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Motivations

e Relationships between morphological and
energetic aspects of defects (quantum vortices)

e Topological properties and stability of defects
e Reconnection mechanisms and energy transfer
e Production of new defects from existing ones

e Topological cascade processes of defects

e Entanglement and structural complexity measures
(Villois et al. 2016)

e Quantum versus classical turbulence



From condensates to quantum fluids

e Bose-Einstein condensate:

- state of matter in which a diluted gas of bosons (such as photons and
‘He atoms) at extremely low density is cooled at at temperatures of
nano-kelvins and coalesces into a quantum mechanical state that can
be described by a single wave function on a near-macroscopic scale;

- 1924: first theoretical prediction by Bose & Einstein;

- 1938: London’s proposal for superfluidity;

- 1995: first experimental production of a BEC of rubidium atoms by
Cornell, Wieman & Ketterle (2001 Physics Nobel Prize).

e Gross-Pitaevskii equation (GPE):
- 1941: mean-field theory from first-order quantization;
- 1961-1963: Pitaevskii & Gross’ derivation in terms of non-linear
Schrodinger equation (NLSE).

e Hvdrodynamical interpretation:
- 1926: Madelung transformation of (NL)SE into hvdrodynamic form;
- 1952: Bohm’s theorv of quantum trajectories;
- 1980s: implementation of numerical method for quantum fluids;
- 2010s: study of topological stability and structural complexity issues.



Quantum hydrodynamics under the Gross-Pitaevskii equation (GPE)

e Gross-Pitaevskii equation:
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e Conserved hamiltonian (to leading order):
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Helicity and linking numbers

o Helicity H(t) :
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e Theorem (Moreau 1961). Under ideal conditions helicity is a quantity
conserved during evolution, that is

dH (1)
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e Theorem (Moffatt 1969; Moffatt & Ricca 1992). Let .[n be a disjoint
union of vortex tubes in an ideal fluid. Then, we have

=0 — H = constant.
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Gauss linking number

e Gauss linking number: Lk Lk(C C ) = __

(Gauss 1833)
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e Algebraic definition: Lk = 28 @

e = =1 —) =
' +11

Lk(A,B)= —-—- +1

I
lls + \\‘ &\\
AN AR b TGN \\
+ Ssao \\ '
~ g
+
8 |



Calugareanu-White invariant

From the Gauss linking number Lk , = Lk(C|,C)) take C = C and
C2 =C ; define the ribbon R = R(C,C*) by
C: x =x(s) C.

R=R(C,C . - (A
( ) C": x =x(s)+eN(s) V»C

and take l1m Lk(C C ) Lk(R)
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o Calugareanu-White invariant:

Lk(R) = Wr(C) + Tw(R) (Calugareanu 1961; White 1969)
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writhing number:
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Evolution of a Hopf link of quantum vortices (I'=1) under GPE
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Reconnection process in terms of the iso-phase surface
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Reconnection process in terms of the iso-phase surface (cont.)
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Twist analysis by ribbon construction on isophase surface
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Writhe and twist contributions to helicity (Zuccher & Ricca PRE 2017)
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Individual writhe and twist contributions
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Individual writhe and twist contributions
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Individual writhe and twist contributions
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Individual writhe and twist contributions
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Physical interpretation of twisted iso-phase surface

Since u = VO , we have:

u=ue, u=u¢e¢ u=urer+u¢e¢+ust

>

straight line defect “open book” decomposition twisted surface
in the plane in space in space



Physical effects of twist injection

e No twist

Phase contour in the (y-7)-plane

vortex ring



Physical effects of twist injection

e Case A: twist induction

Phase contour in the (y-7)-plane
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Physical effects of twist injection

e Case A: twist induction e Case B: twist superimposition

Phase contour in the (y-7)-plane
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Case A: twist induction (Zuccher & Ricca 2018)

induction of phase twist Tw = 1 on vortex ring

e Biot-Savart induction law:
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Case A: twist induction (Zuccher & Ricca 2018)

induction of phase twist Tw = 1 on vortex ring
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Case B: twist superimposition (Zuccher & Ricca 2018)

superposition of phase twist Tw = 1 on vortex ring




Case B: twist superimposition (Zuccher & Ricca 2018)

superposition of phase twist Tw = 1 on vortex ring
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Case B: twist superimposition (Zuccher & Ricca 2018)

superposition of phase twist Tw = 1 on vortex ring

t=0 t=20

Generation of new defects by phase twist
as Aharonov-Bohm effect!



