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An important clarification

f (p | n, x) =
f (p, n, x)

f (n, x)

∝ f (p, n, x)

Objection: “n, x are certain ⇒ f (n, x) = 1”

FALSE!

Remember the six boxes (Att::

P(Hi |W ) =
P(Hi ∩W )

P(W )
=

P(W |Hi ) · P(Hi )

P(W )

In this case P(W ) < 1: probability of W before it was observed!
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Reconditioning on a certain event?
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P(Hi ∩ Ω)
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Reconditioning on a certain event?

P(Hi |Ω) =
P(Hi ∩ Ω)

P(Ω)

=
P(Hi )

1
= P(Hi )

⇒ Monthy Hall (‘three boxes, version 2’)
◮ if you trust the quiz master, then “no prize in the box that he

is going to open” is a certain event;
◮ ⇒ the probability of finding the prize in your box remains 1/3.

The situation is quite different when there are two players
◮ there was 2/3 probability that the other player would not find

the prize in the box;
◮ ⇒ the probability of finding the prize in your box rises to 1/2.

And if you do not trust the quiz master?
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Reconditioning on a certain event?

P(Hi |Ω) =
P(Hi ∩ Ω)

P(Ω)

=
P(Hi )

1
= P(Hi )

⇒ Monthy Hall (‘three boxes, version 2’)
◮ if you trust the quiz master, then “no prize in the box that he

is going to open” is a certain event;
◮ ⇒ the probability of finding the prize in your box remains 1/3.

The situation is quite different when there are two players
◮ there was 2/3 probability that the other player would not find

the prize in the box;
◮ ⇒ the probability of finding the prize in your box rises to 1/2.

And if you do not trust the quiz master?
Add this hypothesis in the model and apply probability theory!
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Inferring µ of the normal distribution
Setting up the problem

µ σ

x
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remember that it is the standard deviation which describes
statistical errors.
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Inferring µ of the normal distribution
Setting up the problem

µ σ

x

◮ In general f (x , µ, σ | I )

◮ We start assuming σ well known, that we call here σe to
remember that it is the standard deviation which describes
statistical errors.

◮ And let us start from having observed the ‘first’ value x1
(remember that time order is not important;
what matters is the order in which the information is used)
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed (≡ ‘assumed perfectly known’)

µ σe

x1

√

√

◮ Our task: f (µ | x1, σe)
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Inferring µ of the normal distribution

◮ σe assumed perfectly known;

◮ x1 observed (≡ ‘assumed perfectly known’)

µ σe

x1

√

√

◮ Our task: f (µ | x1, σe)

◮ In general: f (µ | data, I )
‘data’ can be a set of observations
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Inferring µ of the normal distribution

µ σe

x1

√

√
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Inferring µ of the normal distribution

µ σe

x1

√

√

(Considering implicit the condition σe as well as I )

f (µ | x1) ∝ f (x1 |µ) · f0(µ)
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Inferring µ of the normal distribution

µ σe

x1

√

√

(Considering implicit the condition σe as well as I )

f (µ | x1) ∝ f (x1 |µ) · f0(µ)

f (µ | x1) =
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Inferring µ of the normal distribution

µ σe

x1

√

√

(Considering implicit the condition σe as well as I )

f (µ | x1) ∝ f (x1 |µ) · f0(µ)

f (µ | x1) =
f (x1 |µ) · f0(µ)

f (x1)

=
f (x1 |µ) · f0(µ)

∫ +∞
−∞ f (x1 |µ) · f0(µ) dµ

© GdA, GSSI-05 16/06/21, 6/77



Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
−

(x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
−

(x1−µ)2

2σ2
e dµ
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior
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Note the swap of µ and x1 at the exponent,
to emphasize that they have now different roles:
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Inferring µ of the normal distribution
Solution for a flat prior

Starting as usual from a flat prior

f (µ | x1) =

1√
2π σe

e
−

(x1−µ)2

2σ2
e

∫∞
−∞

1√
2π σe

e
−

(x1−µ)2

2σ2
e dµ

In the denominator, the exponential depends on (x1 − µ)2:
→ the integral over µ is equal to the integral over x1: → 1

f (µ | x1) =
1√

2π σe
e
−

(µ−x1)
2

2σ2
e

Note the swap of µ and x1 at the exponent,
to emphasize that they have now different roles:

◮ µ is the variable;

◮ x1 is a parameter
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
−

(µ−x1)
2

2σ2
e

Summaries:

E[µ] = x1

σ(µ) = σe
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Inferring µ of the normal distribution

x

Μ

x0

?

Inference

f (µ | x1) =
1√

2π σe
e
−

(µ−x1)
2

2σ2
e

Summaries:

E[µ] = x1

σ(µ) = σe

All probability intervals calculated from the pdf.
⇒ really probability intervals, and not ‘confidence intervals’(∗)

(∗)The expressions “confidence interval” and “confidence limits” are jeopardized

having often little to do with ‘confidence’ – sic!
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◮ The first factor in the r.h.s. (‘likelihood’)
prefers a region a few σe ’s around x1.
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f (µ | xi σe) ∝ f (x1 |µ, σe) · f0(µ)

◮ The first factor in the r.h.s. (‘likelihood’)
prefers a region a few σe ’s around x1.
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Role of the prior

Yes, but the prior?
Remember that (writing σe again)

f (µ | xi σe) ∝ f (x1 |µ, σe) · f0(µ)

◮ The first factor in the r.h.s. (‘likelihood’)
prefers a region a few σe ’s around x1.

◮ If f0(µ) is ‘practically flat’ in that region, then it is irrelevant.

◮ Otherwise model it at best and do the math (e.g. by MCMC).

◮ And, please, remember Gauss (well aware of the limitations)
. . . and that

”All models are wrong, but some are useful”
(G. Box)

And GAnd Gauss was the first to realize that
And Gthe Gaussian is indeed ‘wrong’ !
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:

Binomial distribution: Beta distribution.
Poisson distribution: Gamma distribution.
Gaussian distribution: Gaussian distribution.

Imagine that our initial prior was of the kind

µ ∼ N (µ◦, σ◦)

then
f (µ | x1, σe , µ◦, σ◦) ∝ e

−
(x1−µ)2

2σ2
e · e−

(µ−µ◦)
2

2σ2
◦ ,
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:

Binomial distribution: Beta distribution.
Poisson distribution: Gamma distribution.
Gaussian distribution: Gaussian distribution.

Imagine that our initial prior was of the kind

µ ∼ N (µ◦, σ◦)

then
f (µ | x1, σe , µ◦, σ◦) ∝ e

−
(x1−µ)2

2σ2
e · e−

(µ−µ◦)
2

2σ2
◦ ,

resulting into (technical details in next slide)

f (µ | x1, σe , µ◦, σ◦) =
1√

2π σA
e
−

(µ−µA)2

2σ2
A ,
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Use of a conjugate prior
As we have already, a ‘trick’ developped in order to simplify the
calculations is the use of conjugate priors:

Binomial distribution: Beta distribution.
Poisson distribution: Gamma distribution.
Gaussian distribution: Gaussian distribution.

Imagine that our initial prior was of the kind

µ ∼ N (µ◦, σ◦)

then
f (µ | x1, σe , µ◦, σ◦) ∝ e

−
(x1−µ)2

2σ2
e · e−

(µ−µ◦)
2

2σ2
◦ ,

resulting into (technical details in next slide)

f (µ | x1, σe , µ◦, σ◦) =
1√

2π σA
e
−

(µ−µA)2

2σ2
A ,

with
µA =

x1/σ
2
e + µ◦/σ

2
◦

1/σ2
e + 1/σ2

◦

1

σ2
A

=
1

σ2
e

+
1

σ2
◦
.
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Other ‘Gaussian tricks’
Here are the details of our to get the previous result

f (µ) ∝ exp

[

−1

2

(−2µ x1σ
2
◦ + µ2σ2

◦ +−2µµ◦σ
2
e + µ2σ2

e

σ2
e + σ2

◦

)]

= exp



−1

2





µ2 − 2µ
(

x1 σ
2
◦
+µ◦ σ2

e

σ2
e+σ2

◦

)

(σ2
e · σ2

◦)/(σ
2
e + σ2

◦)









= exp

[

−1

2

(

µ2 − 2µµA

σ2
A

)]

∝ exp

[

−(µ− µA)
2

2σ2
A

]

In particolular, in the last step the trick of complementing the
exponential has been used, since adding/removing constant terms
in the exponential is equivalent to multiply/devide by factors.
Once we recognize the structure, the normalization is automatic.
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Use of a conjugate prior to infer µ of a Gaussian

◮ Unfortunately, the conjugate prior of a Gaussian is not that
flexible.
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Use of a conjugate prior to infer µ of a Gaussian

◮ Unfortunately, the conjugate prior of a Gaussian is not that
flexible.

◮ It results on the well known formula to ‘combine results’ by a
weighted average, with weights equal to the inverses of the
variances
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Use of a conjugate prior to infer µ of a Gaussian

◮ Unfortunately, the conjugate prior of a Gaussian is not that
flexible.

◮ It results on the well known formula to ‘combine results’ by a
weighted average, with weights equal to the inverses of the
variances

◮ In particular
σA < min(σ0, σe)

→ a measurement improves our knowledge about µ

◮ A flat prior is recovered for σ2
o ≫ σ2

e (and x0 ‘reasonable’).
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Predictive distribution

µ σe

xp xf

√

√

What shall we observe in a next measurement xf (’f’ as ‘future’),
given our knowledge on µ based on the previous observation xp
(Note the new evocative name for the observation, instead of x1)?
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µ σe

xp xf

√

√

What shall we observe in a next measurement xf (’f ’ as ‘future’),
given our knowledge on µ based on the previous observation xp?
(Note the new evocative name for the observation, instead of x1)
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Predictive distribution

xp → µ → xf

0 0.5 1 1.5 2
Μ

x

x

Observation

Prediction

EHΜL

EHxfL
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Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .
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∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case

f (xf | xp) =

∫ +∞

−∞

f (xf |µ) · f (µ | xp) dµ
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Predictive distribution
Probability theory teaches us how to
include the uncertainty concerning µ:

f (x | I ) =
∫ +∞

−∞
f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case

f (xf | xp) =

∫ +∞

−∞

f (xf |µ) · f (µ | xp) dµ

=

∫ +∞

−∞

1√
2π σf

exp

[

− (xf − µ)2

2σ2
f

]

1√
2π σp

exp

[

− (µ− xp)
2

2σ2
p

]

dµ
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f (x |µ, I ) f (µ | I ) dµ .

Thus, in our case

f (xf | xp) =
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f (xf |µ) · f (µ | xp) dµ

=
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−∞

1√
2π σf

exp

[

− (xf − µ)2

2σ2
f

]

1√
2π σp

exp

[

− (µ− xp)
2

2σ2
p

]

dµ

=
1

√
2π

√

σ2
p + σ2

f

exp

[

− (xf − xp)
2

2 (σ2
p + σ2

f )

]
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f (xf |µ) · f (µ | xp) dµ

=
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1√
2π σf

exp

[

− (xf − µ)2

2σ2
f

]

1√
2π σp

exp

[

− (µ− xp)
2

2σ2
p

]

dµ

=
1

√
2π

√

σ2
p + σ2

f

exp

[

− (xf − xp)
2

2 (σ2
p + σ2

f )

]

In particular, if σp = σf = σ, then

f (xf | xp, σp = σf = σ) =
1√

2π
√
2σ

exp

[

−(xf − xp)
2

2 (
√
2σ)2

]
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s = 8.12± 0.72 (Gaussian)

More interesting was question concerning x f , remembering that
an aritmethic average can be considered an equivalent
measurement with ‘σe ’ = σ(x) = σ(xi )/

√
n:
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Problem on the expected x f having observed xp
Data: xp = 8.1234, s = 0.7234, n = 10000

µ = xp ±
s√
n
= 8.1234± 0.0072

(based on standard knowledge, including the fact that σe ≈ s with
rather good approximation – we shall return on this point later)

Also the question concerning xf (meant a single observation)
is rather easy to answer:

xf = xp ± s = 8.12± 0.72 (Gaussian)

More interesting was question concerning x f , remembering that
an aritmethic average can be considered an equivalent
measurement with ‘σe ’ = σ(x) = σ(xi )/

√
n:

x f = xp ±
√
2

s√
n
= 8.123± 0.010 (Gaussian)
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Expected x f having observed xp

However, the factor
√
2 is usually ‘forgotten’
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Expected x f having observed xp

However, the factor
√
2 is usually ‘forgotten’

(Glen Cowan, Statistical Data Analysis)
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Remark on ‘conventional statistics’
Objection:
“A method which is ‘classical’ and ‘exact’ cannot be wrong”
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Q. Does the method always produce wrong results?
A. In most routine cases the answer is ‘numerically’ OK.

In Frontier Physics cases this is not the case (!).
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Remark on ‘conventional statistics’
Objection:
“A method which is ‘classical’ and ‘exact’ cannot be wrong”
Uhm. . .
◮ Frequentist ‘gurus’ are champions in misusing terminonology,

thus confusing people (“CL”, “confidence intervals”).
◮ Details in GdA, About the proof of the so called

exact classical confidence intervals. Where is the trick?,
https://arxiv.org/abs/physics/0605140

If you like, the method is exact not because it provides precisely
the correct answer to our problem, but because
it results from an exact prescription.

Q. Does the method always produce wrong results?
A. In most routine cases the answer is ‘numerically’ OK.

In Frontier Physics cases this is not the case (!).
GdA, Bayesian reasoning versus conventional statistics

in High Energy Physics,
https://arxiv.org/abs/physics/9811046
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Prescriptions?
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Objective prescriptions?

Mistrust those who promise you ‘objective’ methods to form up
your confidence about the physical world!
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Principles?

Too many unnecessary ‘principles’ on the market.
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Introducing systematics
Influence quantities

By influence quantities we mean:

→ all kinds of external factors which may influence the result
(temperature, atmospheric pressure, etc.);
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Introducing systematics
Influence quantities

By influence quantities we mean:

→ all kinds of external factors which may influence the result
(temperature, atmospheric pressure, etc.);

→ all calibration constants;

→ all possible hypotheses upon which the results may depend
(e.g. Monte Carlo parameters).

From a probabilistic point of view, there is no distinction between
µ and h: they are all conditional hypotheses for the x , i.e. causes
which produce the observed effects. The difference is simply that
we are interested in µ rather than in h.
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Introducing systematics
Several approaches (within probability theory – no adhocheries!)

Uncertainty due to systematic effects is also included in a natural
way in this approach. Let us first define the notation (i is the
generic index):

◮
x = {x1, x2, . . . xnx} is the ‘n-tuple’ (vector) of observables Xi ;

◮ µ = {µ1, µ2, . . . µnµ} is the n-tuple of true values µi ;

◮
h = {h1, h2, . . . hnh} is the n-tuple of influence quantities Hi .
(see ISO GUM).
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Taking into account of uncertain h
Global inference on f (µ, h)

◮ We can use Bayes’ theorem to make an inference on µ and h.
A subsequent marginalization over h yields the p.d.f. of
interest:

x ⇒ f (µ,h | x) ⇒ f (µ | x) .
This method, depending on the joint prior distribution
f◦(µ,h), can even model possible correlations between µ and
h.
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Taking into account of uncertain h
Conditional inference

◮ Given the observed data, one has a joint distribution of µ for
all possible configurations of h:

x ⇒ f (µ | x ,h) .

Each conditional result is reweighed with the distribution of
beliefs of h, using the well-known law of probability:

f (µ | x) =
∫

f (µ | x ,h) f (h) dh .
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Taking into account of uncertain h
Conditional inference

µ

xxo

true value

observed value

f(µ|xo)

f(µ|xo ,h)

f(x|µo ,h)

µo

f(x|µo)
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Taking into account of uncertain h
Propagation of uncertainties

◮ Essentially, one applies the propagation of uncertainty, whose
most general case has been illustrated in the previous section,
making use of the following model: One considers a ‘raw
result’ on raw values µR for some nominal values of the
influence quantities, i.e.

f (µR | x ,h◦) ;

then (corrected) true values are obtained as a function of the
raw ones and of the possible values of the influence quantities,
i.e.

µi = µi (µiR ,h) ,

and f (µ) is evaluated by probability rules.

The third form is particularly convenient to make linear expansions
which lead to approximate solutions.
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is not usually known exactly,

owing to calibration uncertainty.
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◮ the “zero” of the instrument is not usually known exactly,

owing to calibration uncertainty.
◮ This can be parametrized assuming that its true value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ .:

Z ∼ N (0, σZ )
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is not usually known exactly,

owing to calibration uncertainty.
◮ This can be parametrized assuming that its true value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ .:

Z ∼ N (0, σZ )

◮ Since the true value of µ is usually independent of the true
value of Z , the initial joint probability density function can be
written as the product of the marginal ones:

f◦(µ, z) = f◦(µ) f◦(z) = k
1√

2π σZ
exp

[

− z2

2σ2
Z

]

.

◮ X is no longer Gaussian distributed around µ,
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Systematics due to uncertain offset
Model:
◮ the “zero” of the instrument is not usually known exactly,

owing to calibration uncertainty.
◮ This can be parametrized assuming that its true value Z is

normally distributed around 0 (i.e. the calibration was
properly done!) with a standard deviation σZ .:

Z ∼ N (0, σZ )

◮ Since the true value of µ is usually independent of the true
value of Z , the initial joint probability density function can be
written as the product of the marginal ones:

f◦(µ, z) = f◦(µ) f◦(z) = k
1√

2π σZ
exp

[

− z2

2σ2
Z

]

.

◮ X is no longer Gaussian distributed around µ, but around
µ+ Z :

X ∼ N (µ+ Z , σ)
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Systematics due to uncertain offset
Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.
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Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.

f (µ, z | x1) ∝
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

1√
2π σZ

exp

[

− z2

2σ2
Z

]
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Systematics due to uncertain offset
Application to the single (equivalent) measuement X1, with std σ1

Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.

f (µ, z | x1) ∝
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

1√
2π σZ

exp

[

− z2

2σ2
Z

]

After joint inference and marginalization

f (µ | x1) =
∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dz

∫∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dµ dz
.
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Likelihood:

f (x1 |µ, z) =
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

.

f (µ, z | x1) ∝
1√

2π σ1
exp

[

−(x1 − µ− z)2

2σ2
1

]

1√
2π σZ

exp

[

− z2

2σ2
Z

]

After joint inference and marginalization

f (µ | x1) =
∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dz

∫∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2σ2
1

]

1√
2π σZ

exp
[

− z2

2σ2
Z

]

dµ dz
.

Integrating we get

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.
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Systematics due to uncertain offset
Technical remark

It may help to know that

∫ +∞

−∞
exp

[

b x − x2

a2

]

dx =
√
a2 π exp

[

a2 b2

4

]
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Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.

◮ f (µ) is still a Gaussian, but with a larger variance

© GdA, GSSI-05 16/06/21, 32/77



Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.

◮ f (µ) is still a Gaussian, but with a larger variance
◮ The global standard uncertainty is the quadratic combination

of that due to the statistical fluctuation of the data sample
and the uncertainty due to the imperfect knowledge of the
systematic effect:

σ2
tot = σ2

1 + σ2
Z .
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Systematics due to uncertain offset
Result

f (µ) = f (µ | x1, . . . , f◦(z)) =
1

√
2π

√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z )

]

.

◮ f (µ) is still a Gaussian, but with a larger variance
◮ The global standard uncertainty is the quadratic combination

of that due to the statistical fluctuation of the data sample
and the uncertainty due to the imperfect knowledge of the
systematic effect:

σ2
tot = σ2

1 + σ2
Z .

◮ This result (a theorem under well stated conditions!) is often used

as a ‘prescription’, although there are still some “old-fashioned”

recipes which require different combinations of the contributions to

be performed.
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
Setting up the model:

Z ∼ N (0, σZ )

X1 ∼ N (µ1 + Z , σ1)

X2 ∼ N (µ2 + Z , σ2)

© GdA, GSSI-05 16/06/21, 33/77



Systematics due to uncertain offset
Measuring two quantities with the same instrument

Measuring µ1 and µ2, resulting into x1 and x2.
Setting up the model:

Z ∼ N (0, σZ )

X1 ∼ N (µ1 + Z , σ1)

X2 ∼ N (µ2 + Z , σ2)

f (x1, x2 |µ1, µ2, z) =
1√

2π σ1
exp

[

−(x1 − µ1 − z)2

2σ2
1

]

× 1√
2π σ2

exp

[

−(x2 − µ2 − z)2

2σ2
2

]

=
1

2π σ1σ2
exp

[

−1

2

(

(x1 − µ1 − z)2

σ2
1

+
(x2 − µ2 − z)2

σ2
2

)]
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

f (µ1, µ2 | x1, x2) =

∫

f (x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

f (µ1, µ2 | x1, x2) =

∫

f (x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz

=
1

2π
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

√

1− ρ2

× exp

{

− 1

2 (1− ρ2)

[

(µ1 − x1)
2

σ2
1 + σ2

Z

−2 ρ
(µ1 − x1)(µ2 − x2)

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

+
(µ2 − x2)

2

σ2
2 + σ2

Z

]}

where

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

.
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Systematics due to uncertain offset
Measuring two quantities with the same instrument

f (µ1, µ2 | x1, x2) =

∫

f (x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz

=
1

2π
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

√

1− ρ2

× exp

{

− 1

2 (1− ρ2)

[

(µ1 − x1)
2

σ2
1 + σ2

Z

−2 ρ
(µ1 − x1)(µ2 − x2)

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

+
(µ2 − x2)

2

σ2
2 + σ2

Z

]}

where

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

.

⇒ bivariate normal distribution!
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

,

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

,

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

Cov(µ1, µ2) = ρ σµ1σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

,

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

Cov(µ1, µ2) = ρ σµ1σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z

Checks, defining S = µ1 + µ2 and D = µ1 − µ2
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

,

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

Cov(µ1, µ2) = ρ σµ1σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z

Checks, defining S = µ1 + µ2 and D = µ1 − µ2

D ∼ N
(

x1 − x2,
√

σ2
1 + σ2

2

)
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

,

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

Cov(µ1, µ2) = ρ σµ1σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z

Checks, defining S = µ1 + µ2 and D = µ1 − µ2

D ∼ N
(

x1 − x2,
√

σ2
1 + σ2

2

)

S ∼ N
(

x1 + x2,
√

σ2
1 + σ2

2 + (2σZ )2
)
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Systematics due to uncertain offset
Summary:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

,

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

Cov(µ1, µ2) = ρ σµ1σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z

Checks, defining S = µ1 + µ2 and D = µ1 − µ2

D ∼ N
(

x1 − x2,
√

σ2
1 + σ2

2

)

S ∼ N
(

x1 + x2,
√

σ2
1 + σ2

2 + (2σZ )2
)

As more or less intuitively expected from an offset!
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An exercise
Two samples of data have been collected with the same
instrument. These are the numbers, as they result from a printout
(homogeneous quantities, therefore measurement unit omitted):
◮ n1 = 1000, x1 = 10.4012, s1 = 5.7812;
◮ n2 = 2000, x2 = 10.2735, s2 = 5.9324.

We know that the instrument has an offset uncertainty of 0.15.

1. Report the results on µ1, µ2, σ1 and σ2.
2. If you consider the σ’s of the two samples consistent you

might combine the result.
3. Calculate the correlation coefficient between µ1 and µ2.
4. Give also the result on s = µ1 + µ2 and s = µ1 − µ2,

including ρ(s, d).
5. Give also the result on z1 = µ1 µ

2
2 and z2 = µ1/µ2, including

ρ(z1, z2).
6. Consider also a third data sample, recorded with the same

instrument:
n3 = 4, x3 = 13.8931, s3 = 4.5371.
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)

∝ exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)

∝ exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ)

∝ exp

[

−(
∑

i x
2
i − 2µ

∑

i xi + n µ2)

2σ2

]

· f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)

∝ exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ)

∝ exp

[

−(
∑

i x
2
i − 2µ

∑

i xi + n µ2)

2σ2

]

· f0(µ)

∝ exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)

∝ exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ)

∝ exp

[

−(
∑

i x
2
i − 2µ

∑

i xi + n µ2)

2σ2

]

· f0(µ)

∝ exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ)

∝ exp

[

−µ2 − 2µ x

2σ2/n

]

· f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)

∝ exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ)

∝ exp

[

−(
∑

i x
2
i − 2µ

∑

i xi + n µ2)

2σ2

]

· f0(µ)

∝ exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ)

∝ exp

[

−µ2 − 2µ x

2σ2/n

]

· f0(µ)

∝ exp

[

−µ2 − 2µ x + x2

2σ2/n

]

· f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ f (x |µ, σ) · f0(µ)

∝
∏

i

f (xi |µ, σ) · f0(µ) =
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ)

∝ exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ)

∝ exp

[

−(
∑

i x
2
i − 2µ

∑

i xi + n µ2)

2σ2

]

· f0(µ)

∝ exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ)

∝ exp

[

−µ2 − 2µ x

2σ2/n

]

· f0(µ)

∝ exp

[

−µ2 − 2µ x + x2

2σ2/n

]

· f0(µ)

Trick: complementing of exponential
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ exp

[

−(µ− x)2

2σ2/n

]

· f0(µ)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ exp

[

−(µ− x)2

2σ2/n

]

· f0(µ)

In the case of f0(µ) irrelevant (but we know how to act otherwise!)
we recognize by eye a Gaussian
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ exp

[

−(µ− x)2

2σ2/n

]

· f0(µ)

In the case of f0(µ) irrelevant (but we know how to act otherwise!)
we recognize by eye a Gaussian

f (µ | x , σ) =
1√

2π σ/
√
n
exp

[

− (µ− x)2

2 (σ/
√
n)2

]
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ exp

[

−(µ− x)2

2σ2/n

]

· f0(µ)

In the case of f0(µ) irrelevant (but we know how to act otherwise!)
we recognize by eye a Gaussian

f (µ | x , σ) =
1√

2π σ/
√
n
exp

[

− (µ− x)2

2 (σ/
√
n)2

]

µ is Gaussian around arithmetic average, with standard deviation
σ/

√
n

µ ∼ N (x ,
σ√
n
)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ exp

[

−(µ− x)2

2σ2/n

]

· f0(µ)

In the case of f0(µ) irrelevant (but we know how to act otherwise!)
we recognize by eye a Gaussian

f (µ | x , σ) =
1√

2π σ/
√
n
exp

[

− (µ− x)2

2 (σ/
√
n)2

]

µ is Gaussian around arithmetic average, with standard deviation
σ/

√
n

µ ∼ N (x ,
σ√
n
)

◮ x is a sufficient statistic (very important concept!)
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

f (µ | x , σ) ∝ exp

[

−(µ− x)2

2σ2/n

]

· f0(µ)

In the case of f0(µ) irrelevant (but we know how to act otherwise!)
we recognize by eye a Gaussian

f (µ | x , σ) =
1√

2π σ/
√
n
exp

[

− (µ− x)2

2 (σ/
√
n)2

]

µ is Gaussian around arithmetic average, with standard deviation
σ/

√
n

µ ∼ N (x ,
σ√
n
)

◮ x is a sufficient statistic (very important concept!)
⇒ x it provides the same information about µ
⇒ contained in detailed knowledge of x
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

Exercise

◮ In the last steps we have used the technique of
complementing the exponential.

◮ Restart, using a flat prior, from

f (µ | x , σ) ∝ exp

[

−x2 − 2µ x + µ2

2σ2/n

]

and use the ‘Gaussian tricks’ (first and second derivatives of
ϕ(µ)) to find E(µ) and Var(µ).
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Inferring µ from a sample
(Gaussian, independent observations, σ perfectly known)

Exercise

◮ In the last steps we have used the technique of
complementing the exponential.

◮ Restart, using a flat prior, from

f (µ | x , σ) ∝ exp

[

−x2 − 2µ x + µ2

2σ2/n

]

and use the ‘Gaussian tricks’ (first and second derivatives of
ϕ(µ)) to find E(µ) and Var(µ).

◮ In this case the result is exact, because f (µ | x , σ) is indeed
Gaussian.
(A hint is that d2ϕ(µ)

dµ2 is constant ∀µ)
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Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)
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Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)

∝ 1

σn
exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ, σ),

© GdA, GSSI-05 16/06/21, 40/77



Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)

∝ 1

σn
exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ, σ),

∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)
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Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)

∝ 1

σn
exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ, σ),

∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)
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Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)

∝ 1

σn
exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ, σ),

∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
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Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)

∝ 1

σn
exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ, σ),

∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on x and s

(and on the priors, as it has to be!).
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Joint inference of µ and σ from a sample

f (µ, σ | x) ∝
∏

i

1√
2πσ

e
−

(xi−µ)2

2σ2 · f0(µ, σ)

∝ 1

σn
exp

[

−
∑

i (xi − µ)2

2σ2

]

· f0(µ, σ),

∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on x and s

(and on the priors, as it has to be!).
⇒ x and s are sufficient statistics
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Joint inference of µ and σ from a sample
In practice

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)
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Joint inference of µ and σ from a sample
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f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ
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Joint inference of µ and σ from a sample
In practice

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Details in the Appendix, but some remarks are in order:
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· f0(µ, σ)

Then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Details in the Appendix, but some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from
a flat prior!)
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Joint inference of µ and σ from a sample
In practice

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Details in the Appendix, but some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from
a flat prior!) due to the uncertainty on σ (‘convolution over
all possible values’)
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Joint inference of µ and σ from a sample
In practice

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Details in the Appendix, but some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from
a flat prior!) due to the uncertainty on σ (‘convolution over
all possible values’)

◮ It tends to Gaussian when ‘σ is precisely measured’
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Joint inference of µ and σ from a sample
In practice

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

Details in the Appendix, but some remarks are in order:

◮ f (µ | x , s) is in general not Gaussian (not even starting from
a flat prior!) due to the uncertainty on σ (‘convolution over
all possible values’)

◮ It tends to Gaussian when ‘σ is precisely measured’

⇒ n → ∞
© GdA, GSSI-05 16/06/21, 41/77



Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ ⇒ inducing abstract
speculations in mathematicians and statisticians who often have
little idea of what they are talking about
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ ⇒ inducing abstract
speculations in mathematicians and statisticians who often have
little idea of what they are talking about (Gauss was Gauss!).
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Joint inference of µ and σ from a sample
Large sample behaviour starting from uniform priors(∗)

(with ‘std’ for standard deviation to avoid confusion with
unkown σ)

E(µ)
′n→∞′

−−−−→ x

std(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
)

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

)

(∗) The most sensitive is the prior on σ ⇒ inducing abstract
speculations in mathematicians and statisticians who often have
little idea of what they are talking about (Gauss was Gauss!).
⇒ See references and links © GdA, GSSI-05 16/06/21, 42/77



Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning µ on a precise value of σ = σ∗:

f (µ | x , s, σ∗)
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning µ on a precise value of σ = σ∗:

f (µ | x , s, σ∗) ∝ σ∗
−n exp

[

−s2 + (µ− x)2

2σ∗2/n

]

· f0(µ)
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning µ on a precise value of σ = σ∗:

f (µ | x , s, σ∗) ∝ σ∗
−n exp

[

−s2 + (µ− x)2

2σ∗2/n

]

· f0(µ)

∝ exp

[

−(µ− x)2

2σ∗2/n

]

· f0(µ)

All factors not depending on µ absorbed in ‘∝’.
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning µ on a precise value of σ = σ∗:

f (µ | x , s, σ∗) ∝ σ∗
−n exp

[

−s2 + (µ− x)2

2σ∗2/n

]

· f0(µ)

∝ exp

[

−(µ− x)2

2σ∗2/n

]

· f0(µ)

All factors not depending on µ absorbed in ‘∝’.
In the case of uniform f0(µ) it turns out that µ is Gaussian
around x with standard deviation equal to σ∗/

√
n.
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning µ on a precise value of σ = σ∗:

f (µ | x , s, σ∗) ∝ σ∗
−n exp

[

−s2 + (µ− x)2

2σ∗2/n

]

· f0(µ)

∝ exp

[

−(µ− x)2

2σ∗2/n

]

· f0(µ)

All factors not depending on µ absorbed in ‘∝’.
In the case of uniform f0(µ) it turns out that µ is Gaussian
around x with standard deviation equal to σ∗/

√
n.

“Obviously!”: this is equivanent to the choice fo(σ) = δ(σ − σ∗)

© GdA, GSSI-05 16/06/21, 43/77



Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)

∝ σ−n exp

[

−K 2

σ2

]

· f0(σ)

with K 2 = n (s2 + (µ∗ − x)2)/2, just a positive constant.
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)

∝ σ−n exp

[

−K 2

σ2

]

· f0(σ)

with K 2 = n (s2 + (µ∗ − x)2)/2, just a positive constant.
Change of variable: σ → τ = 1/σ2 (technically convenient):

f (τ | x , s, µ∗) ∝ τn/2 exp
[

−K 2 τ
]

· f0(τ)
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)

∝ σ−n exp

[

−K 2

σ2

]

· f0(σ)

with K 2 = n (s2 + (µ∗ − x)2)/2, just a positive constant.
Change of variable: σ → τ = 1/σ2 (technically convenient):

f (τ | x , s, µ∗) ∝ τn/2 exp
[

−K 2 τ
]

· f0(τ)
We ‘easily’ recognize in τn/2 exp

[

−K 2 τ
]
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)

∝ σ−n exp

[

−K 2

σ2

]

· f0(σ)

with K 2 = n (s2 + (µ∗ − x)2)/2, just a positive constant.
Change of variable: σ → τ = 1/σ2 (technically convenient):

f (τ | x , s, µ∗) ∝ τn/2 exp
[

−K 2 τ
]

· f0(τ)
We ‘easily’ recognize in τn/2 exp

[

−K 2 τ
]

a Gamma distribution:
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)

∝ σ−n exp

[

−K 2

σ2

]

· f0(σ)

with K 2 = n (s2 + (µ∗ − x)2)/2, just a positive constant.
Change of variable: σ → τ = 1/σ2 (technically convenient):

f (τ | x , s, µ∗) ∝ τn/2 exp
[

−K 2 τ
]

· f0(τ)
We ‘easily’ recognize in τn/2 exp

[

−K 2 τ
]

a Gamma distribution:
→ also f (τ | x , s, µ∗) will be a Gamma if a Gamma f0(τ) is chosen
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Joint inference of µ and σ from a sample
Conditional distributions

Joint distribution:

f (µ, σ | x , s) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

Conditioning σ on a precise value of µ = µ∗:

f (σ | x , s, µ∗) ∝ σ−n exp

[

−s2 + (µ∗ − x)2

2σ2/n

]

· f0(σ)

∝ σ−n exp

[

−K 2

σ2

]

· f0(σ)

with K 2 = n (s2 + (µ∗ − x)2)/2, just a positive constant.
Change of variable: σ → τ = 1/σ2 (technically convenient):

f (τ | x , s, µ∗) ∝ τn/2 exp
[

−K 2 τ
]

· f0(τ)
We ‘easily’ recognize in τn/2 exp

[

−K 2 τ
]

a Gamma distribution:
→ also f (τ | x , s, µ∗) will be a Gamma if a Gamma f0(τ) is chosen

⇒ Gibbs sampler! © GdA, GSSI-05 16/06/21, 44/77



Joint inference of µ and τ (→ σ) from a sample
Sampling the posterior by MCMC using Gibbs sampler

0) Inizialization:
◮ i = 0
◮ choose a suitable Gaussian conjugate for µ (σ0 → ∞ for ‘flat’);
◮ choose a suitable Gamma conjugate for τ (c = 1, r → 0 for

‘flat’);
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0) Inizialization:
◮ i = 0
◮ choose a suitable Gaussian conjugate for µ (σ0 → ∞ for ‘flat’);
◮ choose a suitable Gamma conjugate for τ (c = 1, r → 0 for

‘flat’);
◮ choose an arbitary (but possible ‘reasonable’) µi ;
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Joint inference of µ and τ (→ σ) from a sample
Sampling the posterior by MCMC using Gibbs sampler

0) Inizialization:
◮ i = 0
◮ choose a suitable Gaussian conjugate for µ (σ0 → ∞ for ‘flat’);
◮ choose a suitable Gamma conjugate for τ (c = 1, r → 0 for

‘flat’);
◮ choose an arbitary (but possible ‘reasonable’) µi ;
◮ extract at random τi from f (τ | x , s, µi )
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Joint inference of µ and τ (→ σ) from a sample
Sampling the posterior by MCMC using Gibbs sampler

0) Inizialization:
◮ i = 0
◮ choose a suitable Gaussian conjugate for µ (σ0 → ∞ for ‘flat’);
◮ choose a suitable Gamma conjugate for τ (c = 1, r → 0 for

‘flat’);
◮ choose an arbitary (but possible ‘reasonable’) µi ;
◮ extract at random τi from f (τ | x , s, µi )

Then loop n times :

1) i = i + 1;
extract at random µi from f (µ | x , s, τi−1);
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Joint inference of µ and τ (→ σ) from a sample
Sampling the posterior by MCMC using Gibbs sampler

0) Inizialization:
◮ i = 0
◮ choose a suitable Gaussian conjugate for µ (σ0 → ∞ for ‘flat’);
◮ choose a suitable Gamma conjugate for τ (c = 1, r → 0 for

‘flat’);
◮ choose an arbitary (but possible ‘reasonable’) µi ;
◮ extract at random τi from f (τ | x , s, µi )

Then loop n times :

1) i = i + 1;
extract at random µi from f (µ | x , s, τi−1);

2) extract at random τi from f (τ | x , s, µi ) ;
goto 1)
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Joint inference of µ and τ (→ σ) from a sample
Sampling the posterior by MCMC using Gibbs sampler

0) Inizialization:
◮ i = 0
◮ choose a suitable Gaussian conjugate for µ (σ0 → ∞ for ‘flat’);
◮ choose a suitable Gamma conjugate for τ (c = 1, r → 0 for

‘flat’);
◮ choose an arbitary (but possible ‘reasonable’) µi ;
◮ extract at random τi from f (τ | x , s, µi )

Then loop n times :

1) i = i + 1;
extract at random µi from f (µ | x , s, τi−1);

2) extract at random τi from f (τ | x , s, µi ) ;
goto 1)

Try it!

You only need Gaussian and Gamma random number generators
(e.g. in R)
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Joint inference of µ and τ (→ σ) with JAGS/rjags
Model (to be written in the model file)

model{

for (i in 1:length(x)) {

x[i] ~ dnorm(mu, tau);

}

mu ~ dnorm(0.0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}
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Joint inference of µ and τ (→ σ) with JAGS/rjags
Model (to be written in the model file)

model{

for (i in 1:length(x)) {

x[i] ~ dnorm(mu, tau);

}

mu ~ dnorm(0.0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Simulated data

mu.true = 3; sigma.true = 2; sample.n = 20

x = rnorm(sample.n, mu.true, sigma.true)
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Joint inference of µ and τ (→ σ) with JAGS/rjags
Model (to be written in the model file)

model{

for (i in 1:length(x)) {

x[i] ~ dnorm(mu, tau);

}

mu ~ dnorm(0.0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Simulated data

mu.true = 3; sigma.true = 2; sample.n = 20

x = rnorm(sample.n, mu.true, sigma.true)

JAGS calls

data = list(x=x)

inits = list(mu=mean(x), tau=1/var(x))

jm <- jags.model(model, data, inits)

update(jm, 100)

chain <- coda.samples(jm, c("mu","sigma"), n.iter=10000)
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Joint inference of µ and τ (→ σ) with JAGS/rjags
⇒ inf mu sigma.R

© GdA, GSSI-05 16/06/21, 47/77



Joint inference of µ and τ (→ σ) with JAGS/rjags
⇒ inf mu sigma.R

mu = 2.87, std(mu) = 0.44; sigma = 1.94, std(sigma) = 0.31
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c
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Note: Linearity is between µyi and
µxi , not between yi and xi !

© GdA, GSSI-05 16/06/21, 48/77



Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c

Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c

Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;

◮ perform the calculations.

θ

µxi

xi

µyi

yi

[ for each i ]
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Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c

Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;

◮ perform the calculations.

θ

µxi

xi

µyi

yi

[ for each i ]

→ f (θ | x, y, I )

© GdA, GSSI-05 16/06/21, 48/77



Fits – introduction

◮ In a probabilistic framework the issue of the fits is nothing but

parametric inference.

◮ set up the model,
e.g. µyi = m µxi + c

Note: Linearity is between µyi and
µxi , not between yi and xi !

◮ apply probability rules;

◮ perform the calculations.

θ

µxi

xi

µyi

yi

[ for each i ]

→ f (θ | x, y, I )
→ f (m, c | x, y,σ), in the case of case of linear fit
with “σ’s known a priori” (!)
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
◮ Probabilistic links between µx ’s and x ’s, and between µy ’s

and y ’s (errors on both axes)
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
◮ Probabilistic links between µx ’s and x ’s, and between µy ’s

and y ’s (errors on both axes)
◮ ⇒ aim of fit (σ’s known): {x , y} → θ = (m, c)
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Linear fit – introduction

θ

µxi

xi

µyi

yi

[ for each i ]

◮ Deterministic links between µx ’s and µy ’s.
◮ Probabilistic links between µx ’s and x ’s, and between µy ’s

and y ’s (errors on both axes)
◮ ⇒ aim of fit (σ’s known): {x , y} → θ = (m, c)
◮ If σx ’s and σy ’s are unkown and assumed all equal

{x , y} → θ = (m, c , σx , σy )
◮ etc. . .
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Linear fit – simplest case

f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .
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f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)
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Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)

◮ Independence of data points.
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Linear fit – simplest case

f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)

◮ Independence of data points.

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i

(yi − µyi )
2

2σ2
i

]

· f0(m, c)

∝ exp

[

−1

2

∑

i

(yi −mxi − c)2

σ2
i

]

· f0(m, c)
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Linear fit – simplest case

f (m, c | x , y , I ) ∝ f (x , y |m, c , I ) · f0(m, c)

Simplifying hypotheses:

◮ No error on µx ⇒ µxi = xi :
µyi = mxi + c .

◮ Gaussian errors on y , with yi ∼ N (µyi , σi ), with σi “known
somehow” (or “to be determined in some way”)

◮ Independence of data points.

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i

(yi − µyi )
2

2σ2
i

]

· f0(m, c)

∝ exp

[

−1

2

∑

i

(yi −mxi − c)2

σ2
i

]

· f0(m, c)

⇒ flat priors: inference only depends on exp
[

−1
2

∑

i
(yi−mxi−c)2

σ2
i

]

.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.

◮ You might recognize at the exponent: χ2/2:
⇒ χ2 minimization.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.

◮ You might recognize at the exponent: χ2/2:
⇒ χ2 minimization.

◮ As an approximation, one can obtain best fit parameters and
covariance matrix by the ‘Gaussian trick’
⇒ ϕ(m, c) ∝ χ2.
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Least squares and ‘Gaussian tricks’ on linear fits

f (m, c | x , y ,σ) ∝ exp

[

−
∑

i (yi −mxi − c)2

2σ2
i

]

· f0(m, c)

◮ If the prior is irrelevant and the σ’s are all equal, than the
maximum of the posterior is obtained when the sum of the
squares is minimized:
⇒ Least Square ‘Principle’.

◮ You might recognize at the exponent: χ2/2:
⇒ χ2 minimization.

◮ As an approximation, one can obtain best fit parameters and
covariance matrix by the ‘Gaussian trick’
⇒ ϕ(m, c) ∝ χ2.

⇒ same result of the detailed one is achieved, simply because the
problem is linear!
(No garantee in general!)

© GdA, GSSI-05 16/06/21, 51/77



Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)

Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the

exponent” fail, because they miss the contribution from σ−n!
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Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the
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◮ The Gaussian trick applied to the full posterior perfoms better.
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)

Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the

exponent” fail, because they miss the contribution from σ−n!
◮ The Gaussian trick applied to the full posterior perfoms better.

Residuals? Ok if there are many points, otherwise we do not take
into account the uncertainty on σ and its effect on the probability
function of m and c .
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Uncertain standard deviation
In the probabilistic approach it is rather simple: just add σ in θ to
infer.

◮ For example, if we have good reasons to belief that the σ’s
are all equal, then

f (m, c , σ | x , y) ∝ σ−n exp

[

−
∑

i (yi −mxi − c)2

2σ2

]

· f0(m, c , σ)

Even if the prior is flat in all parameters
◮ methods “based only on the properties of the argument of the

exponent” fail, because they miss the contribution from σ−n!
◮ The Gaussian trick applied to the full posterior perfoms better.

Residuals? Ok if there are many points, otherwise we do not take
into account the uncertainty on σ and its effect on the probability
function of m and c .
Note: as long as σ is constant (although unknown) and the prior
flat in m and c the best estimates of m and c do not depend in σ.
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Linear fits with uncertain σ in JAGS
Model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i]*m + c;

}

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}
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Linear fits with uncertain σ in JAGS
Model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i]*m + c;

}

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Simulated data

m.true = 2; c.true = 1; sigma.true=2

x = 1:20

y = m.true * x + c.true + rnorm(length(x), 0, sigma.true)

plot(x,y, col=’blue’,ylim=c(0,max(y)) )
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Linear fits with uncertain σ in JAGS
Plot of simulated data
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Linear fits with uncertain σ in JAGS
Plot of simulated data

Calling JAGS

ns=10000

jm <- jags.model(model, data, inits)

update(jm, 100)

chain <- coda.samples(jm, c("c","m","sigma"), n.iter=ns)
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Linear fits with uncertain σ in JAGS
⇒ linear fit.R
JAGS summary

c = −0.04± 0.96; m = 2.10± 0.08; σ = 2.06± 0.34
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Linear fits with uncertain σ in JAGS
‘Check’ the result

c <- as.vector(chain[[1]][,1])

m <- as.vector(chain[[1]][,2])

sigma <- as.vector(chain[[1]][,3])

plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’)
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Linear fits with uncertain σ in JAGS
‘Check’ the result

c <- as.vector(chain[[1]][,1])

m <- as.vector(chain[[1]][,2])

sigma <- as.vector(chain[[1]][,3])

plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’)
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Linear fits with uncertain σ in JAGS

Correlation between m and c

plot(m,c,col=’cyan’)

cat(sprintf("rho(m,x) = %.3f\n", cor(m,c) ))
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Linear fits with uncertain σ in JAGS

Correlation between m and c

plot(m,c,col=’cyan’)

cat(sprintf("rho(m,x) = %.3f\n", cor(m,c) ))

ρ(m, c) = −0.88
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares
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abline(mean(c), mean(m), col=’red’) # JAGS
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time?
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab)
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab): m and c ≈OK
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Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab): m and c ≈OK: NO FIT: focus on circuits!

© GdA, GSSI-05 16/06/21, 58/77



Linear fits with uncertain σ in JAGS
Check with R lm() (least square)
plot(x,y, col=’blue’,ylim=c(0,max(y)) )

abline(mean(c), mean(m), col=’red’) # JAGS

abline(lm(y~x), col=’black’) # least squares

Linear model line (c = −0.05, m = 2.10) covers perfectly the JAGS
result: waste of time? It all depends. . .
If the purpose was just to get an idea of the trend, then drawing a line
with pencil and ruler would have been enough (as suggested to students
of Circuit Lab): m and c ≈OK: NO FIT: focus on circuits!

Otherwise: ⇒ f (c ,m, σ | data points)
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

© GdA, GSSI-05 16/06/21, 59/77



Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

◮ Then we have to take into account all uncertainties, including
correlations (not only the covariance matrix!)
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

◮ Then we have to take into account all uncertainties, including
correlations (not only the covariance matrix!)

Our problem

f (µyf | data, xf ) =

∫

f (µyf |m, c , xf ) · f (m, c | data) dc dm
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Forecasting new µy and new y
Imagine we are interested at “y at xf = 30” (referring to our
‘data’).

◮ First at all it is important to distinguish

µy (xf ) → µy (µxf ) (no error on x)

y(xf ) → y(µxf )

◮ Then we have to take into account all uncertainties, including
correlations (not only the covariance matrix!)

Our problem

f (µyf | data, xf ) =

∫

f (µyf |m, c , xf ) · f (m, c | data) dc dm

f (yf | data, xf ) =

∫

f (yf |µyf ) · f (µyf | data, xf ) dµyf
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Forecasting new µy and new y
Including prediction in the JAGS model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i] * m + c;

}

mu.yf <- xf * m + c; # future ’true value’ for x=xf

yf ~ dnorm(mu.yf, tau); # future ’observation for x=xf

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}
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Forecasting new µy and new y
Including prediction in the JAGS model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i] * m + c;

}

mu.yf <- xf * m + c; # future ’true value’ for x=xf

yf ~ dnorm(mu.yf, tau); # future ’observation for x=xf

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Or we can do the ‘integral’ by sampling, using the MCMC histories
of the quantities of interest
(see previous model, without prediction)
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Forecasting new µy and new y
Including prediction in the JAGS model

var mu.y[N];

model{

for (i in 1:N) {

y[i] ~ dnorm(mu.y[i], tau);

mu.y[i] <- x[i] * m + c;

}

mu.yf <- xf * m + c; # future ’true value’ for x=xf

yf ~ dnorm(mu.yf, tau); # future ’observation for x=xf

c ~ dnorm(0, 1.0E-6);

m ~ dnorm(0, 1.0E-6);

tau ~ dgamma(1.0, 1.0E-6);

sigma <- 1.0/sqrt(tau);

}

Or we can do the ‘integral’ by sampling, using the MCMC histories
of the quantities of interest
(see previous model, without prediction)

⇒ Left as exercise
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Forecasting new µy and new y with JAGS

µy (x = 30) = 63.0± 1.7; y(x = 30) = 63.0± 2.7
Try with Root ;-) [’data’ on the web site]
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The End
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Appendix on small samples

© GdA, GSSI-05 16/06/21, 63/77



Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on s2 and x (and on

the priors, as it has to be!).
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on s2 and x (and on

the priors, as it has to be!).
◮ Evaluate f (µ, σ | x , s) and then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ
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Inferring µ and σ from a sample
(Gaussian, independent observations)

f (µ, σ | x) ∝ σ−n exp

[

−x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−x2−x2 + x2 − 2µ x + µ2

2σ2/n

]

· f0(µ, σ)

∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

with s2 = x2 − x2, variance of the sample.
◮ the inference on µ and σ depends only on s2 and x (and on

the priors, as it has to be!).
◮ Evaluate f (µ, σ | x , s) and then

f (µ | x , s) =

∫ ∞

0
f (µ, σ | x , s) dσ

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

Marginalizing1

f (µ | x) =

∫ ∞

0
f (µ, σ | x) dσ

1The integral of interest is
∫

∞

0

z
−n exp

[

−

c

2 z2

]

dz = 2(n−3)/2 Γ

[

1

2
(n − 1)

]

c
−(n−1)/2.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

Marginalizing1

f (µ | x) =

∫ ∞

0
f (µ, σ | x) dσ

∝
(

(x − µ)2 + s2
)−(n−1)/2

1The integral of interest is
∫

∞

0

z
−n exp

[

−

c

2 z2

]

dz = 2(n−3)/2 Γ

[

1

2
(n − 1)

]

c
−(n−1)/2.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

Marginalizing1

f (µ | x) =

∫ ∞

0
f (µ, σ | x) dσ

∝
(

(x − µ)2 + s2
)−(n−1)/2

∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

1The integral of interest is
∫

∞

0

z
−n exp

[

−

c

2 z2

]

dz = 2(n−3)/2 Γ

[

1

2
(n − 1)

]

c
−(n−1)/2.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??

∝
(

1 +
(µ− x)2

(n − 2) s2/(n − 2)

)−((n−2)+1)/2
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??

∝
(

1 +
(µ− x)2

(n − 2) s2/(n − 2)

)−((n−2)+1)/2

∝
(

1 +
t2

ν

)−(ν+1)/2

with

ν = n − 2

t =
µ− x

s/
√
n − 2

,
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on σ)

f (µ | x) ∝
(

1 +
(µ− x)2

s2

)−(n−1)/2

??

∝
(

1 +
(µ− x)2

(n − 2) s2/(n − 2)

)−((n−2)+1)/2

∝
(

1 +
t2

ν

)−(ν+1)/2

with

ν = n − 2

t =
µ− x

s/
√
n − 2

,

that is

µ = x +
s√
n − 2

t ,

where t is a “Student t” with ν = n − 2:
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Student t

-4 -2 2 4
x

0.1

0.2

0.3

0.4

f

Examples of Student t for ν equal to 1 , 2, 5, 10 and 100 (≈ “∞”).
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

The uncertainty on σ increases the probability of the values of µ
far from x :

◮ not only the standard uncertainty increases, but the
distribution itself changes and, as ‘well know’ the t
distribution has ‘higher’ tails.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

In summary,

µ− x

s/
√
n − 2

∼ Student(ν = n − 2)

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

The uncertainty on σ increases the probability of the values of µ
far from x :

◮ not only the standard uncertainty increases, but the
distribution itself changes and, as ‘well know’ the t
distribution has ‘higher’ tails.

However, when n is very large the Gaussian distribution is recovered
(the t-distribution tends to a gaussian), with σ(µ) = s/

√
n.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

It is just a reflex of the fact that we have used, for lazyness,2 priors
which are indeed absurd.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

It is just a reflex of the fact that we have used, for lazyness,2 priors
which are indeed absurd.

◮ In no measurement we beleive that µ and/or σ could be
‘infinite’.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
Misunderstandings and ‘myths’ related to the Student t distribution

Expected value and variance only exist above certain values of n:

E(µ)
(n>3)
= x

σ(µ)
(n>4)
=

s√
n − 4

.

So what?

It is just a reflex of the fact that we have used, for lazyness,2 priors
which are indeed absurd.

◮ In no measurement we beleive that µ and/or σ could be
‘infinite’.

◮ Just plug in some reasonable, although very vagues, proper
priors, and the problem disappears.

2Flat priors are good for teaching purposes, but when the result hurts with
our beliefs it means we have to use priors that match with previous knowledge.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

◮ Large n limit:

E(µ)
n→∞−−−→ x

σ(µ)
n→∞−−−→ s√

n

µ
n→∞−−−→ ∼ N (x ,

s√
n
).
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

] ∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

] ∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ

∝ σ−(n−1) exp

[

− n s2

2σ2

]
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

] ∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ

∝ σ−(n−1) exp

[

− n s2

2σ2

]

That is. . . (no special function)
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Marginal f (σ)

f (σ | x , s) =

∫ +∞

−∞
f (µ, σ | x , s) dµ

∝ σ−n exp

[

− n s2

2σ2

] ∫ +∞

−∞
exp

[

−n (x − µ)2

2σ2

]

dµ

∝ σ−(n−1) exp

[

− n s2

2σ2

]

That is. . . (no special function)
[But if we would use τ = 1/σ2 we would recognize a Gamma. . . ]
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on mu and σ)

2 4 6 8 10
Σ�s

0.25

0.5

0.75

1

1.25

1.5

fHΣ�sL Prior uniforme in Σ

n = 3 (dotted), n = 5 (dashed) e n = 10 (continous).
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

2 4 6 8 10
Σ�s

0.25

0.5

0.75

1

1.25

1.5

fHΣ�sL Prior uniforme in Σ

E(σ) −−−→
n→∞

s

std(σ) −−−→
n→∞

s√
2 n

σ −−−→
n→∞

∼ N (s,
s√
2 n

) .
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Using the “Gaussian trick”

ϕ(µ, σ) = n lnσ +
s2 + (µ− x)2)

2σ/n
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Using the “Gaussian trick”

ϕ(µ, σ) = n lnσ +
s2 + (µ− x)2)

2σ/n

First derivatives:

∂ϕ

∂µ
=

µ− x

σ/n

∂ϕ

∂σ
=

n

σ
− n s2

σ3
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Using the “Gaussian trick”

ϕ(µ, σ) = n lnσ +
s2 + (µ− x)2)

2σ/n

First derivatives:

∂ϕ

∂µ
=

µ− x

σ/n

∂ϕ

∂σ
=

n

σ
− n s2

σ3

From which it follows (equating the derivatives to zero)

E(µ) = x

E(σ) = s

(They are indeed the modes!)
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

It follows
std(µ) =

s√
n

std(σ) =
s√
2 n

,

reobtaining the large number limit.
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

It follows
std(µ) =

s√
n

std(σ) =
s√
2 n

,

reobtaining the large number limit. And, notice, ρ(µ, σ) = 0 .
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Inferring µ and σ from a sample
(Gaussian, independent observations – prior uniform on µ and σ)

Hessian calculated at µ = x and σ = s (hereafter ‘m’):

∂2ϕ

∂µ2

∣

∣

∣

∣

m

=
n

σ2

∣

∣

∣

m
=

n

s2

∂2ϕ

∂σ2

∣

∣

∣

∣

m

=

(

− n

σ2
+

3 (s2 + (µ− x)2)

σ4/n

)∣

∣

∣

∣

m

=
2 n

s2

∂2ϕ

∂µ∂σ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

∂2ϕ

∂σ∂µ

∣

∣

∣

∣

m

=
−2 (µ− x)

σ3/n

∣

∣

∣

∣

m

= 0

It follows
std(µ) =

s√
n

std(σ) =
s√
2 n

,

reobtaining the large number limit. And, notice, ρ(µ, σ) = 0 .
Q.: Are they independent?
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
Do you recongnize a famous mathematical form?
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
Do you recongnize a famous mathematical form?

On the other way around, for a fixed τ ,

f (µ | x , τ) ∝ exp
[

−n τ

2
(µ− x)2

]

· f0(µ)
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Inferring µ and σ from a sample
(Gaussian, independent observations. Expression the Gaussian in terms of τ = 1/σ2)

f (µ, σ | x) ∝ σ−n exp

[

−s2 + (µ− x)2

2σ2/n

]

· f0(µ, σ)

It is technically convenient to use τ = 1/σ2:

f (µ, τ | x) ∝ τn/2 exp
[

−n τ

2

(

s2 + (µ− x)2
)

]

· f0(µ, τ)

For a fixed µ (and observed s and x)

f (τ | x , µ) ∝ τα e−β τ · f0(τ)
Do you recongnize a famous mathematical form?

On the other way around, for a fixed τ ,

f (µ | x , τ) ∝ exp
[

−n τ

2
(µ− x)2

]

· f0(µ)

⇒ Gibbs sampling
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Practical introduction to BUGS

◮ Introducing the bug language to build up the models.

◮ Running the model (including data and ‘inits’) in the
OpenBUGS GUI.

◮ Analysing the resulting chain in R.
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