Time evolution of observables

Let ξ ∈ L(H(p)) be given. Define the lift of ξ to an operator on F

Θτ (ξ) ..=
∫

dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

φ∗τ (x1) · · ·φ∗τ (xp)φτ (y1) · · ·φτ (yp) .

The time-evolved operator Ψt
τΘτ (ξ) ..= eitτHτ Θτ (ξ) e−itτHτ .

The random variable

Θ(ξ) ..=
∫

dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

φ̄(x1) · · · φ̄(xp)φ(y1) · · ·φ(yp) .

The time-evolved random variable

ΨtΘ(ξ) ..=
∫

dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

Stφ(x1) · · ·Stφ(xp)Stφ(y1) · · ·Stφ(yp) .
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Microscopic derivation of time-dependent correlations

Theorem 2: Fröhlich, Knowles, Schlein, S. (preprint 2017).
Let w ∈ L∞(T1) be pointwise nonnegative.
Given m ∈ N, ξj ∈ L(H(pj)) and times tj , we have

ρτ
(
Ψt1
τ Θτ (ξ1) · · · Ψtm

τ Θτ (ξm)
)
→ ρ

(
Ψt1Θ(ξ1) · · · ΨtmΘ(ξm)

)
as τ →∞ ,

Theorem 1 in 1D corresponds to Theorem 2 with m = 1 and t1 = 0.
Use

ρτ (Θτ (ξ))− ρ(Θ(ξ)) = Tr
(
(γτ,p − γp)ξ

)
for ξ ∈ L(H(p)) and argue by duality.
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Idea of proof: Truncation in particle number

Use an approximation argument and reduce to showing that

ρτ
(
Ψt1
τ Θτ (ξ1) · · · Ψtm

τ Θτ (ξm)F (Nτ )
)
→ ρ

(
Ψt1Θ(ξ1) · · · ΨtmΘ(ξm)F (N )

)
for appropriately chosen F ∈ C∞c (R).
The general claim can be shown to follow from

ρτ
(
Θτ (ξ)F (Nτ )

)
→ ρ

(
Θ(ξ)F (N )

)
.

Presence of cut-off F does not allow direct application of Wick theorem.
Expand F (Nτ ) and F (N ).
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The local problem

A first attempt does not immediately yield the result of Theorem 2 for the
local (cubic) NLS

i∂tφt(x) + ∆φt(x) = |φt(x)|2 φt(x) ,

i.e. for w = δ.
Instead, first prove Theorem 2 for the flow of the nonlocal (Hartree)
equation

i∂tφ
ε
t (x) + ∆φεt (x) =

∫
dy wε(x− y) |φεt (y)|2 φεt (x) ,

with wε ∈ L∞(T1), wε ⇀ δ and with the same initial data.
Stability: For sufficiently regular initial data

‖φεt − φt‖L2(T1) → 0 as ε→ 0 .

For proof of stability, use dispersion of NLS. Work in Xs,b spaces

‖u‖Xs,b ..= ‖e−it∆u‖HbtHsx .
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Thank you for your attention!
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