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Logarithmic nonlinear Schrodinger equation

1
iOru + §Au = Aln (|u|2) U, Uy—g = Uo.
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Logarithmic nonlinear Schrodinger equation

1
iOru + §Au = Aln (|u|2) U, Uy—g = Uo.

~~ Formal conservations:

e Mass: M(u(t)) = |ju(t )HL2(Rd
e Energy (Hamiltonian):

E((e) 1= ITu) By 1 [ e ) In (e, )
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Logarithmic nonlinear Schrodinger equation

1
iOru + §Au =Aln (|u|2) U, Uyg—q = Up-

~~ Formal conservations:

e Mass: M(u(t)) = |ju(t )HL2(Rd
e Energy (Hamiltonian):

1
E(u(t)) := EHVU( )72 ®e) T /\/Rd lu(t, x)[>In |u(t, x)[?dx.
~» Mathematical study:

W= {u e HY(RY), x s |u(x) In u(x)[? € Ll(Rd)}.

Theorem (Th. Cazenave & A. Haraux '80)

A <0, up € W: unique, global solution u € C(R; W). The mass M(u)
and the energy E(u) are independent of time.
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Logarithmic NLS: "defocusing” case

1
iOru + EAU =\ln (|u|2) U, Up—g = Uo.

~> In the case A > 0, global Cauchy problem less studied.

F(HY) = {u € [2(RY), x s (x)%u(x) € L2(Rd)},

A>0, up € F(HY) N HY(RY) with0 < a < 1.

There exists a unique, global solution u € L2 (R; F(H*) N HY).
Mass M(u) and energy E(u) are independent of time.

If in addition uy € H*(RY), then u € L (R; H?).

loc

F(HY)NH € W. Issue = {|u| < 1}.
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On the functional space

E(u(t)) == %HVU(t)Hiz(Rd) + A/Rd lu(t, )2 In u(t, x)[2dx.

H(R?) is rather natural (even though one might simply expect L?(R?)).
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On the functional space

E(u(t)) == %HVU(t)HiQ(Rd) + A/Rd lu(t, )2 In u(t, x)[2dx.

H(R?) is rather natural (even though one might simply expect L?(R?)).
Recall that from a priori estimates, the use of a momentum is rather
natural:

1
0 < Ep(u(t)) = Ey|v”(t)||§2(Rd) + A . lu(t, x)|? In |u(t, x)|?dx
u|>

1
< E(wp) + A lu(t,x)|? In ————dx.
Jul<1 |u(t, x)|?

The negative term is controlled thanks to

1
0< / lu(t, x)* In ————5dx < Cg/ lu(t, x)|?“dx,
lul<1 lu(t, x)|2 lu|<1

which in turn is controlled by a F(H*)-norm for s > s(¢) > 0, with

s(e) > 0ase — 0.
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Uniqueness

u1 and up two solutions: u := u; — up satisfies
. 1
iOru + EAU = )\(In (\u1|2) up —In (\u2|2) u2).

Energy estimate:

S lu(Ol ey = Al / (In (Jenl?) e = In (|uaf?) 2) (8 — B2)(2)dx.

Lemma (Cazenave-Haraux '80)

‘Im ((22 In |22|2 —z1In |21|2) (z2 — 21))’ < 4|z — 21|2, Vz1,20 € C.

Rémi Carles (CNRS & Univ Rennes) Universal dynamics for the logarithmic NLS 5/29



Uniqueness

u1 and up two solutions: u := u; — up satisfies
. 1
iOru + EAU = )\(In (\u1|2) up —In (\u2|2) u2).

Energy estimate:

S lu(Ol ey = Al / (In (Jenl?) e = In (|uaf?) 2) (8 — B2)(2)dx.

Lemma (Cazenave-Haraux '80)

‘Im ((22 In |22|2 —z1In |21|2) (z2 — 21))’ < 4|z — 21|2, Vz1,20 € C.

. 1d
We infer > [|u(t) [F2ge) < #M[(t)]1F2(ze)

Rémi Carles (CNRS & Univ Rennes) Universal dynamics for the logarithmic NLS 5/29



Uniqueness

u1 and up two solutions: u := u; — up satisfies
. 1
iOru + EAU = )\(In (\u1|2) up —In (\u2|2) u2).

Energy estimate:

S lu(Ol ey = Al / (In (Jenl?) e = In (|uaf?) 2) (8 — B2)(2)dx.

Lemma (Cazenave-Haraux '80)

‘Im ((22 In |22|2 —z1In |21|2) (z2 — 21))’ < 4|z — 21|2, Vz1,20 € C.

: 1d
We infer EEHu(t)HiQ(Rd) < 4)\||u(t)||i2(Rd): Gronwall.
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Uniqueness: an argument was missing

What regularity allows to claim uniqueness?
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Uniqueness: an argument was missing

What regularity allows to claim uniqueness?
Uniqueness is claimed in the class

u € L (R; F(HY) N HY).

loc
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Uniqueness: an argument was missing

What regularity allows to claim uniqueness?
Uniqueness is claimed in the class

u € L (R; F(HY) N HY).

loc

This is not enough to make sense of the initial data in L?(RY).
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Uniqueness: an argument was missing

What regularity allows to claim uniqueness?
Uniqueness is claimed in the class

u € L (R; F(HY) N HY).

This is not enough to make sense of the initial data in L2(R9). Following
the approach of Th. Cazenave & A. Haraux, we prove that any such
solution satisfies u € C(R; L2).
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Uniqueness: an argument was missing

What regularity allows to claim uniqueness?
Uniqueness is claimed in the class

u e L2 (R; F(HY) N HY).

This is not enough to make sense of the initial data in L2(R9). Following
the approach of Th. Cazenave & A. Haraux, we prove that any such
solution satisfies u € C(R; L2).

e Obviously, Au € L (R; H71).

loc

o Claim: uln|u? € LS (R; L2(R?)). Indeed,

/ ul2(nuP)? < / P / o2+
—

2_e_de de < 2—e—de/2 de/2
<llullyy 2 flxeul) %5 Slull Vull,2

N

o The equation implies 0;u € L (R; H™Y).

loc
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
Cazenave—Haraux '80: approximate f near 0 by its Taylor expansion at

z = ¢, and compactness arguments, thanks to suitable a priori estimates,
in the case A < 0.
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
Cazenave—Haraux '80: approximate f near 0 by its Taylor expansion at

z = ¢, and compactness arguments, thanks to suitable a priori estimates,
in the case A < 0.

~~ This approach does not seem to work in the case A > 0.
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
Cazenave—Haraux '80: approximate f near 0 by its Taylor expansion at

z = ¢, and compactness arguments, thanks to suitable a priori estimates,
in the case A < 0.

~~ This approach does not seem to work in the case A > 0.

Different strategy: make the nonlinearity locally Lipschitzean and avoid
the unboundedness of the logarithm near zero,

. 1
iOr e + EAUE = Aln (5 + |u€|2) Us,  Ugjp=g = Uo-
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
Cazenave—Haraux '80: approximate f near 0 by its Taylor expansion at
z = ¢, and compactness arguments, thanks to suitable a priori estimates,
in the case A < 0.

~~ This approach does not seem to work in the case A > 0.

Different strategy: make the nonlinearity locally Lipschitzean and avoid
the unboundedness of the logarithm near zero,

. 1
iOr e + EAUE = Aln (5 + |u€|2) Us,  Ugjp=g = Uo-

~~ For fixed £ > 0: global well-posedness in L?(RY).
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
Cazenave—Haraux '80: approximate f near 0 by its Taylor expansion at
z = ¢, and compactness arguments, thanks to suitable a priori estimates,
in the case A < 0.

~~ This approach does not seem to work in the case A > 0.

Different strategy: make the nonlinearity locally Lipschitzean and avoid
the unboundedness of the logarithm near zero,

. 1
iOr e + EAUE = Aln (5 + |u€|2) Us,  Ugjp=g = Uo-

~~ For fixed £ > 0: global well-posedness in L?(RY).
~> Not enough to pass to the limit: need compactness.
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Existence in H! N F(H?)

Recall that f : z +— zIn|z|? is not Lipschitz continuous.
Cazenave—Haraux '80: approximate f near 0 by its Taylor expansion at
z = ¢, and compactness arguments, thanks to suitable a priori estimates,
in the case A < 0.

~~ This approach does not seem to work in the case A > 0.

Different strategy: make the nonlinearity locally Lipschitzean and avoid
the unboundedness of the logarithm near zero,

. 1
iOr e + EAUE = Aln (5 + |u€|2) Us,  Ugjp=g = Uo-

~~ For fixed £ > 0: global well-posedness in L?(RY).
~> Not enough to pass to the limit: need compactness.
H' N F(H®) C L? is compact for any s > 0.
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A priori estimates

1
i0c0ju- + 5A0uc = Aln (e + |uel?) Ojue + 2X Re(:0;u; ) u.

E‘1'|U€|2

Cle|

L? estimate+Gronwall: ||uc(t)||y < |Juollgr€€!¥, C independent of e.
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A priori estimates

1
i0c0ju- + 5A0uc = Aln (e + |uel?) Ojue + 2X Re(:0;u; ) u.

E‘1'|Us|2

Cle|

L? estimate+Gronwall: ||uc(t)||y < |Juollgr€€!¥, C independent of e.

Let I o(t) == / (x)2*|uc|?(t, x) dx. Energy estimate:
Rd

d x-Vu. _ a—
ot =2a1m / W T (t)dx < 2] ()2 ua(0)]| 2] Vue(t)]| 2

< 2a] (9% we ()2 Vue(t)]] 12

since o < 1.
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A priori estimates

1
i0c0ju- + 5A0uc = Aln (e + |uel?) Ojue + 2X Re(:0;u; ) u.

E‘1'|Us|2

Cle|

L? estimate+Gronwall: ||uc(t)||y < |Juollgr€€!¥, C independent of e.

Let I o(t) == / (x)2*|uc|?(t, x) dx. Energy estimate:
Rd

d x-Vu. _ a—
ot =2a1m / W T (t)dx < 2] ()2 ua(0)]| 2] Vue(t)]| 2

< 2a] (9% we ()2 Vue(t)]] 12

since o < 1.
~+ Closed system of a priori estimates, uniformly in € € (0, 1].
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Convergence of the approximating sequence

. 1
iO¢u- + EAUE =\n (e + |u€|2) Us,  Ugjp=g = Uo-

(ue)e uniformly bounded in L((—T, T); H N F(HY)), for any T > 0.
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Convergence of the approximating sequence

. 1
iO¢u- + EAUE =\n (e + |u€|2) Us,  Ugjp=g = Uo-

(ue)e uniformly bounded in L((—T, T); H N F(HY)), for any T > 0.
Equation ~ time compactness in H~2(RY).
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Convergence of the approximating sequence

. 1
iO¢u- + EAUE =\n (e + |u€|2) Us,  Ugjp=g = Uo-

(ue)e uniformly bounded in L((—T, T); H N F(HY)), for any T > 0.
Equation ~ time compactness in H=2(R9).

Arzela-Ascoli ~ convergence of a subsequence: existence of a global weak
solution.
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Strong convergence

e In the case A < 0, strong convergence result for another approximating
procedure (Cazenave-Haraux '80, M. Hayashi '18),

|u — Gel| oo ([0, T7:) v 0.

o In the case A > 0, the strong convergence
lu = telloo (o, 7y:02) 30 (hence [[u — uelloo (o, Tme) 2 0. s < 1)
is proved for d = 1 and up € H' N F(H!), and
o = vell oo ([0, 77 19 0 s<2

is proved for d = 1,2,3 and ug € H? N F(H?). See Bao-C.-Su-Tang. ..
and next slide. Key inequality:

%HU(t) — ue(t)| T2 < AN ([lu(t) — we(0)]T2 + VeEllu(t) = ue(t)l]i2) -
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Higher regularity

Problem: z + zIn|z|? is not smooth (at the origin). Impossible to
differentiate the equation too many times.
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Higher regularity

Problem: z + zIn|z|? is not smooth (at the origin). Impossible to
differentiate the equation too many times.
Propagation of H? regularity: Kato's trick.

1
iOru + EAU = Aln (Ju?) u
~~ To control the H2-norm, control |O;ul|;2, since

utn ||, < H\U\WHL n H\U\HHB, VS > 0,

Sl + ull ¥ ey, for 0< 8 < 1.
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Higher regularity

Problem: z + zIn|z|? is not smooth (at the origin). Impossible to
differentiate the equation too many times.

Propagation of H? regularity: Kato's trick.
. 1 2
iOru + EAU =Aln(Ju]®) u
~~ To control the H2-norm, control |O;ul|;2, since
Jatn ]l o < [l + et . ve>o,
L2 L2
Sl + ull ¥ ey, for 0< 8 < 1.

Uniform control of ||0;uc||;2: (almost) like the control of ||[Vug|| 2.
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Higher regularity

Problem: z + zIn|z|? is not smooth (at the origin). Impossible to
differentiate the equation too many times.

Propagation of H? regularity: Kato's trick.
. 1 2
iOru + EAU =Aln(Ju]®) u
~~ To control the H2-norm, control |O;ul|;2, since

|uin |u|2H > SulPo) .+ ||ur0) L, Ve >0,
L L2 L2
Sl + ull ¥ ey, for 0< 8 < 1.

Uniform control of ||0;uc||;2: (almost) like the control of ||[Vug|| 2.
~ Open question: what about H3?
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Gaussian data: general case

Theorem (Gaussian data, d = 1)
Suppose d = 1, and let

up(x) = boe_aoxz/Z, ag, bgp € C, ag :=Reag > 0.

The solution of LogNLS is given by

2
exp (—i(b(t) - aozxi + /t));>

() = 02 )

bo
Vr(t)
where ¢ € R and r > 0 solve the ODEs

¢=%+A|n|bo|2+mnr, $(0) = 0,

. 4042 4)\0&0 i
F= —30 + , r(0)=1, /(0) = —2TIm ap.
r r
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Multidimensional case: tensorization

Corollary (Gaussian data, d > 2)
If

d
UO(X17 e 7Xd) = H UOj(Xj)7
j=1

with ug; as in the previous result, then

d
= LIue,

with u; given by the formula of the previous result.

RENEILS

| \

This tensorization phenomenon is due to the property
Inlab| = In|a| + In|b].
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Gaussian data: case A > 0

_1ls5d %2 .
A>0, UO(X) = bge 2 Yz aOJXf, with by, aoj € C, Qpj = Re aogj > 0. Then

x-2 Fi(t) X2
u(t,x) = boH Fexp(l@ t) - X0i5 207 ()+'rﬁ;é>

for some real-valued functions ¢j, rj depending on t only.

ri(t) = 2t/ Aag In t (1 + o(1)> . H(t) =2y Aag Int (1 + o(1)) .

N lwoll
7 (evine) " (w2

IVu(t)||Z2 (RY) , 2)\dHUOHLz Re)Int.

[u()] oo (e
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Three new features

o Dispersion: usual t~9/2 rate becomes (t+/Int)~9/2.
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Three new features

o Dispersion: usual t~9/2 rate becomes (t+/Int)~9/2.
e Unboundedness in H: ||[Vu(t)||2 ~ VInt.
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Three new features

o Dispersion: usual t~9/2 rate becomes (t+/Int)~9/2.
e Unboundedness in H: ||[Vu(t)||2 ~ VInt.

@ Universal profile:

(2tV/Xn £)7/? ‘u (t,x X 2tV Aln t) — %e“xwz,

t—oo 7

regardless of the initial variances.
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Three new features

o Dispersion: usual t~9/2 rate becomes (t+/Int)~9/2.
e Unboundedness in H: ||[Vu(t)||2 ~ VInt.

@ Universal profile:

(2tV/Xn £)7/? ‘u (t,x x 2tV A ln t) — %6_‘”2/2,

t—oo 7

regardless of the initial variances.

~~ Miraculous explicit computations, precious guide for the general case.
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Schrodinger equation with quadratic Hamiltonian

Model case: the harmonic oscillator,

x|

iOru + AU_TU ; Ujg—g = Up-
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Schrodinger equation with quadratic Hamiltonian

Model case: the harmonic oscillator,

x|

iOru + AU_TU ; Ujg—g = Up-

o Eigenbasis: Hermite functions, o, = 5 + N.
@ The solutions are periodic in time.

e Explicit fundamental solution: Mehler's formula. For |t| < 7/2,

1 i (WP oy ey
u(tx) = = /R e ( ) aly)ay

(2imsint)d/2
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Schrodinger equation with quadratic Hamiltonian

When the Hamiltonian depends on time (1D case, not even general):

2

t
iOpu + a(z)&fu = b(t)%u ; Ujg=o = Uo-

@ Envelope equation in the semi-classical limit of coherent states.
@ A generalized Mehler’s formula is available.

o If up is Gaussian, then so is u(t,-) for all t € R (Hagedorn '80): a
PDE becomes a system of ODEs.
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Time dependent harmonic oscillator

1
i0ru + 58)2(u = Q(t)?u ;U= = Uo-
Seek formally the solution as
1

) = (o)

/ e2 (U280 +7(8)y*) Yo (1) gy
R
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Time dependent harmonic oscillator

1
i0ru + 58)2(u = Q(t)?u ;U= = Uo-
Seek formally the solution as
1

/ e2 (U280 +7(8)y*) Yo (1) gy
R

We find:
Xioa+a®+Q=0 xy: f+af=0 y': F+6°=0,
Im(C): = ap.
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Time dependent harmonic oscillator

x2

1
i0ru + 58)2(u = Q(t)?u ;U= = Uo-
Seek formally the solution as
1

/ e2 (U280 +7(8)y*) Yo (1) gy
R

We find:
Xioa+a®+Q=0 xy: f+af=0 y': F+6°=0,
Im(C): = ap.

wis given by i+ Q(t)p=0 ; p0)=0, [0)=1.
We also have
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Time dependent harmonic oscillator

x2

1
i0ru + 58)2(u = Q(t)?u ;U= = Uo-
Seek formally the solution as
1

/ e2 (U280 +7(8)y*) Yo (1) gy
R

We find:

a1 Q=0 i frap=0 ¥ 4+57=0,

Im(C): = ap.

wis given by i+ Q(t)p=0 ; p0)=0, [0)=1.
We also have

Examples.
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Gaussian case: from PDE to ODE in the linear case

Plug u(t,x) = b(t)e~2(1**/2 into the equation

X2

1
iOpu + 58§u = Q(t)?u ; Ujg— = Uo-

We find: ) ) )
X ab  ,x X
Ib—laEb—7+a 7b—Q?b,
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Gaussian case: from PDE to ODE in the linear case

Plug u(t,x) = b(t)e~2(1**/2 into the equation

X2

1
iOpu + 58§u = Q(t)?u ; Ujg— = Uo-

We find: ) ) )
X ab  ,x X
Ib—laEb—7+a 7b—Q?b,

hence b
i3-a+Q=0; ib—%:o.
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Gaussian case: from PDE to ODE in the linear case

Plug u(t,x) = b(t)e~2(1**/2 into the equation

X2

1
iOpu + 58§u = Q(t)?u ; Ujg— = Uo-

We find: ) ) )
X ab  ,x X
Ib—laEb—7+a 7b—Q?b,

hence b
i3-a+Q=0; ib—%:o.

We can express b as a function of a:
i t
b(t) = bpe 2 Jo 2,
and a solves a complex Riccati equation,

ia—a’=qQ, a|t—0 = a0
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The complex Riccati equation

ia—a®= Q, a|t—0 = ao-

Seeking a of the form a = —ig, we get: @+ Qw = 0.

w
~> Same linear ODE as in the computation of Mehler’s formula.

Amplitude (dispersion or not):
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Gaussian case: from PDE to ODE for logNLS

Suppose d = 1, and plug u(t,x) = b(1.“)e_"”("‘)x2/2 into the equation:

_ 2 2
ib— ia=-b - %b +2*%b=A(In (|b) — (Rea)?) b,
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Gaussian case: from PDE to ODE for logNLS

Suppose d = 1, and plug u(t,x) = b(1.“)e_"”("‘)x2/2 into the equation:

_ 2 2
ib— i3 b 22 4 2 b= A (In(|bP) - (Rea) <) b,
27 2777
hence

. ab
ja—a?=2\Rea; ib— 2 =bln(b?).
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Gaussian case: from PDE to ODE for logNLS

Suppose d = 1, and plug u(t,x) = b(1.“)e_"”("‘)x2/2 into the equation:

_ 2 2
ib— ia=-b - %b +2*%b=A(In (|b) — (Rea)?) b,

hence b
ja—a?=2\Rea; ib— 2 =bln(b?).

We can express b as a function of a:
H t
b(t) = bo exp <—i)\tln (1bol?) — éA(t) - i)\lm/ A(s)sds> :
0

t
where we have set A(t) := / a(s)ds.
0
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Gaussian case: from PDE to ODE for logNLS

Suppose d = 1, and plug u(t,x) = b(1.“)e_"”("‘)x2/2 into the equation:

_ 2 2
ib— ia=-b - %b +2*%b=A(In (|b) — (Rea)?) b,

hence b
ja—a?=2\Rea; ib— 2 =bln(b?).

We can express b as a function of a:
H t
b(t) = bo exp <—i)\tln (1bol?) — éA(t) - i)\lm/ A(s)sds> :
0

t
where we have set A(t) := / a(s)ds. So we focus on
0
ia— a®> =2\Rea,

a|t:0 = ap.
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Toward a universal ODE

ia—a”=2\Rea, a,_o=a0=ao+ifo.

We seek a of the form a = —i. We get: W =2 wlm Y
w w
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Toward a universal ODE

ia—a”=2\Rea, a,_o=a0=ao+ifo.

W . w

We seek a of the form a = —i—. We get: & =2 \wlIm —.
L w w

Polar decomposition: w = re',

F—(0)2r=2xr0; 6r+20F=0.

- P
O)t—0 = 0, (r) =—fo-
|t=0

We decide r(0) = 1 s0 #(0) = Reag = ag and #(0) = — Imag = — 3. Note

d . . .
— (r2¢9> =r <2r'0 + ré’) =0,
dt

and we can express the problem in terms of r only:

Notice that

01 r (,y2 o
a(t)zr(t‘;zirgg, F:r—§+2)\70, r(0) =1, #(0)=—F.
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Partial conclusion

The solution is u(t, x) = b(t)e~ (/2 with
- t
b(t) = by exp <i)\t|n (\bg|2) - éA(t) — i\ Im/ A(s)sds) )
0
t
where we have set A(t) := / a(s)ds, and a is given by
0

ap ()L ao

(07 )

a(t) = +2/\— r(0) =1, f(0)=—po.

4
c

A solution to p = —, is given by p(t) = c\/1 + t2: usual dispersion.
0
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Partial conclusion

The solution is u(t, x) = b(t)e~ (/2 with
- t
b(t) = by exp <i)\t|n (\bg|2) - éA(t) — i\ Im/ A(s)sds) )
0
t
where we have set A(t) := / a(s)ds, and a is given by
0

ap ()L ao

(07 )

a(t) = +2/\— r(0) =1, f(0)=—po.

4
c

A solution to p = —, is given by p(t) = c\/1 + t2: usual dispersion.
0

The relevant equation is the red one. Multiplying by r and integrating,

2
(f)2 =G — O%’—I—‘l)@zoh r.
r
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A < 0: periodic behavior

(72 = Co— % + 4hagn r = —20(r).

p 0 I +00
U'(p) - 0 +

400 +00

U(p) \ /

Umin
1 a?
Unin = — 2ﬂ —i-?o(x—l—xlnx) X:MSO,

@0

Unin < 0 unless Sy = p(0) = 0 and ap = 2|A|, the only case where
Umin = 0: Gausson.
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A < 0: periodic behavior

R

Figure: Potential U in the case ag =1 and A = —1.

For every energy E > Unin, the equation U(p) = E has two distinct
solutions. We infer that all the solutions are periodic, and the half-period

is given by

T:/f‘m
2 Jo. VE=-Ulp)

where p, < p* are the two above mentionned solutions.
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Case \ > 0: universal dispersion

o r o? a
a(t):r(to)2_ir§g’ 2 r§+2)\70, r(0) =1, F0)=—pp.

We can prove: for t > T, ¥ > 0, and r(t) — oo as t — co. Hence

2\«
leff

fof = (o > 0).

Universal dynamics for the logarithmic NLS
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Case \ > 0: universal dispersion

a(t) = r?‘tgz - ,:Eg P = % +2)\— r(0)

We can prove: for t >

T,7>0,and r(t) — oo as t — oo. Hence

2\«

reff

fof = (o > 0).

2\

Up to scaling (and initial data): 7 =
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Case \ > 0: universal dispersion

()ZFZ())2—ii§g’ .._ao+2)\7 HO) =1, H0)= —fo.

We can prove: for t > T, ¥ > 0, and r(t) — oo as t — co. Hence

2\«

reff

Foff = (o > 0).

2\

Up to scaling (and initial data): 7 =
By integration,

foff = \/Co + 4dag In reff,

with Cp = 0 in the case of the universal dispersion 7.
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Universal dispersion

foff = \/Co + 4 ag In rog.

Separate variables:

/reff dz
=t—T.
VG +4laginz
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Universal dispersion

foff = \/Co + 4 ag In rog.

Separate variables:
/reff dZ .
VG +4aglnz
Set y = /Gy + 4 g Inz. The left hand side becomes

1
2\

- T.

Y 2
ely"=Co)/(42a0) g,
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Universal dispersion

foff = \/Co + 4 ag In rog.

Separate variables:
/reff dz .
VG +4aglnz
Set y = /Gy + 4)\ag Inz. The left hand side becomes

1
2\

- T.

Y 2
ely"=Co)/(42a0) g,

Dawson function:

X
2 2 r
/eydyNeX:> off ~ t.
x—00 2X \/CQ + 4o In rog t—o0
leff

VAdag In reg f:;OO
reg(t) ~ 2ty/Aaglint.
t—o0

Since rog — 00, t, hence
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Conclusion

_1 Zd ag; x> .
up(x) = boe™ 2 ==1%%%  with by, ap; € C, agj = Reag; > 0. Then
X ;i (t) X )

t,x) = b (
u(t, x) OH exp ipj(t) — aoj2r()+lrj(t)2
for some real-valued functions ¢;, r; depending on t only.

r(t) = 2t/ Aag In t (1 + o(1)) . H(t) =2\ hagInt (1 + 0(1)) .

2
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Conclusion

_id L2
up(x) = bpe™ 2 2=1200%  \ith by, aoj € C, agj = Reagj > 0. Then

2

(t,x) = b H e 5 r'(t)Xj2
u(t, x) 0 \/7 xp</¢J t) — 4 )

0“”2r (6) " r(t) 2

for some real-valued functions ¢;, r; depending on t only.

r(t) = 2t/ Aag In t (1 + o(1)) . H(t) =2\ hagInt (1 n 0(1)) .
~» Main (space dependent) oscillation:

)X i

J
~N =~ =

(t)? t—oo 2t tsoo T 2

S
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Conclusion

_id L2
up(x) = bpe™ 2 2=1200%  \ith by, aoj € C, agj = Reagj > 0. Then

() Xf)

t.x) = b (
u(t, x) OHFGXP ipj(t) — aoj2r()+lrj(t)2
for some real-valued functions ¢;, r; depending on t only.

r(t) = 2t/ Aag In t (1 + o(1)) . H(t) =2\ hagInt (1 + 0(1)) .

~» Main (space dependent) oscillation:

. 2 2 . 2
o)X X TX

(t)? tﬁooi t—00 ;?

S

~ Asymptotic variance:

2 2 2 2
X X ¢ X

J
o 2rj2(t) to0 8t2XagjInt  8t2XInt t—oo 27(t)?
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To be continued. ..

These remarks motivate the change of unknown function:

u(t,x) = L v x ex /@ﬁ ol 2
v )_T(t)d/2 (t’ T(t)> p< 7(t) 2 > [o1rE

where y(x) = e~ X*/2,
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