Universal dynamics for the logarithmic Schrödinger equation
 Lecture 1: general presentation and main results

Rémi Carles

CNRS \& Univ Rennes

Based on a joint work with Isabelle Gallagher (ENS Paris)

IRMAR

Heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

If $m:=\int_{\mathbb{R}^{d}} u_{0} \neq 0$,

$$
u(t, x) \underset{t \rightarrow \infty}{\sim} \frac{m}{(2 \pi t)^{d / 2}} e^{-|x|^{2} /(2 t)}
$$

\rightsquigarrow Universal Gaussian profile.

Heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.

Large time description:

If $m:=\int_{\mathbb{R}^{d}} u_{0} \neq 0$,

\rightsquigarrow Universal Gaussian profile.

Heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Large time description:

$$
\hat{u}(t, \xi)=e^{-\frac{t}{2}|\xi|^{2}} \hat{u}_{0}(\xi)=\underbrace{e^{-\frac{t}{2}|\xi|^{2}} \hat{u}_{0}(0)}_{\text {order } t^{-d /(2 p)} \text { in } L^{p}}+\underbrace{e^{-\frac{t}{2}|\xi|^{2}}\left(\hat{u}_{0}(\xi)-\hat{u}_{0}(0)\right)}_{\mathcal{O}\left(|\xi| e^{-\frac{t}{2}|\xi|^{2}}\right): \text { order } t^{-(d+1) /(2 p)} \text { in } L^{p}}
$$

If $m:=\int_{\mathbb{R}^{d}} u_{0} \neq 0$,

\leadsto Universal Gaussian profile.

Heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Large time description:

$$
\hat{u}(t, \xi)=e^{-\frac{t}{2}|\xi|^{2}} \hat{u}_{0}(\xi)=\underbrace{e^{-\frac{t}{2}|\xi|^{2}} \hat{u}_{0}(0)}_{\text {order } t^{-d /(2 p)} \text { in } L^{p}}+\underbrace{e^{-\frac{t}{2}|\xi|^{2}}\left(\hat{u}_{0}(\xi)-\hat{u}_{0}(0)\right)}_{\mathcal{O}\left(|\xi| e^{-\frac{t}{2}|\xi|^{2}}\right): \text { order } t^{-(d+1) /(2 p)} \text { in } L^{p}}
$$

If $m:=\int_{\mathbb{R}^{d}} u_{0} \neq 0$,

$$
u(t, x) \underset{t \rightarrow \infty}{\sim} \frac{m}{(2 \pi t)^{d / 2}} e^{-|x|^{2} /(2 t)}
$$

\rightsquigarrow Universal Gaussian profile.

Heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Large time description:

$$
\hat{u}(t, \xi)=e^{-\frac{t}{2}|\xi|^{2}} \hat{u}_{0}(\xi)=\underbrace{e^{-\frac{t}{2}|\xi|^{2}} \hat{u}_{0}(0)}_{\text {order } t^{-d /(2 p)} \text { in } L^{p}}+\underbrace{e^{-\frac{t}{2}|\xi|^{2}}\left(\hat{u}_{0}(\xi)-\hat{u}_{0}(0)\right)}_{\mathcal{O}\left(|\xi| e^{-\frac{t}{2}|\xi|^{2}}\right) \text { : order } t^{-(d+1) /(2 p)} \text { in } L^{p}}
$$

If $m:=\int_{\mathbb{R}^{d}} u_{0} \neq 0$,

$$
u(t, x) \underset{t \rightarrow \infty}{\sim} \frac{m}{(2 \pi t)^{d / 2}} e^{-|x|^{2} /(2 t)}
$$

\rightsquigarrow Universal Gaussian profile.

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Two consequences:

- Disnersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{|t| d^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$.
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \xrightarrow[t \rightarrow \pm \infty]{ } 0$, where

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right)
$$

\rightsquigarrow Universal oscillation, but the profile depends on the initial data.
Example (Explicit-computation in the Gaussian case)

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Two consequences:

- Dispersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{\mid t^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$.
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \xrightarrow[t \rightarrow \pm \infty]{\longrightarrow} 0$, where

\leadsto Universal oscillation, but the profile depends on the initial data.
Example (Explicit computation in the Gaussian case)

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Two consequences:

- Dispersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{|t|^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \xrightarrow[t \rightarrow \pm \infty]{\longrightarrow} 0$, where

\leadsto Universal oscillation, but the profile depends on the initial data.
Example (Explicit computation in the Gaussian case)

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Two consequences:

- Dispersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{|t|^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$.
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{t \rightarrow \pm \infty} 0$, where $A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}$.

\rightsquigarrow Universal oscillation, but the profile depends on the initial data.

Example (Explicit computation in the Gaussian case)

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Two consequences:

- Dispersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{|t|^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$.
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \pm \infty}{\longrightarrow} 0$, where

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}} .
$$

\rightsquigarrow Universal oscillation, but the profile depends on the initial data.

Example (Explicit computation in the Gaussian case)

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Two consequences:

- Dispersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{|t|^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$.
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \pm \infty}{\longrightarrow} 0$, where

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}} .
$$

\rightsquigarrow Universal oscillation, but the profile depends on the initial data.
Example (Explicit computation in the Gaussian case)

Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=0, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Explicit solution : $u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y$.
Two consequences:

- Dispersion: $\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{|t|^{d / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}$.
- Large time description: $\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \pm \infty}{\longrightarrow} 0$, where

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}
$$

\rightsquigarrow Universal oscillation, but the profile depends on the initial data.

Example (Explicit computation in the Gaussian case)

$$
\operatorname{Re} z>0: \quad e^{i \frac{t}{2} \Delta}\left(e^{-z \frac{|x|^{2}}{2}}\right)=\frac{1}{(1+i t z)^{d / 2}} e^{-\frac{z}{1+i t z} \frac{|x|^{2}}{2}} .
$$

Proof of the asymptotic behaviour

$$
u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y=M_{t} D_{t} \mathcal{F} M_{t} u_{0}(x)
$$

where the three operators,

$$
\begin{aligned}
& M_{t}=e^{i|x|^{2} /(2 t)}, \quad D_{t} \varphi(x)=\frac{1}{(i t)^{d / 2}} \varphi\left(\frac{x}{t}\right), \\
& \text { and } \mathcal{F} \phi(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} \phi(x) d x,
\end{aligned}
$$

are unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. We note that

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}=M_{t} D_{t} \mathcal{F} u_{0}(x) .
$$

$$
\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|M_{t} D_{t} \mathcal{F}\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Proof of the asymptotic behaviour

$$
u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y=M_{t} D_{t} \mathcal{F} M_{t} u_{0}(x)
$$

where the three operators,

$$
\begin{aligned}
& M_{t}=e^{i|x|^{2} /(2 t)}, \quad D_{t} \varphi(x)=\frac{1}{(i t)^{d / 2}} \varphi\left(\frac{x}{t}\right), \\
& \text { and } \mathcal{F} \phi(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} \phi(x) d x,
\end{aligned}
$$

are unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. We note that

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}=M_{t} D_{t} F u_{0}(x)
$$

$$
\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|M_{t} D_{t} \mathcal{F}\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Proof of the asymptotic behaviour

$$
u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y=M_{t} D_{t} \mathcal{F} M_{t} u_{0}(x)
$$

where the three operators,

$$
\begin{aligned}
& M_{t}=e^{i|x|^{2} /(2 t)}, \quad D_{t} \varphi(x)=\frac{1}{(i t)^{d / 2}} \varphi\left(\frac{x}{t}\right), \\
& \text { and } \mathcal{F} \phi(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} \phi(x) d x,
\end{aligned}
$$

are unitary on $L^{2}\left(\mathbb{R}^{d}\right)$.

We conclude thanks to Lebesgue Dominated Convargegre Theorem. छٍ

Proof of the asymptotic behaviour

$$
u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y=M_{t} D_{t} \mathcal{F} M_{t} u_{0}(x)
$$

where the three operators,

$$
\begin{aligned}
& M_{t}=e^{i|x|^{2} /(2 t)}, \quad D_{t} \varphi(x)=\frac{1}{(i t)^{d / 2}} \varphi\left(\frac{x}{t}\right), \\
& \text { and } \mathcal{F} \phi(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} \phi(x) d x
\end{aligned}
$$

are unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. We note that

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}=M_{t} D_{t} \mathcal{F} u_{0}(x)
$$

Proof of the asymptotic behaviour

$$
u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y=M_{t} D_{t} \mathcal{F} M_{t} u_{0}(x)
$$

where the three operators,

$$
\begin{aligned}
& M_{t}=e^{i|x|^{2} /(2 t)}, \quad D_{t} \varphi(x)=\frac{1}{(i t)^{d / 2}} \varphi\left(\frac{x}{t}\right), \\
& \text { and } \mathcal{F} \phi(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} \phi(x) d x
\end{aligned}
$$

are unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. We note that

$$
\begin{gathered}
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}=M_{t} D_{t} \mathcal{F} u_{0}(x) . \\
\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|M_{t} D_{t} \mathcal{F}\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
\end{gathered}
$$

Proof of the asymptotic behaviour

$$
u(t, x)=\frac{1}{(2 i \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{2 t}} u_{0}(y) d y=M_{t} D_{t} \mathcal{F} M_{t} u_{0}(x)
$$

where the three operators,

$$
\begin{aligned}
& M_{t}=e^{i|x|^{2} /(2 t)}, \quad D_{t} \varphi(x)=\frac{1}{(i t)^{d / 2}} \varphi\left(\frac{x}{t}\right), \\
& \text { and } \mathcal{F} \phi(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} \phi(x) d x
\end{aligned}
$$

are unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. We note that

$$
A(t) u_{0}(x)=\frac{1}{(i t)^{d / 2}} \hat{u}_{0}\left(\frac{x}{t}\right) e^{i \frac{|x|^{2}}{2 t}}=M_{t} D_{t} \mathcal{F} u_{0}(x)
$$

$$
\left\|u(t)-A(t) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|M_{t} D_{t} \mathcal{F}\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\left(M_{t}-1\right) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

We conclude thanks to Lebesgue Dominated Convergence Theorem.

Nonlinear Schrödinger equation: power nonlinearity

For $\lambda \in \mathbb{R}, 0<\sigma<\frac{2}{(d-2)_{+}}$, consider:

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)
$$

The (inverse of) the wave operator is not trivial: $u_{0} \mapsto u_{+}$is one-to-one.

- If $\lambda<0$: finite time blow-up is possible when $\sigma \geqslant 2 / d$,

Existence of large stationary solutions:

Nonlinear Schrödinger equation: power nonlinearity

For $\lambda \in \mathbb{R}, 0<\sigma<\frac{2}{(d-2)_{+}}$, consider:

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in H^{1}\left(\mathbb{R}^{d}\right) .
$$

- If $\lambda>0$: global existence $\left(u \in L^{\infty}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{d}\right)\right)\right.$), and if $\sigma>2 / d$,

$$
\exists u_{+} \in H^{1}\left(\mathbb{R}^{d}\right), \quad\left\|u(t)-e^{i \frac{t}{2} \Delta} u_{+}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{\longrightarrow} 0
$$

The (inverse of) the wave operator is not trivial: $u_{0} \mapsto u_{+}$is one-to-one.

- If $\lambda<0$: finite time blow-up is possible when $\sigma \geqslant 2 / d$,

Existence of large stationary solutions:

Nonlinear Schrödinger equation: power nonlinearity

For $\lambda \in \mathbb{R}, 0<\sigma<\frac{2}{(d-2)_{+}}$, consider:

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)
$$

- If $\lambda>0$: global existence $\left(u \in L^{\infty}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{d}\right)\right)\right.$), and if $\sigma>2 / d$,

$$
\exists u_{+} \in H^{1}\left(\mathbb{R}^{d}\right), \quad\left\|u(t)-e^{i \frac{t}{2} \Delta} u_{+}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

The (inverse of) the wave operator is not trivial: $u_{0} \mapsto u_{+}$is one-to-one.

- If $\lambda<0$: finite time blow-up is possible when $\sigma \geqslant 2 / d$,

Existence of large stationary solutions:

Nonlinear Schrödinger equation: power nonlinearity

For $\lambda \in \mathbb{R}, 0<\sigma<\frac{2}{(d-2)_{+}}$, consider:

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u, \quad x \in \mathbb{R}^{d}, \quad u_{\mid t=0}=u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)
$$

- If $\lambda>0$: global existence $\left(u \in L^{\infty}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{d}\right)\right)\right.$), and if $\sigma>2 / d$,

$$
\exists u_{+} \in H^{1}\left(\mathbb{R}^{d}\right), \quad\left\|u(t)-e^{i \frac{t}{2} \Delta} u_{+}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

The (inverse of) the wave operator is not trivial: $u_{0} \mapsto u_{+}$is one-to-one.

- If $\lambda<0$: finite time blow-up is possible when $\sigma \geqslant 2 / d$,

$$
\lim _{t \rightarrow T^{*}}\|\nabla u(t)\|_{L^{2}}=\infty
$$

Existence of large stationary solutions: $u(t, x)=e^{i \omega t} \psi(x)$.

Logarithmic nonlinear Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

\leadsto Initial physical motivation $(\approx 1976-1985)$: nonlinear wave mechanics, open quantum systems, nuclear physics.
More recent interest (since 2000): quantum optics, transport and diffusion phenomena, effective quantum gravity, superfluidity and BEC.
\rightsquigarrow Formal conservations:

- Mass: $M(u(t)):=\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$
- Momentum: $J(u(t)):=\operatorname{Im} \int_{\mathbb{R}^{d}} \bar{u}(t, x) \nabla u(t, x) d x$.
- Energy (Hamiltonian):

Logarithmic nonlinear Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

\rightsquigarrow Initial physical motivation ($\approx 1976-1985$): nonlinear wave mechanics, open quantum systems, nuclear physics.
More recent interest (since 2000): quantum optics, transport and diffusion phenomena, effective quantum gravity, superfluidity and BEC.

- Mass:
- Momentum: $J(u(t)):=\operatorname{Im} \iint^{d} u(t, x) \nabla u(t, x) d x$.
- Energy (Hamiltonian)

Logarithmic nonlinear Schrödinger equation

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

\rightsquigarrow Initial physical motivation (≈ 1976-1985): nonlinear wave mechanics, open quantum systems, nuclear physics.
More recent interest (since 2000): quantum optics, transport and diffusion phenomena, effective quantum gravity, superfluidity and BEC.
\rightsquigarrow Formal conservations:

- Mass: $M(u(t)):=\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$.
- Momentum: $J(u(t)):=\operatorname{Im} \int_{\mathbb{R}^{d}} \bar{u}(t, x) \nabla u(t, x) d x$.
- Energy (Hamiltonian):

$$
E(u(t)):=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{\mathbb{R}^{d}}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x .
$$

Why is the Cauchy problem delicate?

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0} .
$$

\rightsquigarrow The nonlinearity is not locally Lipschitz continuous: the usual fixed point argument cannot be repeated.
\rightsquigarrow The energy has no definite sign,

Why is the Cauchy problem delicate?

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

\rightsquigarrow The nonlinearity is not locally Lipschitz continuous: the usual fixed point argument cannot be repeated.
\rightsquigarrow The energy has no definite sign,

$$
\begin{gathered}
E(u(t)):=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{\mathbb{R}^{d}}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x . \\
\int_{|u|<1}|u|^{2} \ln |u|^{2} d x \leqslant 0, \quad \text { while } \quad \int_{|u|>1}|u|^{2} \ln |u|^{2} d x \geqslant 0 .
\end{gathered}
$$

A priori estimates: case $\lambda<0$

Suppose $\lambda<0$: positive part of the energy,

$$
\begin{aligned}
0 \leqslant E_{+}(u(t)) & :=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{|u|<1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x \\
& \leqslant E\left(u_{0}\right) \underbrace{-\lambda}_{+|\lambda|} \int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x .
\end{aligned}
$$

Since the logarithm grows slowly,

provided that $\varepsilon<2 d /(d-2)_{+}$. Using the conservation of mass, $E_{+}\left(u^{\prime}(t)\right) \leqslant E^{(}\left(u_{0}\right)+C_{8} E_{+}\left(u^{(t)}\right) \varepsilon d / 4$

A priori estimates: case $\lambda<0$

Suppose $\lambda<0$: positive part of the energy,

$$
\begin{aligned}
0 \leqslant E_{+}(u(t)) & :=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{|u|<1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x \\
& \leqslant E\left(u_{0}\right) \underbrace{-\lambda}_{+|\lambda|} \int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x .
\end{aligned}
$$

Since the logarithm grows slowly,

$$
\begin{aligned}
\int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x & \leqslant C_{\varepsilon} \int_{|u|>1}|u(t, x)|^{2+\varepsilon} d x \\
& \lesssim\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2+\varepsilon-\varepsilon d / 2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\varepsilon d / 2}
\end{aligned}
$$

provided that $\varepsilon<2 d /(d-2)_{+}$. Using the conservation of mass,

A priori estimates: case $\lambda<0$

Suppose $\lambda<0$: positive part of the energy,

$$
\begin{aligned}
0 \leqslant E_{+}(u(t)) & :=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{|u|<1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x \\
& \leqslant E\left(u_{0}\right) \underbrace{-\lambda}_{+|\lambda|} \int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x .
\end{aligned}
$$

Since the logarithm grows slowly,

$$
\begin{aligned}
\int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x & \leqslant C_{\varepsilon} \int_{|u|>1}|u(t, x)|^{2+\varepsilon} d x \\
& \lesssim\|u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2+\varepsilon-\varepsilon d / 2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\varepsilon d / 2}
\end{aligned}
$$

provided that $\varepsilon<2 d /(d-2)_{+}$. Using the conservation of mass,

$$
E_{+}(u(t)) \leqslant E\left(u_{0}\right)+C_{\varepsilon} E_{+}(u(t))^{\varepsilon d / 4} .
$$

A priori estimates: case $\lambda<0$

$$
E_{+}(u(t)) \leqslant E\left(u_{0}\right)+C_{\varepsilon} E_{+}(u(t))^{\varepsilon d / 4}
$$

Picking $\varepsilon<4 / d$ yields $E_{+}(u(t)) \in L^{\infty}(\mathbb{R})$, hence

$$
u \in L^{\infty}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{d}\right)\right), \quad|u|^{2} \ln |u|^{2} \in L^{\infty}\left(\mathbb{R} ; L^{1}\left(\mathbb{R}^{d}\right)\right)
$$

\rightsquigarrow Nice a priori estimate in the case $\lambda<0$, in

$$
W:=\left\{u \in H^{1}\left(\mathbb{R}^{d}\right), x \mapsto|u(x)|^{2} \ln |u(x)|^{2} \in L^{1}\left(\mathbb{R}^{d}\right)\right\}
$$

\rightsquigarrow Mathematical study:

$$
W:=\left\{u \in H^{1}\left(\mathbb{R}^{d}\right), x \mapsto|u(x)|^{2} \ln |u(x)|^{2} \in L^{1}\left(\mathbb{R}^{d}\right)\right\}
$$

Theorem (Th. Cazenave \& A. Haraux '80)

$\lambda<0, u_{0} \in W$: unique, global solution $u \in C(\mathbb{R} ; W)$. The mass $M(u)$ and the energy $E(u)$ are independent of time.

- Proof by compactness arguments, using a regularization of the nonlinearity.
- Alternative proof by Masayuki Hayashi, proving the strong convergence of a sequence of approximate solutions.

A priori estimates: case $\lambda>0$

If $\lambda>0$,

$$
\begin{aligned}
0 \leqslant E_{+}(u(t)) & :=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x \\
& \leqslant E\left(u_{0}\right)+\lambda \int_{|u|<1}|u(t, x)|^{2} \ln \frac{1}{|u(t, x)|^{2}} d x .
\end{aligned}
$$

Since the logarithm grows slowly,

for $\varepsilon>0$ arbitrarily small. Analogue of Gagliardo-Nirenberg inequality,

A priori estimates: case $\lambda>0$

If $\lambda>0$,

$$
\begin{aligned}
0 \leqslant E_{+}(u(t)) & :=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x \\
& \leqslant E\left(u_{0}\right)+\lambda \int_{|u|<1}|u(t, x)|^{2} \ln \frac{1}{|u(t, x)|^{2}} d x .
\end{aligned}
$$

Since the logarithm grows slowly,

$$
\int_{|u|<1}|u(t, x)|^{2} \ln \frac{1}{|u(t, x)|^{2}} d x \leqslant C_{\varepsilon} \int_{|u|<1}|u(t, x)|^{2-\varepsilon} d x
$$

for $\varepsilon>0$ arbitrarily small.

A priori estimates: case $\lambda>0$

If $\lambda>0$,

$$
\begin{aligned}
0 \leqslant E_{+}(u(t)) & :=\frac{1}{2}\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{|u|>1}|u(t, x)|^{2} \ln |u(t, x)|^{2} d x \\
& \leqslant E\left(u_{0}\right)+\lambda \int_{|u|<1}|u(t, x)|^{2} \ln \frac{1}{|u(t, x)|^{2}} d x .
\end{aligned}
$$

Since the logarithm grows slowly,

$$
\int_{|u|<1}|u(t, x)|^{2} \ln \frac{1}{|u(t, x)|^{2}} d x \leqslant C_{\varepsilon} \int_{|u|<1}|u(t, x)|^{2-\varepsilon} d x
$$

for $\varepsilon>0$ arbitrarily small. Analogue of Gagliardo-Nirenberg inequality,

$$
\int_{\mathbb{R}^{d}}|u|^{2-\varepsilon} \lesssim\|u\|_{L^{2}}^{2-\varepsilon-\frac{d \varepsilon}{2 \alpha}}\left\||x|^{\alpha} u\right\|_{L^{2}}^{\frac{d \varepsilon}{2 \alpha}}, \quad 0<\varepsilon<\frac{4 \alpha}{d+2 \alpha} .
$$

Cauchy problem: case $\lambda>0$

$$
\begin{gathered}
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0} \\
\mathcal{F}\left(H^{\alpha}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right), x \mapsto\langle x\rangle^{\alpha} u(x) \in L^{2}\left(\mathbb{R}^{d}\right)\right\},
\end{gathered}
$$

Theorem (with I. Gallagher)

$\lambda>0, u_{0} \in \mathcal{F}\left(H^{\alpha}\right) \cap H^{1}\left(\mathbb{R}^{d}\right)$ with $0<\alpha \leqslant 1$.
There exists a unique, global solution $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R} ; \mathcal{F}\left(H^{\alpha}\right) \cap H^{1}\right)$. Mass $M(u)$ and energy $E(u)$ are independent of time. If in addition $u_{0} \in H^{2}\left(\mathbb{R}^{d}\right)$, then $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R} ; H^{2}\right)$.

Remark

$\mathcal{F}\left(H^{\alpha}\right) \cap H^{1} \subsetneq W$. Issue $=\{|u|<1\}$.

Dynamics?

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

Whether $\lambda<0$ or $\lambda>0$, we now have the existence of a unique global solution.
What can we say about its large time behavior?
Usual NLS, $i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u$.

- If $\lambda>0$ (defocusing case): scattering if $\sigma>1 / d$, long range scattering for small data if $0<\sigma \leqslant 1 / d$. The scattering operator is bijective from a neighborhood of 0 to itself (non-trivial dynamics).
- If $\lambda<0$ (focusing case): (long range) scattering for small data, but blow up may happen for large data when $\sigma \geqslant 2 / d$.
The logarithmic Schrödinger equation has completely different features.

Dynamics?

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

Whether $\lambda<0$ or $\lambda>0$, we now have the existence of a unique global solution.
What can we say about its large time behavior?
Usual NLS, $i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u$.

- If $\lambda>0$ (defocusing case): scattering if $\sigma>1 / d$, long range scattering for small data if $0<\sigma \leqslant 1 / d$. The scattering operator is bijective from a neighborhood of 0 to itself (non-trivial dynamics).
- If $\lambda<0$ (focusing case): (long range) scattering for small data, but blow up may happen for large data when $\sigma \geqslant 2 / d$.
The logarithmic Schrödinger equation has completely different features.

Dynamics?

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

Whether $\lambda<0$ or $\lambda>0$, we now have the existence of a unique global solution.
What can we say about its large time behavior?
Usual NLS, $i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u$.

- If $\lambda>0$ (defocusing case): scattering if $\sigma>1 / d$, long range scattering for small data if $0<\sigma \leqslant 1 / d$. The scattering operator is bijective from a neighborhood of 0 to itself (non-trivial dynamics).
- If $\lambda<0$ (focusing case): (long range) scattering for small data, but blow up may happen for large data when $\sigma \geqslant 2 / d$.

Dynamics?

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0}
$$

Whether $\lambda<0$ or $\lambda>0$, we now have the existence of a unique global solution.
What can we say about its large time behavior?
Usual NLS, $i \partial_{t} u+\frac{1}{2} \Delta u=\lambda|u|^{2 \sigma} u$.

- If $\lambda>0$ (defocusing case): scattering if $\sigma>1 / d$, long range scattering for small data if $0<\sigma \leqslant 1 / d$. The scattering operator is bijective from a neighborhood of 0 to itself (non-trivial dynamics).
- If $\lambda<0$ (focusing case): (long range) scattering for small data, but blow up may happen for large data when $\sigma \geqslant 2 / d$.
The logarithmic Schrödinger equation has completely different features.

Galilean invariance

Like the linear Schrödinger equation, or the "standard" NLS, logNLS enjoys translation invariance, and Galilean invariance:

If $u(t, x)$ solves

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad \lambda \in \mathbb{R}
$$

then so does

$$
u_{v}(t, x)=u(t, x-v t) e^{i v \cdot x-i|v|^{2} t / 2}
$$

for any $v \in \mathbb{R}^{d}$.

Forget all about scaling

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u
$$

For $k>0, k u$ solves

$$
i \partial_{t}(k u)+\frac{1}{2} \Delta(k u)=\lambda \ln \left(|u|^{2}\right) k u=\lambda \ln \left(|k u|^{2}\right) k u-\lambda\left(\ln k^{2}\right) k u .
$$

Gauge transform: $u_{k}:=(k u) e^{2 i t \lambda \ln k}$ solves the same equation as $u\left(=u_{1}\right)$.
\rightsquigarrow A scaling factor does not change the dynamics.
\rightsquigarrow Typical feature of linear equations.
\rightsquigarrow Still, new nonlinear effects.

For instance:

Forget all about scaling

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u
$$

For $k>0, k u$ solves

$$
i \partial_{t}(k u)+\frac{1}{2} \Delta(k u)=\lambda \ln \left(|u|^{2}\right) k u=\lambda \ln \left(|k u|^{2}\right) k u-\lambda\left(\ln k^{2}\right) k u .
$$

Gauge transform: $u_{k}:=(k u) e^{2 i t \lambda \ln k}$ solves the same equation as $u\left(=u_{1}\right)$. \rightsquigarrow A scaling factor does not change the dynamics.

Forget all about scaling

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u .
$$

For $k>0, k u$ solves

$$
i \partial_{t}(k u)+\frac{1}{2} \Delta(k u)=\lambda \ln \left(|u|^{2}\right) k u=\lambda \ln \left(|k u|^{2}\right) k u-\lambda\left(\ln k^{2}\right) k u .
$$

Gauge transform: $u_{k}:=(k u) e^{2 i t \lambda \ln k}$ solves the same equation as $u\left(=u_{1}\right)$. \rightsquigarrow A scaling factor does not change the dynamics.
\rightsquigarrow Typical feature of linear equations.
\leadsto Still, new nonlinear effects.

For instance:

For any $t \neq 0, u_{0} \mapsto u(t)$ is not C^{1} at 0 (even from $H^{+\infty}$ to $H^{-\infty}$)

Forget all about scaling

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u .
$$

For $k>0, k u$ solves

$$
i \partial_{t}(k u)+\frac{1}{2} \Delta(k u)=\lambda \ln \left(|u|^{2}\right) k u=\lambda \ln \left(|k u|^{2}\right) k u-\lambda\left(\ln k^{2}\right) k u .
$$

Gauge transform: $u_{k}:=(k u) e^{2 i t \lambda \ln k}$ solves the same equation as $u\left(=u_{1}\right)$. \rightsquigarrow A scaling factor does not change the dynamics.
\rightsquigarrow Typical feature of linear equations.
\rightsquigarrow Still, new nonlinear effects. . .

For instance:

For any $t \neq 0, u_{0} \mapsto u(t)$ is not C^{1} at 0 (even from $H^{+\infty}$ to $H^{-\infty}$)

Forget all about scaling

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u
$$

For $k>0, k u$ solves

$$
i \partial_{t}(k u)+\frac{1}{2} \Delta(k u)=\lambda \ln \left(|u|^{2}\right) k u=\lambda \ln \left(|k u|^{2}\right) k u-\lambda\left(\ln k^{2}\right) k u .
$$

Gauge transform: $u_{k}:=(k u) e^{2 i t \lambda \ln k}$ solves the same equation as $u\left(=u_{1}\right)$. \rightsquigarrow A scaling factor does not change the dynamics.
\rightsquigarrow Typical feature of linear equations.
\rightsquigarrow Still, new nonlinear effects. . .
For instance:

$$
\frac{d u_{k}}{d k}=(1+2 i t \lambda) u_{1} e^{2 i t \lambda \ln k}, \quad \frac{d^{2} u_{k}}{d k^{2}}=\frac{2 i t \lambda}{k}(1+2 i t \lambda) u_{1} e^{2 i t \lambda \ln k}
$$

For any $t \neq 0, u_{0} \mapsto u(t)$ is not C^{1} at 0 (even from $H^{+\infty}$ to $H^{-\infty}$).

Logarithmic NLS: " focusing" case

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u, \quad u_{\mid t=0}=u_{0} .
$$

Lemma (Th. Cazenave '83)

Let $\lambda<0$ and $k<\infty$ such that

$$
L_{k}:=\left\{u \in W,\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1, E(u) \leqslant k\right\} \neq \emptyset .
$$

Then $\inf _{\substack{u \in L_{k} \\ 1 \leqslant p \leqslant \infty}}\|u\|_{L^{p}(\mathbb{R})}>0$.
\rightsquigarrow No solution is dispersive in the case $\lambda<0$.
\rightsquigarrow standing wave: $\lambda<0, \exp \left(-2 i \lambda \omega t+\omega+d / 2+\lambda|x|^{2}\right)$ solution, for any period $\omega \in \mathbb{R}$.
\rightsquigarrow Orbital stability of the Gausson $(\omega=0)$ addressed in several papers:
Th. Cazenave '83, A. Ardila '16.

General dynamics, case $\lambda<0$

For general initial data, the dynamics is not known is general:

- The Gausson is orbitally stable, but not stable in the strong sense of Lyapunov (counterexamples, even in the radial case).
- The evolution of any initial Gaussian is known (second lecture)
- For instance, what can we say about the evolution of the initial sum of two Gaussians??

General dynamics, case $\lambda<0$

For general initial data, the dynamics is not known is general:

- The Gausson is orbitally stable, but not stable in the strong sense of Lyapunov (counterexamples, even in the radial case).
- The evolution of any initial Gaussian is known (second lecture).
- For instance, what can we say about the evolution of the initial sum of two Gaussians??

General dynamics, case $\lambda<0$

For general initial data, the dynamics is not known is general:

- The Gausson is orbitally stable, but not stable in the strong sense of Lyapunov (counterexamples, even in the radial case).
- The evolution of any initial Gaussian is known (second lecture).
- For instance, what can we say about the evolution of the initial sum of two Gaussians??

Gaussian data: the case $\lambda>0$

Theorem

$\lambda>0, u_{0}(x)=b_{0} e^{-\frac{1}{2} \sum_{j=1}^{d} a_{0 j} x_{j}^{2}}$, with $b_{0}, a_{0 j} \in \mathbb{C}, \alpha_{0 j}=\operatorname{Re} a_{0 j}>0$. Then

$$
u(t, x)=b_{0} \prod_{j=1}^{d} \frac{1}{\sqrt{r_{j}(t)}} \exp \left(i \phi_{j}(t)-\alpha_{0 j} \frac{x_{j}^{2}}{2 r_{j}^{2}(t)}+i \frac{\dot{r}_{j}(t)}{r_{j}(t)} \frac{x_{j}^{2}}{2}\right)
$$

for some real-valued functions ϕ_{j}, r_{j} depending on t only.

$$
\begin{gathered}
r_{j}(t)=2 t \sqrt{\lambda \alpha_{0 j} \ln t}(1+o(1)), \quad \dot{r}_{j}(t)=2 \sqrt{\lambda \alpha_{0 j} \ln t}(1+o(1)) . \\
\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \infty}{\sim} \frac{1}{(t \sqrt{\ln t})^{d / 2}} \frac{\left\|u_{0}\right\|_{L^{2}}}{(2 \lambda \sqrt{2 \pi})^{d / 2}}, \\
\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \underset{t \rightarrow \infty}{\sim} 2 \lambda d\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \ln t .
\end{gathered}
$$

Three new features

- Dispersion: usual $t^{-d / 2}$ rate becomes $(t \sqrt{\ln t})^{-d / 2}$. (Link with Strichartz estimates?)
- Unboundedness in $H^{1}:\|\nabla u(t)\|_{L^{2}} \approx \sqrt{\ln t}$.
- Universal profile:

regardless of the initial variances.
Miraculous explicit computations, precious guide for the general case.

Three new features

- Dispersion: usual $t^{-d / 2}$ rate becomes $(t \sqrt{\ln t})^{-d / 2}$. (Link with Strichartz estimates?)
- Unboundedness in $H^{1}:\|\nabla u(t)\|_{L^{2}} \approx \sqrt{\ln t}$.
- Universal profile:

regardless of the initial variances.
Miraculous explicit computations, precious guide for the general case.

Three new features

- Dispersion: usual $t^{-d / 2}$ rate becomes $(t \sqrt{\ln t})^{-d / 2}$. (Link with Strichartz estimates?)
- Unboundedness in $H^{1}:\|\nabla u(t)\|_{L^{2}} \approx \sqrt{\ln t}$.
- Universal profile:

$$
(2 t \sqrt{\lambda \ln t})^{d / 2}|u(t, x \times 2 t \sqrt{\lambda \ln t})| \underset{t \rightarrow \infty}{\longrightarrow} \frac{\left\|u_{0}\right\|_{L^{2}}}{\pi^{d / 4}} e^{-|x|^{2} / 2}
$$

regardless of the initial variances.
\rightsquigarrow Miraculous explicit computations, precious guide for the general case.

Three new features

- Dispersion: usual $t^{-d / 2}$ rate becomes $(t \sqrt{\ln t})^{-d / 2}$. (Link with Strichartz estimates?)
- Unboundedness in $H^{1}:\|\nabla u(t)\|_{L^{2}} \approx \sqrt{\ln t}$.
- Universal profile:

$$
(2 t \sqrt{\lambda \ln t})^{d / 2}|u(t, x \times 2 t \sqrt{\lambda \ln t})| \underset{t \rightarrow \infty}{\longrightarrow} \frac{\left\|u_{0}\right\|_{L^{2}}}{\pi^{d / 4}} e^{-|x|^{2} / 2}
$$

regardless of the initial variances.
\rightsquigarrow Miraculous explicit computations, precious guide for the general case.

Universal dispersion

Lemma

Let $\lambda>0$. Consider the ODE:

$$
\ddot{\tau}=\frac{2 \lambda}{\tau}, \quad \tau(0)=1, \quad \dot{\tau}(0)=0
$$

It has a unique solution $\tau \in C^{2}(0, \infty)$, and, as $t \rightarrow \infty$,

$$
\tau(t)=2 t \sqrt{\lambda \ln t}(1+\mathcal{O}(\ell(t))), \quad \dot{\tau}(t)=2 \sqrt{\lambda \ln t}(1+\mathcal{O}(\ell(t)))
$$

where $\ell(t):=\frac{\ln \ln t}{\ln t}$.

Remark

The large time behavior is independent of $\tau(0)>0$ and $\dot{\tau}(0) \in \mathbb{R}$.

Universal dispersion

Lemma

Let $\lambda>0$. Consider the ODE:

$$
\ddot{\tau}=\frac{2 \lambda}{\tau}, \quad \tau(0)=1, \quad \dot{\tau}(0)=0
$$

It has a unique solution $\tau \in C^{2}(0, \infty)$, and, as $t \rightarrow \infty$,

$$
\tau(t)=2 t \sqrt{\lambda \ln t}(1+\mathcal{O}(\ell(t))), \quad \dot{\tau}(t)=2 \sqrt{\lambda \ln t}(1+\mathcal{O}(\ell(t)))
$$

where $\ell(t):=\frac{\ln \ln t}{\ln t}$.

Remark

The large time behavior is independent of $\tau(0)>0$ and $\dot{\tau}(0) \in \mathbb{R}$.

Theorem

Let $u_{0} \in H^{1} \cap \mathcal{F}\left(H^{1}\right)$, and $\gamma(y)=e^{-|y|^{2} / 2}$. Define

$$
\begin{gathered}
u(t, x)=\frac{1}{\tau(t)^{d / 2}} v\left(t, \frac{x}{\tau(t)}\right) \exp \left(i \frac{\dot{\tau}(t)}{\tau(t)} \frac{|x|^{2}}{2}\right) \frac{\left\|u_{0}\right\|_{L^{2}}}{\|\gamma\|_{L^{2}}} . \\
\int_{\mathbb{R}^{d}}\left(1+|y|^{2}+\left.|\ln | v(t, y)\right|^{2} \mid\right)|v(t, y)|^{2} d y+\frac{1}{\tau(t)^{2}}\left\|\nabla_{y} v(t)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \leqslant C . \\
\int_{\mathbb{R}^{d}}\left(\begin{array}{c}
1 \\
y \\
|y|^{2}
\end{array}\right)|v(t, y)|^{2} d y \underset{t \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{d}}\left(\begin{array}{c}
1 \\
y \\
|y|^{2}
\end{array}\right) \gamma^{2}(y) d y . \\
|v(t, \cdot)|^{2} \underset{t \rightarrow \infty}{\vec{m}} \gamma^{2} \quad \text { weakly in } L^{1}\left(\mathbb{R}^{d}\right) .
\end{gathered}
$$

Formally, $u(t, x) \underset{t \rightarrow \infty}{\sim} \frac{1}{(2 t)^{d / 2}(\lambda \ln t)^{d / 4}} e^{-|x|^{2} /\left(4 \lambda t^{2} \ln t\right)} e^{i|x|^{2} / 2 t} \frac{\left\|u_{0}\right\|_{L^{2}}}{\|\gamma\|_{L^{2}}}$.

Positive Sobolev norms

Corollary

Let $u_{0} \in H^{1} \cap \mathcal{F}\left(H^{1}\right) \backslash\{0\}$, and $0<s \leqslant 1$. As $t \rightarrow \infty$,

$$
(\ln t)^{s / 2} \lesssim\|u(t)\|_{\dot{H}^{s}\left(\mathbb{R}^{d}\right)} \lesssim(\ln t)^{s / 2}
$$

where $\dot{H}^{s}\left(\mathbb{R}^{d}\right)$ denotes the standard homogeneous Sobolev space.

Proof in the case $s=1$.

$$
\begin{aligned}
& \nabla u(t, x)=\frac{1}{\tau(t)^{d / 2}} \nabla_{x}\left(v\left(t, \frac{x}{\tau(t)}\right) e^{\left.i \frac{i(t)}{\tau(t)} \right\rvert\, \frac{|x|^{2}}{2}}\right) \\
& =\underbrace{\frac{1}{\tau(t)} \frac{1}{\tau(t)^{d / 2}} \nabla_{y} v\left(t, \frac{x}{\tau(t)}\right) e^{i \frac{\dot{\tau}(t)}{\tau(t)} \frac{|x|^{2}}{2}}}_{\|\cdot\|_{L^{2}}=\frac{1}{\tau}\|\nabla v\|_{L^{2}}=\mathcal{O}(1)}+\underbrace{i \dot{i} \frac{1}{\tau(t)^{d / 2}} \frac{x}{\tau} v\left(t, \frac{x}{\tau(t)}\right) e^{i \frac{\dot{\tau}(t)}{\tau(t)} \frac{|x|^{2}}{2}}}_{\|\cdot\|_{L^{2}}=\dot{\tau}\|y v\|_{L^{2}} \sim \dot{i}\|y \gamma\|_{L^{2}} \approx \sqrt{\ln t}} .
\end{aligned}
$$

The Gaussian case

Corollary

Suppose $u_{0}(x)=b_{0} e^{-\frac{1}{2} \sum_{j=1}^{d} a_{0 j} x_{j}^{2}}$, with $b_{0}, a_{0 j} \in \mathbb{C}, \alpha_{0 j}=\operatorname{Re} a_{0 j}>0$.
Then, with v as in the main theorem, the relative entropy of $|v|^{2}$ goes to zero for large time:

$$
\int_{\mathbb{R}^{d}}|v(t, y)|^{2} \ln \left|\frac{v(t, y)}{\gamma(y)}\right|^{2} d y \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

and the convergence of $|v|^{2}$ to γ^{2} is strong in L^{1} :

$$
\left\||v(t, \cdot)|^{2}-\gamma^{2}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

Stability of this regime

If we consider a defocusing, energy-subcritical, power-like perturbation,

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u+\mu|u|^{2 \sigma} u, \quad u_{\mid t=0}=u_{0}
$$

with $\lambda>0, \mu>0$ and $0<\sigma<\frac{2}{(d-2)_{+}}$, then most of the previous results remain valid:

- Existence of a global solution in $\Sigma=H^{1} \cap \mathcal{F}\left(H^{1}\right)$, with conservation of mass, momentum and energy (uniqueness is not always known).
- Main Theorem: with the same change of unknown function, convergence of the momenta, $|v(t, \cdot)|^{2} \rightharpoonup \gamma^{2}$, and growth of the Sobolev norms of u.

Remark
 In this case, the evolution of Gaussian data is not explicit.

Stability of this regime

If we consider a defocusing, energy-subcritical, power-like perturbation,

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u+\mu|u|^{2 \sigma} u, \quad u_{\mid t=0}=u_{0}
$$

with $\lambda>0, \mu>0$ and $0<\sigma<\frac{2}{(d-2)_{+}}$, then most of the previous results remain valid:

- Existence of a global solution in $\Sigma=H^{1} \cap \mathcal{F}\left(H^{1}\right)$, with conservation of mass, momentum and energy (uniqueness is not always known).
- Main Theorem: with the same change of unknown function, convergence of the momenta, $|v(t, \cdot)|^{2} \rightharpoonup \gamma^{2}$, and growth of the Sobolev norms of u.

[^0]
Stability of this regime

If we consider a defocusing, energy-subcritical, power-like perturbation,

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u+\mu|u|^{2 \sigma} u, \quad u_{\mid t=0}=u_{0}
$$

with $\lambda>0, \mu>0$ and $0<\sigma<\frac{2}{(d-2)_{+}}$, then most of the previous results remain valid:

- Existence of a global solution in $\Sigma=H^{1} \cap \mathcal{F}\left(H^{1}\right)$, with conservation of mass, momentum and energy (uniqueness is not always known).
- Main Theorem: with the same change of unknown function, convergence of the momenta, $|v(t, \cdot)|^{2} \rightharpoonup \gamma^{2}$, and growth of the Sobolev norms of u.

[^1]
Stability of this regime

If we consider a defocusing, energy-subcritical, power-like perturbation,

$$
i \partial_{t} u+\frac{1}{2} \Delta u=\lambda \ln \left(|u|^{2}\right) u+\mu|u|^{2 \sigma} u, \quad u_{\mid t=0}=u_{0}
$$

with $\lambda>0, \mu>0$ and $0<\sigma<\frac{2}{(d-2)_{+}}$, then most of the previous results remain valid:

- Existence of a global solution in $\Sigma=H^{1} \cap \mathcal{F}\left(H^{1}\right)$, with conservation of mass, momentum and energy (uniqueness is not always known).
- Main Theorem: with the same change of unknown function, convergence of the momenta, $|v(t, \cdot)|^{2} \rightharpoonup \gamma^{2}$, and growth of the Sobolev norms of u.

Remark

In this case, the evolution of Gaussian data is not explicit.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Proof of $|v(t, \cdot)|^{2}$
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation.
- Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator.
- A priori estimates on $v \rightsquigarrow$ tightness, hence the conclusion.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation.
- Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator
- A priori estimates on $v \rightsquigarrow$ tightness, hence the conclusion.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
> - Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation)
> - Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
> - A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation.
> - Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator.
> - A priori estimates on $v \rightsquigarrow$ tightness, hence the conclusion.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Proof of $|v(t, \cdot)|^{2} \underset{t \rightarrow \infty}{\rightharpoonup} \gamma^{2}$:
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \leadsto weak limit satisfies Fokker-Planck equation.
- Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator.
- A priori estimates on $v \rightsquigarrow$ tightness, hence the conclusion.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Proof of $|v(t, \cdot)|^{2} \underset{t \rightarrow \infty}{\stackrel{\rightharpoonup}{2}} \gamma^{2}$
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation. - Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator. - A priori estimates on $v \leadsto$ tightness, hence the conclusion.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Proof of $|v(t, \cdot)|^{2} \underset{t \rightarrow \infty}{\rightharpoonup} \gamma^{2}$:
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation.
- A priori estimates on $v \leadsto$ tightness, hence the conclusion.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Proof of $|v(t, \cdot)|^{2} \underset{t \rightarrow \infty}{\stackrel{\rightharpoonup}{2}} \gamma^{2}$
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation.
- Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator.

Outline of the proof of the main theorem

- Gaussian case: reduction to ODEs. Appearance of τ.
- This suggests the new unknown function v, which solves

$$
i \partial_{t} v+\frac{1}{2 \tau(t)^{2}} \Delta v=\lambda v \ln \left|\frac{v}{\gamma}\right|^{2}, \quad v_{\mid t=0}=u_{0}
$$

- A priori estimates for v : directly from the above equation, and from the a priori estimates for u.
- Proof of $|v(t, \cdot)|^{2} \underset{t \rightarrow \infty}{\stackrel{\rightharpoonup}{2}} \gamma^{2}$
- Hydrodynamical formulation (Madelung transform) \rightsquigarrow hyperbolic system (variant of the isothermal compressible Euler equation).
- Change in time variable \rightsquigarrow perturbation of Fokker-Planck equation.
- A priori estimates \rightsquigarrow weak limit satisfies Fokker-Planck equation.
- Limit of $|v(t, \cdot)|^{2}$ in the kernel of the Fokker-Planck operator.
- A priori estimates on $v \rightsquigarrow$ tightness, hence the conclusion.

Content of the other lectures

- Lecture 2: Cauchy problem and explicit Gaussian solutions.
- Lecture 3: proof of the main theorem, and corollaries.

[^0]: Remark
 In this case, the evolution of Gaussian data is not explicit.

[^1]: Remark
 In this case, the evolution of Gaussian data is not explicit.

