
Measurements, uncertainties
and probabilistic inference/forecasting

Giulio D’Agostini

Università di Roma La Sapienza e INFN
Roma, Italy

© GdA, GSSI-04 14/06/21, 1/65

http://www.roma1.infn.it/~dagos/

Back to the exponential distribution
Short reminder

We have seen how the exponential distribution arises from the
Poisson process.

© GdA, GSSI-04 14/06/21, 2/65

Back to the exponential distribution
Short reminder

We have seen how the exponential distribution arises from the
Poisson process.
In particular

◮ Poisson distribution and Exponential distributions are two
different points of view on the same process;

© GdA, GSSI-04 14/06/21, 2/65

Back to the exponential distribution
Short reminder

We have seen how the exponential distribution arises from the
Poisson process.
In particular

◮ Poisson distribution and Exponential distributions are two
different points of view on the same process;

◮ the parameters of the two distributions are hence related,
depending on the physical one, r :

τ = 1/r

λ = r T

=
T

τ

© GdA, GSSI-04 14/06/21, 2/65

Back to the exponential distribution
Short reminder

We have seen how the exponential distribution arises from the
Poisson process.
In particular

◮ Poisson distribution and Exponential distributions are two
different points of view on the same process;

◮ the parameters of the two distributions are hence related,
depending on the physical one, r :

τ = 1/r

λ = r T

=
T

τ

◮ The Exponential is a Geometric in the continuum
(it makes no sense to speak about the “precise trial”,
but we can talk about “time the occurrence”)

© GdA, GSSI-04 14/06/21, 2/65

Exponential random number generator

Exercise: use the algoritm of inverting the cumulative to write an
exponential random number generator

◮ reminder:

f (t) =
1

τ
e−t/τ

= r e−r t

F (t) = 1− e−t/τ

= 1− e−r t

© GdA, GSSI-04 14/06/21, 3/65

Property of “no memory”
Both the Exponential and the Geometric have the property
of ‘no memory’:
If the ’success’ is not occurred up to a certain ‘point’ (trial or
instant), all probabilistic considerations restart from that that
‘point’.

P(X > x + x◦ |X > x◦) = P(X > x)

© GdA, GSSI-04 14/06/21, 4/65

Property of “no memory”
Both the Exponential and the Geometric have the property
of ‘no memory’:
If the ’success’ is not occurred up to a certain ‘point’ (trial or
instant), all probabilistic considerations restart from that that
‘point’.

P(X > x + x◦ |X > x◦) = P(X > x)

If we imagine precesses that go on also after each success
(imagine a coin repeatedly tossed, or a Poisson process whose
intensity remains constant over a long time)

© GdA, GSSI-04 14/06/21, 4/65

Property of “no memory”
Both the Exponential and the Geometric have the property
of ‘no memory’:
If the ’success’ is not occurred up to a certain ‘point’ (trial or
instant), all probabilistic considerations restart from that that
‘point’.

P(X > x + x◦ |X > x◦) = P(X > x)

If we imagine precesses that go on also after each success
(imagine a coin repeatedly tossed, or a Poisson process whose
intensity remains constant over a long time)
◮ the ‘zero’ of the counting (or of the time) can be taken

when a ‘success’ has occurred;

© GdA, GSSI-04 14/06/21, 4/65

Property of “no memory”
Both the Exponential and the Geometric have the property
of ‘no memory’:
If the ’success’ is not occurred up to a certain ‘point’ (trial or
instant), all probabilistic considerations restart from that that
‘point’.

P(X > x + x◦ |X > x◦) = P(X > x)

If we imagine precesses that go on also after each success
(imagine a coin repeatedly tossed, or a Poisson process whose
intensity remains constant over a long time)
◮ the ‘zero’ of the counting (or of the time) can be taken

when a ‘success’ has occurred; hence
◮ the Geometric distribution describes the number of trials

between consecutive successes (and in this case it is
convenient to make X starting from 0, instead than from 1);

© GdA, GSSI-04 14/06/21, 4/65

Property of “no memory”
Both the Exponential and the Geometric have the property
of ‘no memory’:
If the ’success’ is not occurred up to a certain ‘point’ (trial or
instant), all probabilistic considerations restart from that that
‘point’.

P(X > x + x◦ |X > x◦) = P(X > x)

If we imagine precesses that go on also after each success
(imagine a coin repeatedly tossed, or a Poisson process whose
intensity remains constant over a long time)
◮ the ‘zero’ of the counting (or of the time) can be taken

when a ‘success’ has occurred; hence
◮ the Geometric distribution describes the number of trials

between consecutive successes (and in this case it is
convenient to make X starting from 0, instead than from 1);

◮ the Exponential distribution describes the time interval
between two consecutive events (as long as r remains
‘practically’ constant).

© GdA, GSSI-04 14/06/21, 4/65

Decay life time and half time
(An interesting exercise)

Imagine we have, at t = 0, N(0) = N0 nuclei.
◮ Probability that one nucleus decays in the time interval

between 0 and ∆T :

© GdA, GSSI-04 14/06/21, 5/65

Decay life time and half time
(An interesting exercise)

Imagine we have, at t = 0, N(0) = N0 nuclei.
◮ Probability that one nucleus decays in the time interval

between 0 and ∆T :

P(“1 decay in ∆t”) =

∫ ∆t

0

1

τ
e−t/τ dt

= 1− e−∆t/τ

(If ∆t ≪ τ)

≈ 1−
(

1− ∆t

τ

)

=
∆t

τ

© GdA, GSSI-04 14/06/21, 5/65

Decay life time and half time
(An interesting exercise)

Imagine we have, at t = 0, N(0) = N0 nuclei.
◮ Probability that one nucleus decays in the time interval

between 0 and ∆T :

P(“1 decay in ∆t”) =

∫ ∆t

0

1

τ
e−t/τ dt

= 1− e−∆t/τ

(If ∆t ≪ τ)

≈ 1−
(

1− ∆t

τ

)

=
∆t

τ

⇒P(“1 d. in ∆t”) =
∆t

τ
.

© GdA, GSSI-04 14/06/21, 5/65

Decay life time and half time
(An interesting exercise)

Imagine we have, at t = 0, N(0) = N0 nuclei.
◮ Probability that one nucleus decays in the time interval

between 0 and ∆T :

P(“1 decay in ∆t”) =

∫ ∆t

0

1

τ
e−t/τ dt

= 1− e−∆t/τ

(If ∆t ≪ τ)

≈ 1−
(

1− ∆t

τ

)

=
∆t

τ

⇒P(“1 d. in ∆t”) =
∆t

τ
.

◮ If we have at a given instant N nuclei,
how many will decay in ∆t?

−→
© GdA, GSSI-04 14/06/21, 5/65

Decay life time and half time
(An interesting exercise – cont.d 1)

X ∼ B(N,
∆t

τ
)

E[X] = N · ∆t

τ
[= N · r ·∆t]

σ(X) =

√

∆t

τ
·
(

1− ∆t

τ

)

· N ≈
√

∆t

τ
· N

© GdA, GSSI-04 14/06/21, 6/65

Decay life time and half time
(An interesting exercise – cont.d 1)

X ∼ B(N,
∆t

τ
)

E[X] = N · ∆t

τ
[= N · r ·∆t]

σ(X) =

√

∆t

τ
·
(

1− ∆t

τ

)

· N ≈
√

∆t

τ
· N =

√

E[X]

◮ Relative uncertainty (E[X] > 0):

v =
σ(X)

E[X]
=

1
√

E[X]

© GdA, GSSI-04 14/06/21, 6/65

Decay life time and half time
(An interesting exercise – cont.d 1)

X ∼ B(N,
∆t

τ
)

E[X] = N · ∆t

τ
[= N · r ·∆t]

σ(X) =

√

∆t

τ
·
(

1− ∆t

τ

)

· N ≈
√

∆t

τ
· N =

√

E[X]

◮ Relative uncertainty (E[X] > 0):

v =
σ(X)

E[X]
=

1
√

E[X]

◮ When the number of decays in ∆t is rather ‘large’, that is
◮ N ‘large’
◮ ∆t ‘not too small’

v → 0

© GdA, GSSI-04 14/06/21, 6/65

Decay life time and half time
(An interesting exercise – cont.d 1)

X ∼ B(N,
∆t

τ
)

E[X] = N · ∆t

τ
[= N · r ·∆t]

σ(X) =

√

∆t

τ
·
(

1− ∆t

τ

)

· N ≈
√

∆t

τ
· N =

√

E[X]

◮ Relative uncertainty (E[X] > 0):

v =
σ(X)

E[X]
=

1
√

E[X]

◮ When the number of decays in ∆t is rather ‘large’, that is
◮ N ‘large’
◮ ∆t ‘not too small’

v → 0
◮ The process can be seen as deterministic: −→

© GdA, GSSI-04 14/06/21, 6/65

Decay life time and half time
(An interesting exercise – cont.d 2)

∆N = −E[X] = −N ∆t

τ

© GdA, GSSI-04 14/06/21, 7/65

Decay life time and half time
(An interesting exercise – cont.d 2)

∆N = −E[X] = −N ∆t

τ

∆N

∆t
= −N

τ

© GdA, GSSI-04 14/06/21, 7/65

Decay life time and half time
(An interesting exercise – cont.d 2)

∆N = −E[X] = −N ∆t

τ

∆N

∆t
= −N

τ

that we can ‘conveniently extend’ to the continuum as

dN

dt
= −N

τ
,

resulting in

N(t) = N0 · e−t/τ .

© GdA, GSSI-04 14/06/21, 7/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :

© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :
◮ expected time to disintegrate for each nucleus;

© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :
◮ expected time to disintegrate for each nucleus;
◮ time constant of the decreasing numbers of nuclei, seen as a

continuous process (∼ deterministic law, like capacitor
discharge in a RC circuit).

© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :
◮ expected time to disintegrate for each nucleus;
◮ time constant of the decreasing numbers of nuclei, seen as a

continuous process (∼ deterministic law, like capacitor
discharge in a RC circuit).

◮ Half live:

N(t1/2) =
N0

2
→ t1/2 = τ ln 2

© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :
◮ expected time to disintegrate for each nucleus;
◮ time constant of the decreasing numbers of nuclei, seen as a

continuous process (∼ deterministic law, like capacitor
discharge in a RC circuit).

◮ Half live:

N(t1/2) =
N0

2
→ t1/2 = τ ln 2

◮ For a single nucleus t1/2 is the median of the p.d.f. of the
time to decay.

© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :
◮ expected time to disintegrate for each nucleus;
◮ time constant of the decreasing numbers of nuclei, seen as a

continuous process (∼ deterministic law, like capacitor
discharge in a RC circuit).

◮ Half live:

N(t1/2) =
N0

2
→ t1/2 = τ ln 2

◮ For a single nucleus t1/2 is the median of the p.d.f. of the
time to decay.

◮ Experimentally
◮ {∆N, ∆t, N} → r → τ

(without having to observe the instant of ‘birth’ and of dead
of single objects)

© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
(An interesting exercise – cont.d 3)

Twofold meaning of τ :
◮ expected time to disintegrate for each nucleus;
◮ time constant of the decreasing numbers of nuclei, seen as a

continuous process (∼ deterministic law, like capacitor
discharge in a RC circuit).

◮ Half live:

N(t1/2) =
N0

2
→ t1/2 = τ ln 2

◮ For a single nucleus t1/2 is the median of the p.d.f. of the
time to decay.

◮ Experimentally
◮ {∆N, ∆t, N} → r → τ

(without having to observe the instant of ‘birth’ and of dead
of single objects)

Quite not an easy concept for the general public −→
© GdA, GSSI-04 14/06/21, 8/65

Decay life time and half time
How life times are perceived. . .

Many years ago there was a claim of a proton decay observed in an
underground experiment:

◮ The ‘observed’ lifetime was about 1025 years
(order of magnitude – details are irrelevant);

© GdA, GSSI-04 14/06/21, 9/65

Decay life time and half time
How life times are perceived. . .

Many years ago there was a claim of a proton decay observed in an
underground experiment:

◮ The ‘observed’ lifetime was about 1025 years
(order of magnitude – details are irrelevant);

◮ This is how the new was reported by a major Italian
newspaper (Corriere della Sera):

© GdA, GSSI-04 14/06/21, 9/65

Decay life time and half time
How life times are perceived. . .

Many years ago there was a claim of a proton decay observed in an
underground experiment:

◮ The ‘observed’ lifetime was about 1025 years
(order of magnitude – details are irrelevant);

◮ This is how the new was reported by a major Italian
newspaper (Corriere della Sera):

Observed how a proton dies.
It was 1025 years old.

© GdA, GSSI-04 14/06/21, 9/65

The very venerably aged proton
Corriere della Sera, 1st June 1984

© GdA, GSSI-04 14/06/21, 10/65

Back to the

inferential/predictive problem

related to the binomial model

© GdA, GSSI-04 14/06/21, 11/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.
◮ Two unobserved variables (uncertain value)

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.
◮ Two unobserved variables (uncertain value): p and x1.

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.
◮ Two unobserved variables (uncertain value): p and x1.
◮ f (n0, x0, n1) is a number, given the model.

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.
◮ Two unobserved variables (uncertain value): p and x1.
◮ f (n0, x0, n1) is a number, given the model.

It might be difficult to calculate, but it is a number.

f (p, x1 | n0, x0, n1) =
f (p, x1, n0, n1, x0)

f (n0, x0, n1)

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.
◮ Two unobserved variables (uncertain value): p and x1.
◮ f (n0, x0, n1) is a number, given the model.

It might be difficult to calculate, but it is a number.

f (p, x1 | n0, x0, n1) =
f (p, x1, n0, n1, x0)

f (n0, x0, n1)

∝ f (p, x1, n0, n1, x0)

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Let’s do the math.
◮ Three observed variables (no uncertainty): n0, x0 and n1.
◮ Two unobserved variables (uncertain value): p and x1.
◮ f (n0, x0, n1) is a number, given the model.

It might be difficult to calculate, but it is a number.

f (p, x1 | n0, x0, n1) =
f (p, x1, n0, n1, x0)

f (n0, x0, n1)

∝ f (p, x1, n0, n1, x0)

f̃ (p, x1 | n0, x0, n1) = f (p, x1, n0, n1, x0)

˜f (): unnormalized pdf.

© GdA, GSSI-04 14/06/21, 12/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

∝ px0(1− p)n0−x0 · p
x1(1− p)n1−x1

x1! (n1 − x1)!
f0(p)

© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

∝ px0(1− p)n0−x0 · p
x1(1− p)n1−x1

x1! (n1 − x1)!
f0(p)

f̃ (p, x1 | n0, x0, n1) =
px0+x1(1− p)n0+n1−x0−x1

x1! (n1 − x1)!
· f0(p)

© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

∝ px0(1− p)n0−x0 · p
x1(1− p)n1−x1

x1! (n1 − x1)!
f0(p)

f̃ (p, x1 | n0, x0, n1) =
px0+x1(1− p)n0+n1−x0−x1

x1! (n1 − x1)!
· f0(p)

Problem almost solved

© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

∝ px0(1− p)n0−x0 · p
x1(1− p)n1−x1

x1! (n1 − x1)!
f0(p)

f̃ (p, x1 | n0, x0, n1) =
px0+x1(1− p)n0+n1−x0−x1

x1! (n1 − x1)!
· f0(p)

Problem almost solved

◮ Possibly calculate the normalization, then all moments
and probability intervals of interest.

© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

∝ px0(1− p)n0−x0 · p
x1(1− p)n1−x1

x1! (n1 − x1)!
f0(p)

f̃ (p, x1 | n0, x0, n1) =
px0+x1(1− p)n0+n1−x0−x1

x1! (n1 − x1)!
· f0(p)

Problem almost solved

◮ Possibly calculate the normalization, then all moments
and probability intervals of interest.

◮ Do it numerically
© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction
pn0

x0

n1

x1

√ √

√

Using the chain rule (‘bottom-up’)
(and neglecting all factors that do not depend on p and x1):

f (p, x1 | n0, x0, n1) ∝ f (x0 | n0, p) · f (x1 | p, n1) · f0(p)

∝ px0(1− p)n0−x0 · p
x1(1− p)n1−x1

x1! (n1 − x1)!
f0(p)

f̃ (p, x1 | n0, x0, n1) =
px0+x1(1− p)n0+n1−x0−x1

x1! (n1 − x1)!
· f0(p)

Problem almost solved

◮ Possibly calculate the normalization, then all moments
and probability intervals of interest.

◮ Do it numerically or by by sampling.
© GdA, GSSI-04 14/06/21, 13/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1)

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

⇒ Markov Chain Monte Carlo (MCMC)

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

⇒ Markov Chain Monte Carlo (MCMC)

⇒ JAGS does it for us

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

⇒ Markov Chain Monte Carlo (MCMC)

⇒ JAGS does it for us

◮ by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf’s involved allow it;

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

⇒ Markov Chain Monte Carlo (MCMC)

⇒ JAGS does it for us

◮ by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf’s involved allow it;

◮ by Metropolis

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

⇒ Markov Chain Monte Carlo (MCMC)

⇒ JAGS does it for us

◮ by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf’s involved allow it;

◮ by Metropolis (“when the going gets tough,
the tough get going” – J. Belushi)

© GdA, GSSI-04 14/06/21, 14/65

Joint inference and prediction

pn0

x0

n1

x1

√ √

√

⇒ sample f̃ (p, x1 | n0, x0, n1) using Monte Carlo techniques

⇒ Markov Chain Monte Carlo (MCMC)

⇒ JAGS does it for us

◮ by Gibbs sampler (JAGS: Just Another Gibbs Sampler)
if pdf’s involved allow it;

◮ by Metropolis (“when the going gets tough,
the tough get going” – J. Belushi)

JAGS called from R using the package rjags.

© GdA, GSSI-04 14/06/21, 14/65

Graphical models: some terminology

pn0

x0

n1

x1

√ √

√

◮ nodes (observed/unobserved);

◮ child/childred;

◮ parent(s).

© GdA, GSSI-04 14/06/21, 15/65

Graphical models: some terminology

pn0

x0

n1

x1

√ √

√

◮ nodes (observed/unobserved);

◮ child/childred;

◮ parent(s).

◮ A node without parents needs a prior
(node p in this case)

© GdA, GSSI-04 14/06/21, 15/65

Joint inference and prediction in JAGS

pn0

x0

n1

x1

√ √

√

Model

model{

x0 ~ dbin(p, n0);

x1 ~ dbin(p, n1);

p ~ dbeta(1, 1);

}

© GdA, GSSI-04 14/06/21, 16/65

Joint inference and prediction in JAGS
pn0

x0

n1

x1

√ √

√

Then the model has to be in a file.

© GdA, GSSI-04 14/06/21, 17/65

Joint inference and prediction in JAGS
pn0

x0

n1

x1

√ √

√

Then the model has to be in a file.
For such a small model we can write it directly from R
on a temporary file:

model = "tmp_model.bug"

write("

model{

x0 ~ dbin(p, n0);

x1 ~ dbin(p, n1);

p ~ dbeta(1, 1);

}

", model)

© GdA, GSSI-04 14/06/21, 17/65

Use of JAGS from R via rjags

Second part of the R script (⇒ inf p pred jags.R)

library(rjags)

data = list(n0=20, x0=10, n1=10)

jm <- jags.model(model, data)

chain <- coda.samples(jm, c("p", "x1"), n.iter=10000)

plot(chain)

print(summary(chain))

© GdA, GSSI-04 14/06/21, 18/65

Use of JAGS from R via rjags
(n0 = 20, x0 = 10, n1 = 10)

© GdA, GSSI-04 14/06/21, 19/65

Use of JAGS from R via rjags
(n0 = 20, x0 = 10, n1 = 10)

p = 0.498± 0.105; x1 = 4.98± 1.86 (10000 samples).
© GdA, GSSI-04 14/06/21, 19/65

Inference and prediction with JAGS/rjags
Comparison with exact result of f (x1 | n0, x0, n1)

f (x1 | n0, x0, n1 = 10) in %

X1
X1
n1

{

x0 = 1
n0 = 2

{

x0 = 10
n0 = 20

{

x0 = 100
n0 = 200

{

x0 = 1000
n0 = 2000

0 0 3.85 0.42 0.12 0.10
1 0.1 6.99 2.29 1.11 0.99
2 0.2 9.44 6.51 4.67 4.42
3 0.3 11.19 12.54 11.88 11.74
4 0.4 12.24 18.07 20.21 20.48
5 0.5 12.59 20.33 24.02 24.55
6 0.6 12.24 18.07 20.21 20.48
7 0.7 11.19 12.54 11.88 11.74
8 0.8 9.44 6.51 4.67 4.42
9 0.9 6.99 2.29 1.11 0.99
10 1 3.84 0.42 0.12 0.10

E(X1) 5 5 5 5
σ[X1] 2.64 1.87 1.62 1.58

© GdA, GSSI-04 14/06/21, 20/65

Inference and prediction with JAGS/rjags
Scatter plot of sampled f (p, x1 | n0, x0, n1)

p <- as.vector(chain[[1]][,1])

x1 <- as.vector(chain[[1]][,2])

plot(x1, p, col=’blue’,

main=sprintf("cor(p,x1) = %.2f", cor(p,x1)))

print(table(x1)/10000)

© GdA, GSSI-04 14/06/21, 21/65

Inference and prediction with JAGS/rjags
Scatter plot of sampled f (p, x1 | n0, x0, n1)

p <- as.vector(chain[[1]][,1])

x1 <- as.vector(chain[[1]][,2])

plot(x1, p, col=’blue’,

main=sprintf("cor(p,x1) = %.2f", cor(p,x1)))

print(table(x1)/10000)

© GdA, GSSI-04 14/06/21, 21/65

Inference and prediction with JAGS/rjags
Scatter plot of sampled f (p, x1 | n0, x0, n1)

p <- as.vector(chain[[1]][,1])

x1 <- as.vector(chain[[1]][,2])

plot(x1, p, col=’blue’,

main=sprintf("cor(p,x1) = %.2f", cor(p,x1)))

print(table(x1)/10000)

(The last command, print(. . .), produces the relative frequencies

of occurrance of x1 → try it)
© GdA, GSSI-04 14/06/21, 21/65

Self made Gibbs sampler
Take, as in the JAGS example, a uniform f0(p) → f0(p) = 1:

f (p, x1 | n0, x0, n1) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

© GdA, GSSI-04 14/06/21, 22/65

Self made Gibbs sampler
Take, as in the JAGS example, a uniform f0(p) → f0(p) = 1:

f (p, x1 | n0, x0, n1) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

In the first step (i = 0)
◮ extract p(i=0) at random: p = runif(1, 0, 1);

© GdA, GSSI-04 14/06/21, 22/65

Self made Gibbs sampler
Take, as in the JAGS example, a uniform f0(p) → f0(p) = 1:

f (p, x1 | n0, x0, n1) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

In the first step (i = 0)
◮ extract p(i=0) at random: p = runif(1, 0, 1);

(or fix a value by hand)

◮ extract x
(i=0)
1 conditioned also by p = p(i=0):

f (x1 | n0, x0, n1, p) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

© GdA, GSSI-04 14/06/21, 22/65

Self made Gibbs sampler
Take, as in the JAGS example, a uniform f0(p) → f0(p) = 1:

f (p, x1 | n0, x0, n1) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

In the first step (i = 0)
◮ extract p(i=0) at random: p = runif(1, 0, 1);

(or fix a value by hand)

◮ extract x
(i=0)
1 conditioned also by p = p(i=0):

f (x1 | n0, x0, n1, p) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

∝ px1(1− p)n1−x1

x1! (n1 − x1)!

© GdA, GSSI-04 14/06/21, 22/65

Self made Gibbs sampler
Take, as in the JAGS example, a uniform f0(p) → f0(p) = 1:

f (p, x1 | n0, x0, n1) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

In the first step (i = 0)
◮ extract p(i=0) at random: p = runif(1, 0, 1);

(or fix a value by hand)

◮ extract x
(i=0)
1 conditioned also by p = p(i=0):

f (x1 | n0, x0, n1, p) ∝
px0(1− p)n0−x0 · px1(1− p)n1−x1

x1! (n1 − x1)!

∝ px1(1− p)n1−x1

x1! (n1 − x1)!

→ x1 = rbinom(1, n1, p)

© GdA, GSSI-04 14/06/21, 22/65

Self made Gibbs sampler (cont.d)

First step:

→ p = runif(1, 0, 1)

(or fix a value)

→ x1 = rbinom(1, n1, p)

© GdA, GSSI-04 14/06/21, 23/65

Self made Gibbs sampler (cont.d)

First step:

→ p = runif(1, 0, 1)

(or fix a value)

→ x1 = rbinom(1, n1, p)

Then
1. i = i + 1; extract p(i) conditioned also by x

(i−1)
1 :

f (p | n0, x0, n1, x1) ∝ px0(1− p)n0−x0 · px1(1− p)n1−x1

∝ px0+x1 · (1− p)n0+n1−x0−x1

© GdA, GSSI-04 14/06/21, 23/65

Self made Gibbs sampler (cont.d)

First step:

→ p = runif(1, 0, 1)

(or fix a value)

→ x1 = rbinom(1, n1, p)

Then
1. i = i + 1; extract p(i) conditioned also by x

(i−1)
1 :

f (p | n0, x0, n1, x1) ∝ px0(1− p)n0−x0 · px1(1− p)n1−x1

∝ px0+x1 · (1− p)n0+n1−x0−x1 [→ Beta()]

© GdA, GSSI-04 14/06/21, 23/65

Self made Gibbs sampler (cont.d)

First step:

→ p = runif(1, 0, 1)

(or fix a value)

→ x1 = rbinom(1, n1, p)

Then
1. i = i + 1; extract p(i) conditioned also by x

(i−1)
1 :

f (p | n0, x0, n1, x1) ∝ px0(1− p)n0−x0 · px1(1− p)n1−x1

∝ px0+x1 · (1− p)n0+n1−x0−x1 [→ Beta()]

2. Extract x
(i)
1 , conditioned by p(i), as in Step 1

© GdA, GSSI-04 14/06/21, 23/65

Self made Gibbs sampler (cont.d)

First step:

→ p = runif(1, 0, 1)

(or fix a value)

→ x1 = rbinom(1, n1, p)

Then
1. i = i + 1; extract p(i) conditioned also by x

(i−1)
1 :

f (p | n0, x0, n1, x1) ∝ px0(1− p)n0−x0 · px1(1− p)n1−x1

∝ px0+x1 · (1− p)n0+n1−x0−x1 [→ Beta()]

2. Extract x
(i)
1 , conditioned by p(i), as in Step 1;

⇒ then go to 1.

© GdA, GSSI-04 14/06/21, 23/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

p(i) ∼ Beta(r = x0 + x1 + 1, s = n0 + n1 − x0 − x1 + 1)

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

p(i) ∼ Beta(r = x0 + x1 + 1, s = n0 + n1 − x0 − x1 + 1)

2. extract x
(i)
1 :

x
(i)
1 ∼ Bn1,p;

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

p(i) ∼ Beta(r = x0 + x1 + 1, s = n0 + n1 − x0 − x1 + 1)

2. extract x
(i)
1 :

x
(i)
1 ∼ Bn1,p;

Then do loop through steps 1 and 2 ‘many times’.

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

p(i) ∼ Beta(r = x0 + x1 + 1, s = n0 + n1 − x0 − x1 + 1)

2. extract x
(i)
1 :

x
(i)
1 ∼ Bn1,p;

Then do loop through steps 1 and 2 ‘many times’.

At the end, we have the histories of the variables of interest

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

p(i) ∼ Beta(r = x0 + x1 + 1, s = n0 + n1 − x0 − x1 + 1)

2. extract x
(i)
1 :

x
(i)
1 ∼ Bn1,p;

Then do loop through steps 1 and 2 ‘many times’.

At the end, we have the histories of the variables of interest

◮ the points (p(i), x
(i)
1) will ‘visit’ the (p, x1) space

according to f (p, x1).

© GdA, GSSI-04 14/06/21, 24/65

Self made Gibbs sampler (cont.d)
Summarizing, for i ≥ 1

1. i = i + 1
then extract p(i):

p(i) ∼ Beta(r = x0 + x1 + 1, s = n0 + n1 − x0 − x1 + 1)

2. extract x
(i)
1 :

x
(i)
1 ∼ Bn1,p;

Then do loop through steps 1 and 2 ‘many times’.

At the end, we have the histories of the variables of interest

◮ the points (p(i), x
(i)
1) will ‘visit’ the (p, x1) space

according to f (p, x1).
(There are theorems. . .)

© GdA, GSSI-04 14/06/21, 24/65

Gibbs sampler, implemented in R

initialize the history vectors

N = 10000; p = x1 = rep(0, N)

observed nodes

n0 = 20; x0 = 10; n1 = 10

initial p and n1

p[1] = rbeta(1,1,1) # uniform

x1[1] = rbinom(1, n1, p[1])

cat(sprintf("p = %f, x1 = %d\n", p[1], x1[1]))

for (i in 2:N) {

p[i] = rbeta(1, x0+x1[i-1]+1, n0+n1-x0-x1[i-1]+1)

x1[i] = rbinom(1, n1, p[i])

cat(sprintf("p = %f, x1 = %d\n", p[i], x1[i]))

}

−→ inf p pred gibbs.R
© GdA, GSSI-04 14/06/21, 25/65

Inference/prediction by a Gibbs sampler implemented in R
Histogram of p

p

F
re

q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
0
0

3
0
0

4
0
0

Histogram of x1

F
re

q
u
e
n
c
y

0 2 4 6 8 10

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

x1

p

mean(p) = 0.501

 sigma(p) = 0.104

mean(x1) = 5.031

 sigma(x1) = 1.817

rho(p,x1) = 0.548

© GdA, GSSI-04 14/06/21, 26/65

Same problem solved using hit/miss

model parameters, N and uf()

as in the previous script

find the maximum

p <- seq(0,1,len=101)

x1 <- 0:n1

f.max = 0

for (i in 1:length(p)) {

for (j in 1:length(x1)) {

f = uf(p[i], x1[j], n0, x0, n1)

if(f > f.max) f.max = f

}

}

f.max <- f.max * 1.1 # exaggerated safety factor

© GdA, GSSI-04 14/06/21, 27/65

Same problem solved using hit/miss (cont.d)

sample in 2D

#1. random choice in the plane (p,x1)

p.r <- runif(N)

x1.r <- sample(0:n1, N, rep=TRUE)

2. Calculate the function in correspondence of the points

f <- numeric(N)

for (i in 1:N) {

f[i] <- uf(p.r[i], x1.r[i], n0, x0, n1)

}

3. accept events

hit <- runif(N)*f.max <= f # accepted events (’hit’)

p <- p.r[hit]

x1 <- x1.r[hit]

=> inf_p_pred_hit-miss.R
© GdA, GSSI-04 14/06/21, 28/65

Same problem solved numerically

As an exercise, for completeness, try to solve the problem
numerically (no sampling):

© GdA, GSSI-04 14/06/21, 29/65

Same problem solved numerically

As an exercise, for completeness, try to solve the problem
numerically (no sampling):

◮ discretize the problem making a grid in the (p, x1) plane;

© GdA, GSSI-04 14/06/21, 29/65

Same problem solved numerically

As an exercise, for completeness, try to solve the problem
numerically (no sampling):

◮ discretize the problem making a grid in the (p, x1) plane;

◮ calculate the unnormalized pdf in each elements of the grid;

© GdA, GSSI-04 14/06/21, 29/65

Same problem solved numerically

As an exercise, for completeness, try to solve the problem
numerically (no sampling):

◮ discretize the problem making a grid in the (p, x1) plane;

◮ calculate the unnormalized pdf in each elements of the grid;

◮ calculate the normalization constant;

© GdA, GSSI-04 14/06/21, 29/65

Same problem solved numerically

As an exercise, for completeness, try to solve the problem
numerically (no sampling):

◮ discretize the problem making a grid in the (p, x1) plane;

◮ calculate the unnormalized pdf in each elements of the grid;

◮ calculate the normalization constant;

◮ calculate all moments of interest, including correlation the
coefficient;

© GdA, GSSI-04 14/06/21, 29/65

Same problem solved numerically

As an exercise, for completeness, try to solve the problem
numerically (no sampling):

◮ discretize the problem making a grid in the (p, x1) plane;

◮ calculate the unnormalized pdf in each elements of the grid;

◮ calculate the normalization constant;

◮ calculate all moments of interest, including correlation the
coefficient;

◮ (optional) make a lego plot, or a false-color plot to visualize
the shape of the distribution.

© GdA, GSSI-04 14/06/21, 29/65

n independent Bernoulli processes
Inferring n

p n

x √

√

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p)

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector?

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector? −→ f (n | x , p)?

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector? −→ f (n | x , p)?

Not to be confused with a different problem:

◮ a Poisson process has produced x in the measuring time T ;

◮ what is λ of the related Poisson distribution?

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector? −→ f (n | x , p)?

Not to be confused with a different problem:

◮ a Poisson process has produced x in the measuring time T ;

◮ what is λ of the related Poisson distribution? −→ f (λ | x)?

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector? −→ f (n | x , p)?

Not to be confused with a different problem:

◮ a Poisson process has produced x in the measuring time T ;

◮ what is λ of the related Poisson distribution? −→ f (λ | x)?
[or, more precisely, what is the rate r? −→ f (r | x ,T)?]

© GdA, GSSI-04 14/06/21, 30/65

n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

© GdA, GSSI-04 14/06/21, 31/65

n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p

© GdA, GSSI-04 14/06/21, 31/65

n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)

© GdA, GSSI-04 14/06/21, 31/65

n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)

p n

x

n0

x0 √

√

√

© GdA, GSSI-04 14/06/21, 31/65

n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)

p n

x

n0

x0 √

√

√

But what is n?
© GdA, GSSI-04 14/06/21, 31/65

Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.

© GdA, GSSI-04 14/06/21, 32/65

Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers
we ‘see’ in our detector, but to ‘other numbers’.

© GdA, GSSI-04 14/06/21, 32/65

Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers
we ‘see’ in our detector, but to ‘other numbers’.

◮ Typically n ←→ λ.

© GdA, GSSI-04 14/06/21, 32/65

Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers
we ‘see’ in our detector, but to ‘other numbers’.

◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√

© GdA, GSSI-04 14/06/21, 32/65

Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers
we ‘see’ in our detector, but to ‘other numbers’.

◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√

But, as we have seen studying the Poisson process,
λ is not really physical

© GdA, GSSI-04 14/06/21, 32/65

Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers
we ‘see’ in our detector, but to ‘other numbers’.

◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√

But, as we have seen studying the Poisson process,
λ is not really physical −→ λ = r T

© GdA, GSSI-04 14/06/21, 32/65

Extending the model
λ = r · T :

p n

x

λ

Tr

√

√

√

© GdA, GSSI-04 14/06/21, 33/65

Extending the model
λ = r · T :

p n

x

λ

Tr

√

√

√

(Dashed arrows used in literature for deterministic links)

© GdA, GSSI-04 14/06/21, 33/65

Extending the model
λ = r · T :

p n

x

λ

Tr

√

√

√

(Dashed arrows used in literature for deterministic links)
In JAGS, e.g., lambda <- r * T;

© GdA, GSSI-04 14/06/21, 33/65

Extending the model

Remembering that p was got from a measurement:

n0

x0

p n

x

λ

Tr

√√

√

√

© GdA, GSSI-04 14/06/21, 34/65

Extending the model

The rate r gets contributions from signal and background

© GdA, GSSI-04 14/06/21, 35/65

Extending the model

The rate r gets contributions from signal and background

n0

x0

p n

x

λ

Tr

rSrB

√√

√

√

© GdA, GSSI-04 14/06/21, 35/65

Extending the model
But, since r = rS + rB ,
we need some independent knowledge of the background

© GdA, GSSI-04 14/06/21, 36/65

Extending the model
But, since r = rS + rB ,
we need some independent knowledge of the background

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

© GdA, GSSI-04 14/06/21, 36/65

Extending the model
But, since r = rS + rB ,
we need some independent knowledge of the background

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

(T0 and T assumed to be measured with sufficient accuracy)
© GdA, GSSI-04 14/06/21, 36/65

Extending the model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

(*) Assuming unity efficiency
© GdA, GSSI-04 14/06/21, 37/65

Extending the model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

(∗)

√√

√

√

√

√

(*) Assuming unity efficiency
© GdA, GSSI-04 14/06/21, 38/65

Inferring n ‘assuming’ p and x
Back to our initial problem

p n

x √

√

© GdA, GSSI-04 14/06/21, 39/65

Inferring n ‘assuming’ p and x
Back to our initial problem

p n

x √

√

f (n | p, x) ∝ f (x | n, p) · f0(n)

© GdA, GSSI-04 14/06/21, 39/65

Inferring n ‘assuming’ p and x
Back to our initial problem

p n

x √

√

f (n | p, x) ∝ f (x | n, p) · f0(n)
∝ f (x | n, p) [uniform prior]

© GdA, GSSI-04 14/06/21, 39/65

Inferring n ‘assuming’ p and x
Back to our initial problem

p n

x √

√

f (n | p, x) ∝ f (x | n, p) · f0(n)
∝ f (x | n, p) [uniform prior]

∝ n!

x! (n − x)!
px · (1− p)n−x

© GdA, GSSI-04 14/06/21, 39/65

Inferring n ‘assuming’ p and x
Back to our initial problem

p n

x √

√

f (n | p, x) ∝ f (x | n, p) · f0(n)
∝ f (x | n, p) [uniform prior]

∝ n!

x! (n − x)!
px · (1− p)n−x

∝ n!

x! (n − x)!
px · (1− p)n

(1− p)x

© GdA, GSSI-04 14/06/21, 39/65

Inferring n ‘assuming’ p and x
Back to our initial problem

p n

x √

√

f (n | p, x) ∝ f (x | n, p) · f0(n)
∝ f (x | n, p) [uniform prior]

∝ n!

x! (n − x)!
px · (1− p)n−x

∝ n!

x! (n − x)!
px · (1− p)n

(1− p)x

∝ n!

(n − x)!
(1− p)n

© GdA, GSSI-04 14/06/21, 39/65

Exercise

This time the unnormalized probability function

f̃ (n | p, x) =
n!

(n − x)!
(1− p)n

is so simple that we can simply solve it numerically.

© GdA, GSSI-04 14/06/21, 40/65

Exercise

This time the unnormalized probability function

f̃ (n | p, x) =
n!

(n − x)!
(1− p)n

is so simple that we can simply solve it numerically.

Using p = 0.75 and x = 10 and nmax = 30

◮ calculate the vector of f̃ (n | p, x) for x ≤ n ≤ nmax ;

© GdA, GSSI-04 14/06/21, 40/65

Exercise

This time the unnormalized probability function

f̃ (n | p, x) =
n!

(n − x)!
(1− p)n

is so simple that we can simply solve it numerically.

Using p = 0.75 and x = 10 and nmax = 30

◮ calculate the vector of f̃ (n | p, x) for x ≤ n ≤ nmax ;

◮ calculate the normalization factor;

© GdA, GSSI-04 14/06/21, 40/65

Exercise

This time the unnormalized probability function

f̃ (n | p, x) =
n!

(n − x)!
(1− p)n

is so simple that we can simply solve it numerically.

Using p = 0.75 and x = 10 and nmax = 30

◮ calculate the vector of f̃ (n | p, x) for x ≤ n ≤ nmax ;

◮ calculate the normalization factor;

◮ calculate E(n), σ(n);

© GdA, GSSI-04 14/06/21, 40/65

Exercise

This time the unnormalized probability function

f̃ (n | p, x) =
n!

(n − x)!
(1− p)n

is so simple that we can simply solve it numerically.

Using p = 0.75 and x = 10 and nmax = 30

◮ calculate the vector of f̃ (n | p, x) for x ≤ n ≤ nmax ;

◮ calculate the normalization factor;

◮ calculate E(n), σ(n);

◮ make a barplot of the distribution;

© GdA, GSSI-04 14/06/21, 40/65

Exercise

This time the unnormalized probability function

f̃ (n | p, x) =
n!

(n − x)!
(1− p)n

is so simple that we can simply solve it numerically.

Using p = 0.75 and x = 10 and nmax = 30

◮ calculate the vector of f̃ (n | p, x) for x ≤ n ≤ nmax ;

◮ calculate the normalization factor;

◮ calculate E(n), σ(n);

◮ make a barplot of the distribution;

◮ calculate P(n ≥ 20)

© GdA, GSSI-04 14/06/21, 40/65

Inferring n ‘assuming’ p and x
Example in R with p = 0.75 and x = 10

Left as exercise
(1-D version of that proposed at the end of last lecture)

Result ⇒

© GdA, GSSI-04 14/06/21, 41/65

Inferring n ‘assuming’ p and x

f (n | x = 10, p = 0.75)

© GdA, GSSI-04 14/06/21, 42/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;
◮ being p = 0.001, it has expected value 999

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;
◮ being p = 0.001, it has expected value 999

(1
p
− 1, because it starts from 0)

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;
◮ being p = 0.001, it has expected value 999

(1
p
− 1, because it starts from 0)

and standard deviation 1000

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;
◮ being p = 0.001, it has expected value 999

(1
p
− 1, because it starts from 0)

and standard deviation 1000

⇒ In practice, it is uniform in the region of interest
◮ I(nmin,) means that n cannot be smaller than nmin

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;
◮ being p = 0.001, it has expected value 999

(1
p
− 1, because it starts from 0)

and standard deviation 1000

⇒ In practice, it is uniform in the region of interest
◮ I(nmin,) means that n cannot be smaller than nmin

(nmin is indeed equal to the observed x, for obvious reasons,
but JAGS needs a separate constant)

© GdA, GSSI-04 14/06/21, 43/65

Inferring n ‘assuming’ p and x
Or we can feed JAGS with the following simple model

model{

x ~ dbin(p, n);

n ~ dnegbin(0.001, 1) I(nmin,);

}

Remarks
◮ dnegbin(0.001, 1) is a ‘negative binomial’,

in practice a geometric distribution ‘from 0’;
◮ being p = 0.001, it has expected value 999

(1
p
− 1, because it starts from 0)

and standard deviation 1000

⇒ In practice, it is uniform in the region of interest
◮ I(nmin,) means that n cannot be smaller than nmin

(nmin is indeed equal to the observed x, for obvious reasons,
but JAGS needs a separate constant)

The remaining R code is left as exercise

© GdA, GSSI-04 14/06/21, 43/65

Moving to the Poisson model

© GdA, GSSI-04 14/06/21, 44/65

Inferring Poisson’s λ

◮ set up the problem;

© GdA, GSSI-04 14/06/21, 45/65

Inferring Poisson’s λ

◮ set up the problem;

◮ solution for uniform prior;

© GdA, GSSI-04 14/06/21, 45/65

Inferring Poisson’s λ

◮ set up the problem;

◮ solution for uniform prior;

◮ the case of no events observed;

© GdA, GSSI-04 14/06/21, 45/65

Inferring Poisson’s λ

◮ set up the problem;

◮ solution for uniform prior;

◮ the case of no events observed;

◮ prior conjugate;

© GdA, GSSI-04 14/06/21, 45/65

Inferring Poisson’s λ

◮ set up the problem;

◮ solution for uniform prior;

◮ the case of no events observed;

◮ prior conjugate;

◮ predictive distribution;

© GdA, GSSI-04 14/06/21, 45/65

Inferring Poisson’s λ

◮ set up the problem;

◮ solution for uniform prior;

◮ the case of no events observed;

◮ prior conjugate;

◮ predictive distribution;

◮ from λ to r (not covered, since it is straightforward;
but remember that the ‘physical quantity’ is r)

© GdA, GSSI-04 14/06/21, 45/65

Inferring Poisson’s λ

f (λ | x ,P) =
λx e−λ

x! f◦(λ)
∫

∞

0
λx e−λ

x! f◦(λ) dλ
.

© GdA, GSSI-04 14/06/21, 46/65

Inferring Poisson’s λ

f (λ | x ,P) =
λx e−λ

x! f◦(λ)
∫

∞

0
λx e−λ

x! f◦(λ) dλ
.

Assuming f◦(λ) constant up to a certain λmax ≫ x and making the
integral by parts we obtain

f (λ | x ,P) =
λx e−λ

x!

F (λ | x ,P) = 1− e−λ

(

x
∑

n=0

λn

n!

)

© GdA, GSSI-04 14/06/21, 46/65

Inferring Poisson’s λ

f (λ | x ,P) =
λx e−λ

x! f◦(λ)
∫

∞

0
λx e−λ

x! f◦(λ) dλ
.

Assuming f◦(λ) constant up to a certain λmax ≫ x and making the
integral by parts we obtain

f (λ | x ,P) =
λx e−λ

x!

F (λ | x ,P) = 1− e−λ

(

x
∑

n=0

λn

n!

)

Summaries

E(λ) = x + 1,

Var(λ) = x + 1,

λm = x

© GdA, GSSI-04 14/06/21, 46/65

Some examples of f (λ)

For ‘large’ x f (λ) it becomes Gaussian with expected value x and
standard deviation

√
x .

The difference between the most probable λ and its expected
value for small x is due to the asymmetry of f (λ).

© GdA, GSSI-04 14/06/21, 47/65

Inferring λ from x = 0
(From a flat prior!)

1 -

1 2 3

95%

f()

f (λ | x = 0,P) = e−λ

F (λ | x = 0,P) = 1− e−λ

© GdA, GSSI-04 14/06/21, 48/65

Inferring λ from x = 0
(From a flat prior!)

1 -

1 2 3

95%

f()

f (λ | x = 0,P) = e−λ

F (λ | x = 0,P) = 1− e−λ

Upper probabilistic limit (e.g. at 95% probability):

P(λ ≤ λu | x = 0) = F (λu | x = 0) = 0.95

© GdA, GSSI-04 14/06/21, 48/65

Inferring λ from x = 0
(From a flat prior!)

1 -

1 2 3

95%

f()

f (λ | x = 0,P) = e−λ

F (λ | x = 0,P) = 1− e−λ

Upper probabilistic limit (e.g. at 95% probability):

P(λ ≤ λu | x = 0) = F (λu | x = 0) = 0.95

1− F (λu | x = 0) = e−λu = 0.05

© GdA, GSSI-04 14/06/21, 48/65

Inferring λ from x = 0
(From a flat prior!)

1 -

1 2 3

95%

f()

f (λ | x = 0,P) = e−λ

F (λ | x = 0,P) = 1− e−λ

Upper probabilistic limit (e.g. at 95% probability):

P(λ ≤ λu | x = 0) = F (λu | x = 0) = 0.95

1− F (λu | x = 0) = e−λu = 0.05

λu = 3 at 95% probability .

© GdA, GSSI-04 14/06/21, 48/65

Inferring λ from x = 0
(From a flat prior!)

1 -

1 2 3

95%

f()

f (λ | x = 0,P) = e−λ

F (λ | x = 0,P) = 1− e−λ

Upper probabilistic limit (e.g. at 95% probability):

P(λ ≤ λu | x = 0) = F (λu | x = 0) = 0.95

1− F (λu | x = 0) = e−λu = 0.05

λu = 3 at 95% probability .

But not because f (x = 0 |λ = 3) = e−3 = 0.05!

© GdA, GSSI-04 14/06/21, 48/65

Inferring λ from x = 0
(From a flat prior!)

1 -

1 2 3

95%

f()

f (λ | x = 0,P) = e−λ

F (λ | x = 0,P) = 1− e−λ

Upper probabilistic limit (e.g. at 95% probability):

P(λ ≤ λu | x = 0) = F (λu | x = 0) = 0.95

1− F (λu | x = 0) = e−λu = 0.05

λu = 3 at 95% probability .

But not because f (x = 0 |λ = 3) = e−3 = 0.05!
In this case it works just by chance

© GdA, GSSI-04 14/06/21, 48/65

P(A |B)↔ P(B |A)
Do you remember? (From first lecture)

In general P(A |B) 6= P(B |A)

© GdA, GSSI-04 14/06/21, 49/65

P(A |B)↔ P(B |A)
Do you remember? (From first lecture)

In general P(A |B) 6= P(B |A)

◮ P(Positive |HIV) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]

◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)

© GdA, GSSI-04 14/06/21, 49/65

P(A |B)↔ P(B |A)
Do you remember? (From first lecture)

In general P(A |B) 6= P(B |A)

◮ P(Positive |HIV) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]

◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)

Everyone was laughing, but this is more or less the ‘logic’ behind
frequentistic CL upper/lower bounds

© GdA, GSSI-04 14/06/21, 49/65

P(A |B)↔ P(B |A)
Do you remember? (From first lecture)

In general P(A |B) 6= P(B |A)

◮ P(Positive |HIV) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]

◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)

Everyone was laughing, but this is more or less the ‘logic’ behind
frequentistic CL upper/lower bounds

Very little to laugh...

© GdA, GSSI-04 14/06/21, 49/65

Inferring Poisson’s λ
Conjugate prior

f (λ | x) ∝ λx e−λ · f◦(λ)

© GdA, GSSI-04 14/06/21, 50/65

Inferring Poisson’s λ
Conjugate prior

f (λ | x) ∝ λx e−λ · f◦(λ)
∝ λx e−λ · λa e−b λ

© GdA, GSSI-04 14/06/21, 50/65

Inferring Poisson’s λ
Conjugate prior

f (λ | x) ∝ λx e−λ · f◦(λ)
∝ λx e−λ · λa e−b λ

∝ λx+a e−(1+b)λ

Does such a probability function ‘exist’?

© GdA, GSSI-04 14/06/21, 50/65

Inferring Poisson’s λ
Conjugate prior

f (λ | x) ∝ λx e−λ · f◦(λ)
∝ λx e−λ · λa e−b λ

∝ λx+a e−(1+b)λ

Does such a probability function ‘exist’?

⇒ Gamma distribution

© GdA, GSSI-04 14/06/21, 50/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
◮ If c is integer, the distribution is also known as Erlang,

describing the time to wait before observing the c-th event in
a Poisson process of intensity (’rate’) r .

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
◮ If c is integer, the distribution is also known as Erlang,

describing the time to wait before observing the c-th event in
a Poisson process of intensity (’rate’) r .

◮ For c = 1 the Gamma distribution recovers the exponential.

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
◮ If c is integer, the distribution is also known as Erlang,

describing the time to wait before observing the c-th event in
a Poisson process of intensity (’rate’) r .

◮ For c = 1 the Gamma distribution recovers the exponential.
◮ Finally, the χ2 distribution is just a particular Gamma:

f (x |χ2
ν) = f (x |Gamma(ν/2, 1/2))

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
◮ If c is integer, the distribution is also known as Erlang,

describing the time to wait before observing the c-th event in
a Poisson process of intensity (’rate’) r .

◮ For c = 1 the Gamma distribution recovers the exponential.
◮ Finally, the χ2 distribution is just a particular Gamma:

f (x |χ2
ν) = f (x |Gamma(ν/2, 1/2))

◮ The Gamma is a key distribution!

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

{

r , c > 0
x ≥ 0

,

where

Γ(c) =

∫

∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
◮ If c is integer, the distribution is also known as Erlang,

describing the time to wait before observing the c-th event in
a Poisson process of intensity (’rate’) r .

◮ For c = 1 the Gamma distribution recovers the exponential.
◮ Finally, the χ2 distribution is just a particular Gamma:

f (x |χ2
ν) = f (x |Gamma(ν/2, 1/2))

◮ The Gamma is a key distribution!
The Erlang distribution is important to get a physical intuition
of the properties of Gamma and then of the χ2!

© GdA, GSSI-04 14/06/21, 51/65

Gamma distribution
Some examples

A) c = 1, 2, 3, 5; r = 0.5.

2 4 6 8 10
x

0.1

0.2

0.3

0.4

0.5

f

r : rate (if the variable is a time, then r is Poisson rate).

© GdA, GSSI-04 14/06/21, 52/65

Gamma distribution
Some examples

B) c = 1, 2, 3, 5; r = 1.

2 4 6 8 10
x

0.2

0.4

0.6

0.8

1

f

r : rate (rate increases → distributions squized)

© GdA, GSSI-04 14/06/21, 53/65

Gamma distribution
Some examples

C) c = 1, 2, 3, 5; r = 2.

2 4 6 8 10
x

0.25

0.5

0.75

1

1.25

1.5

1.75

2

f

r : rate (rate increases → distributions squized)

© GdA, GSSI-04 14/06/21, 54/65

Gamma (and χ2) distribution
Summaries

E(X) =
c

r

Var(X) =
c

r2
=

E(X)

r

mode(X) =

{

0 if c ≤ 1
c−1
r

if c > 1

© GdA, GSSI-04 14/06/21, 55/65

Gamma (and χ2) distribution
Summaries

E(X) =
c

r

Var(X) =
c

r2
=

E(X)

r

mode(X) =

{

0 if c ≤ 1
c−1
r

if c > 1

Therefore, for the χ2 (→ c = ν/2, r = 1/2)

E(χ2) = ν

Var(χ2) = 2 ν

mode(χ2) =

{

0 if ν ≤ 2
ν − 2 if ν > 2

© GdA, GSSI-04 14/06/21, 55/65

Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T)

© GdA, GSSI-04 14/06/21, 56/65

Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T)

© GdA, GSSI-04 14/06/21, 56/65

Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T)

χ2

Gaussian

© GdA, GSSI-04 14/06/21, 56/65

Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri)) ∝
[

λxe−λ
]

×
[

λci−1e−ri λ
]

© GdA, GSSI-04 14/06/21, 57/65

Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri)) ∝
[

λxe−λ
]

×
[

λci−1e−ri λ
]

∝ λx+ci−1e−(ri+1)λ ,

where ci and ri are the initial parameters of the gamma
distribution.

© GdA, GSSI-04 14/06/21, 57/65

Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri)) ∝
[

λxe−λ
]

×
[

λci−1e−ri λ
]

∝ λx+ci−1e−(ri+1)λ ,

where ci and ri are the initial parameters of the gamma
distribution.

◮ Updating rule
cf = ci + x

rf = ri + 1

© GdA, GSSI-04 14/06/21, 57/65

Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri)) ∝
[

λxe−λ
]

×
[

λci−1e−ri λ
]

∝ λx+ci−1e−(ri+1)λ ,

where ci and ri are the initial parameters of the gamma
distribution.

◮ Updating rule
cf = ci + x

rf = ri + 1

◮ A “flat conjugate” prior (not just academic!):

© GdA, GSSI-04 14/06/21, 57/65

Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri)) ∝
[

λxe−λ
]

×
[

λci−1e−ri λ
]

∝ λx+ci−1e−(ri+1)λ ,

where ci and ri are the initial parameters of the gamma
distribution.

◮ Updating rule
cf = ci + x

rf = ri + 1

◮ A “flat conjugate” prior (not just academic!):
→ exponential with very large τ (or vanishing r)

© GdA, GSSI-04 14/06/21, 57/65

Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri)) ∝
[

λxe−λ
]

×
[

λci−1e−ri λ
]

∝ λx+ci−1e−(ri+1)λ ,

where ci and ri are the initial parameters of the gamma
distribution.

◮ Updating rule
cf = ci + x

rf = ri + 1

◮ A “flat conjugate” prior (not just academic!):
→ exponential with very large τ (or vanishing r)

◮ c = 1, r → 0

f (λ | x ,Gamma(ci = 1, ri → 0)) ∝ λxe−λ

© GdA, GSSI-04 14/06/21, 57/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)
◮ λ will be ≈ 100, with ‘standard uncertainty’ ≈ 10:
→ λ = 100± 10;

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)
◮ λ will be ≈ 100, with ‘standard uncertainty’ ≈ 10:
→ λ = 100± 10;

◮ if we were sure that λ was 100, then xf = 100± 10.

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)
◮ λ will be ≈ 100, with ‘standard uncertainty’ ≈ 10:
→ λ = 100± 10;

◮ if we were sure that λ was 100, then xf = 100± 10.
◮ but we have to ‘convolute’ our uncertainty concerning λ

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)
◮ λ will be ≈ 100, with ‘standard uncertainty’ ≈ 10:
→ λ = 100± 10;

◮ if we were sure that λ was 100, then xf = 100± 10.
◮ but we have to ‘convolute’ our uncertainty concerning λ
→ uncertainty about xf has to increase;

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)
◮ λ will be ≈ 100, with ‘standard uncertainty’ ≈ 10:
→ λ = 100± 10;

◮ if we were sure that λ was 100, then xf = 100± 10.
◮ but we have to ‘convolute’ our uncertainty concerning λ
→ uncertainty about xf has to increase;

◮ by how much?

© GdA, GSSI-04 14/06/21, 58/65

Predictive distribution
We have seen how to learn about λ given the observed x
(hereafter xp)
What shall we get in a future measurement?
(assuming same r and T)

f (xf | xp) =

∫

∞

0
f (xf |λ) · f (λ | xp) dλ

Left as exercise, e.g. numerically or with JAGS

Just intuitive arguments for large number behaviour
(e.g. xp = 100)
◮ λ will be ≈ 100, with ‘standard uncertainty’ ≈ 10:
→ λ = 100± 10;

◮ if we were sure that λ was 100, then xf = 100± 10.
◮ but we have to ‘convolute’ our uncertainty concerning λ
→ uncertainty about xf has to increase;

◮ by how much? → Left as exercise

© GdA, GSSI-04 14/06/21, 58/65

Inferring λ and predicting future nr of counts with JAGS
Model file (inf lambda pred.bug)

model {

X ~ dpois(lambda);

lambda ~ dexp(0.00001)

Y ~ dpois(lambda);

}

© GdA, GSSI-04 14/06/21, 59/65

Inferring λ and predicting future nr of counts with JAGS
Model file (inf lambda pred.bug)

model {

X ~ dpois(lambda);

lambda ~ dexp(0.00001)

Y ~ dpois(lambda);

}

R stearing script:

modello = "inf_lambda_pred.bug" # file with model

dati <- NULL # oggetto con i dati

dati$X <- 100

jm <- jags.model(modello, dati)

update(jm, 100)

catena <- coda.samples(jm, c("lambda","Y"), n.iter=10000)

print(summary(catena))

plot(catena)

© GdA, GSSI-04 14/06/21, 59/65

Adding the background

© GdA, GSSI-04 14/06/21, 60/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

© GdA, GSSI-04 14/06/21, 61/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

© GdA, GSSI-04 14/06/21, 61/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

© GdA, GSSI-04 14/06/21, 61/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ

© GdA, GSSI-04 14/06/21, 61/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ
f (r | x , rB ,T) ∝ f (x | r , rB ,T) · f0(r)

© GdA, GSSI-04 14/06/21, 61/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ
f (r | x , rB ,T) ∝ f (x | r , rB ,T) · f0(r)

Uncertainty on rB?

© GdA, GSSI-04 14/06/21, 61/65

Adding background – a practical introduction with Jags

◮ Just an extra, independent, Poisson process in the production
of events in the observation time T :

r = rs + rB

λ = r T = rs T + rB T

X ∼ Pλ
f (r | x , rB ,T) ∝ f (x | r , rB ,T) · f0(r)

Uncertainty on rB? Usual way: integrate over all possible
values

f (r | x ,T) =

∫

∞

0
f (r | x , rB ,T) · f (rB) drB

© GdA, GSSI-04 14/06/21, 61/65

Signal and background

rs T rB T0

λs λB λB0

λ X0

X

⇒ inf r bck measured.R
⇒ inf r bck measured.bug

© GdA, GSSI-04 14/06/21, 62/65

Signal and background

rs T rB T0

λs λB λB0

λ X0

X

⇒ inf r bck measured.R
⇒ inf r bck measured.bug

© GdA, GSSI-04 14/06/21, 62/65

Signal and background

rs T rB T0

λs λB λB0

λ X0

X

⇒ inf r bck measured.R
⇒ inf r bck measured.bug

© GdA, GSSI-04 14/06/21, 62/65

Inferring signal and background with JAGS

model {

X ~ dpois(lambda)

lambda <- ls + lB

ls <- r * T

r ~ dgamma(1, 0.00001) # gamma, but indeed dexp(0.00001)

lB <- rB * T

experiment with background only

lB0 <- rB * TB

XB ~ dpois(lB0)

rB ~ dgamma(1, 0.00001) # vague priors also on the bkgd

}

© GdA, GSSI-04 14/06/21, 63/65

Inferring signal and background with JAGS

model = "inf_r_bck_measured.bug" # model file

data <- NULL # R list containing data

data$X <- 100 # observed nr of counts from signal+bkgd

data$T <- 10 # time of measurement signal+background

data$TB <- 4 # time of measurement of background alone

data$XB <- 20 # observed nr of counts from bkgd alone

jm <- jags.model(model, data) # define the model

update(jm, 100) # "burn in": history not recorded,

just to get rid of initial position

(exaggerated in this case!)

chain <- coda.samples(jm, c("r","rB"), n.iter=10000)

print(summary(chain))

plot(chain)
© GdA, GSSI-04 14/06/21, 64/65

The End

© GdA, GSSI-04 14/06/21, 65/65

