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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5
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◮ Increase the number of balls

n : 6→∞

⇒ p continuous in [0, 1]
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5

◮ Increase the number of balls

n : 6→∞

⇒ p continuous in [0, 1]

◮ Generalize White/Black −→ Success/Failure

⇒ efficiencies, branching ratios, . . .
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Uncertain numbers

What matters is uncertainty

A number respect to which we are in condition of uncertainty

◮ The first number rolling a die

◮ The temperature at the Geneva airport tomorrow at 7:00 am

◮ The rate Euro/Dollar the 23 April 2023

◮ The integrated luminosity provided by LHC in 2008

◮ The number of signatures of the first LHC physics paper

◮ The mass of the Higgs boson

They could be referred to future, past, model parameters or even
hyper-parameters.
What matters is uncertainty!

But it must be a well defined number

◮ any uncertainty on its definition will increase our uncertainty
about it (→ ISO)
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Bernoulli process

A basic simple example, although conceptually very important.
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◮ Bernoulli process
◮ X : 0, 1 (failure/success)

f (0) = 1− p
f (1) = p

◮ it seems of practical irrelevance,
→ but of primary importance
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A basic simple example, although conceptually very important.

◮ Bernoulli process
◮ X : 0, 1 (failure/success)

f (0) = 1− p
f (1) = p

◮ it seems of practical irrelevance,
→ but of primary importance

◮ The drunk man problem
◮ Eight keys
◮ After each trial he ‘loses memory’
◮ We watch him and – cynically – bet on the attempt on which

he will succeed:
◮ X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . . ?
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Bernoulli process

A basic simple example, although conceptually very important.

◮ Bernoulli process
◮ X : 0, 1 (failure/success)

f (0) = 1− p
f (1) = p

◮ it seems of practical irrelevance,
→ but of primary importance

◮ The drunk man problem
◮ Eight keys
◮ After each trial he ‘loses memory’
◮ We watch him and – cynically – bet on the attempt on which

he will succeed:
◮ X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . . ?
→ On which number would you bet?
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Propagating probability values

We cannot say any number “at random”,

“because All attempts are equally likely”
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Propagating probability values

We cannot say any number “at random”,

“because All attempts are equally likely”

→ ‘half true’, i.e. wrong. . .

◮ what is constant is P(Ei |
⋃

j<i Ej) = p,
where Ei → X = i .
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We cannot say any number “at random”,

“because All attempts are equally likely”

→ ‘half true’, i.e. wrong. . .

◮ what is constant is P(Ei |
⋃

j<i Ej) = p,
where Ei → X = i .

⇒ Beliefs are framed in a network!

◮ Once we assess something, we are implicitly making an infinity
of assessments concerning logically connected events!

◮ We only need to make them explicit, using logic (trivial in
principle, though it can be sometimes hard)
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Propagating probability values

We cannot say any number “at random”,

“because All attempts are equally likely”

→ ‘half true’, i.e. wrong. . .

◮ what is constant is P(Ei |
⋃

j<i Ej) = p,
where Ei → X = i .

⇒ Beliefs are framed in a network!

◮ Once we assess something, we are implicitly making an infinity
of assessments concerning logically connected events!

◮ We only need to make them explicit, using logic (trivial in
principle, though it can be sometimes hard)

(Observation at the basis of “propagation of uncertainties”, the so
called error propagation.)
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P(Ei |
⋃

j<i Ej) = p, with p = 1/8:
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P(Ei |
⋃

j<i Ej) = p, with p = 1/8:

f (1) = P(E1) = p

f (2) = P(E2 |E 1) · P(E 1) = (1− p) p

f (3) = P(E3 |E 1 ∩ E 1) · P(E 2 |E 1) · P(E 1) = (1− p)2 p

f (x) = p (1− p)x−1
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Building up f (x) of the drunk man problem

P(Ei |
⋃

j<i Ej) = p, with p = 1/8:

f (1) = P(E1) = p

f (2) = P(E2 |E 1) · P(E 1) = (1− p) p

f (3) = P(E3 |E 1 ∩ E 1) · P(E 2 |E 1) · P(E 1) = (1− p)2 p

f (x) = p (1− p)x−1

Beliefs decrease geometrically
⇒ Geometric distribution
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Building up f (x) of the drunk man problem

P(Ei |
⋃

j<i Ej) = p, with p = 1/8:

f (1) = P(E1) = p

f (2) = P(E2 |E 1) · P(E 1) = (1− p) p

f (3) = P(E3 |E 1 ∩ E 1) · P(E 2 |E 1) · P(E 1) = (1− p)2 p

f (x) = p (1− p)x−1

p = 1/2→ tossing a coin

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

p = 1/2
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Building up f (x) of the drunk man problem

P(Ei |
⋃

j<i Ej) = p, with p = 1/8:

f (1) = P(E1) = p

f (2) = P(E2 |E 1) · P(E 1) = (1− p) p

f (3) = P(E3 |E 1 ∩ E 1) · P(E 2 |E 1) · P(E 1) = (1− p)2 p

f (x) = p (1− p)x−1

p = 1/18→ a particular number
at the Italian lotto (p = 5/90)
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Building up f (x) of the drunk man problem

P(Ei |
⋃

j<i Ej) = p, with p = 1/8:

f (1) = P(E1) = p

f (2) = P(E2 |E 1) · P(E 1) = (1− p) p

f (3) = P(E3 |E 1 ∩ E 1) · P(E 2 |E 1) · P(E 1) = (1− p)2 p

f (x) = p (1− p)x−1

Most probable value does not
depend on p.
Not a suitable indicator to state
our expectation
The same is true for the range
of possibilities: X : 1, 2, . . . ,∞ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

p = 1/8
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Sequencees of Bernoulli trials

The smaller is p the longer we have to wait to get a ’success’.

p = 1/8
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Sequencees of Bernoulli trials

The smaller is p the longer we have to wait to get a ’success’.

p = 1/8

p = 1/2
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Prevision and prevision uncertainty

More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:
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probabilistic ‘expectation’ and its uncertainty:

E[X ] =
∑

x

x f (x)
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Prevision and prevision uncertainty

More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X ] =
∑

x

x f (x)

Variance(X ) =
∑

x

(x − E[X ])2 f (x) −→ σ2(X )→ σ =
√
σ2
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Prevision and prevision uncertainty
More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X ] =
∑

x

x f (x)

Variance(X ) =
∑

x

(x − E[X ])2 f (x) −→ σ2(X )→ σ =
√
σ2

E[X ] = 1/p
σ(X ) =

√
1− p/p

p = 1/8:

E[X ] = 8

σ(X ) = 7.5
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

x

P
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.0

2
0
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Prevision and prevision uncertainty
More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X ] =
∑

x

x f (x)

Variance(X ) =
∑

x

(x − E[X ])2 f (x) −→ σ2(X )→ σ =
√
σ2

E[X ] = 1/p
σ(X ) =

√
1− p/p

p = 1/2:

E[X ] = 2

σ(X ) = 1.4
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
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Prevision and prevision uncertainty
More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X ] =
∑

x

x f (x)

Variance(X ) =
∑

x

(x − E[X ])2 f (x) −→ σ2(X )→ σ =
√
σ2

E[X ] = 1/p
σ(X ) =

√
1− p/p

p = 1/18:

E[X ] = 18

σ(X ) = 17.5
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

x

P
(x

)
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0
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0
.0

3
0
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0
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Prevision and prevision uncertainty
More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X ] =
∑

x

x f (x)

Variance(X ) =
∑

x

(x − E[X ])2 f (x) −→ σ2(X )→ σ =
√
σ2

E[X ] = 1/p
σ(X ) =

√
1− p/p −−−→

p→0
1/p

→ rare events might happen at
any moment!
(Though they have ‘zero’ pro-
bability to happen at any given
moment!)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

p = 1/1000

x

P
(x

)

0
e
+

0
0

2
e
−

0
4

4
e
−

0
4

6
e
−

0
4

8
e
−

0
4

1
e
−

0
3
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Mechanical analogies of E[X ] and Var[X ]

=⇒ Center of mass and momentum of inertia
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Mechanical analogies of E[X ] and Var[X ]

=⇒ Center of mass and momentum of inertia

σ 6= RMS!

◮ Nasty comment of a non-HEP colleague during the discussion
of a Tesi di Laurea in Rome (the poor student
had presented several ROOT plots. . . ):
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Mechanical analogies of E[X ] and Var[X ]

=⇒ Center of mass and momentum of inertia

σ 6= RMS!

◮ Nasty comment of a non-HEP colleague during the discussion
of a Tesi di Laurea in Rome (the poor student
had presented several ROOT plots. . . ):
“If he doesn’t even understand the difference between
standard deviation and root mean square, how can we trust
that he understands the sophisticated things he is talking
about?”
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Some details on the geometric distribution
Normalization and cumulative distribution

∞
∑

x=1

f (x | Gp) =
∞
∑

x=1

(1− p)x−1 p

= p
∞
∑

x=1

qx−1

= p
1

1− q
= 1
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Some details on the geometric distribution
Normalization and cumulative distribution

∞
∑

x=1

f (x | Gp) =
∞
∑

x=1

(1− p)x−1 p

= p
∞
∑

x=1

qx−1

= p
1

1− q
= 1

F (x | Gp) ≡ P(X ≤ x) = 1− P(X > x)

= 1− P(E 1 ∩ E 2 ∩ · · · ∩ E x)

= 1− (1− p)x for x = 1, 2, . . .
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Some details on the geometric distribution
Expected value

E(X | Gp) =

∞
∑

x=1

x f (x) =

∞
∑

x=1

x p (1− p)x−1

= p
∞
∑

x=1

x qx−1

= p
d

dq

∞
∑

x=1

qx

= p
d

dq

(

1

1− q

)

= p
1

(1− q)2

=
1

p
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Some details on the geometric distribution
Expected value

E(X | Gp) =

∞
∑

x=1

x f (x) =

∞
∑

x=1

x p (1− p)x−1

= p
∞
∑

x=1

x qx−1

= p
d

dq

∞
∑

x=1

qx

= p
d

dq

(

1

1− q

)

= p
1

(1− q)2

=
1

p

Variance: calculation a bit more complicate → Var(X | Gp) = q/p2
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Some details on the geometric distribution
As implemented in packages

Usually the variable X is not defined the trial of the first success,
but rather the number of trials before it.
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Some details on the geometric distribution
As implemented in packages

Usually the variable X is not defined the trial of the first success,
but rather the number of trials before it.

◮ X is shifted by −1;
◮ similarly the expected value;

◮ variance invariant.
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Some details on the geometric distribution
As implemented in packages

Usually the variable X is not defined the trial of the first success,
but rather the number of trials before it.

◮ X is shifted by −1;
◮ similarly the expected value;

◮ variance invariant.

◮ Example in R:
> x <- rgeom(1000000, 1/8)

> mean(x)

[1] 6.993153

> sd(x)

[1] 7.474005
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f (x).

◮ E[X ] and σ(X ) are just convenient summaries.

◮ In the general case they do not convey a precise confidence
that X will occur in the range E[X ]± σ(X ), though this
probability is rather ‘high’ for typical f (x) of interest.
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The detail on the uncertainty is provided by f (x).

◮ E[X ] and σ(X ) are just convenient summaries.

◮ In the general case they do not convey a precise confidence
that X will occur in the range E[X ]± σ(X ), though this
probability is rather ‘high’ for typical f (x) of interest.

◮ Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f (x).

◮ E[X ] and σ(X ) are just convenient summaries.

◮ In the general case they do not convey a precise confidence
that X will occur in the range E[X ]± σ(X ), though this
probability is rather ‘high’ for typical f (x) of interest.

◮ Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).

◮ Anyway, it is important to be prepared to f (x) of any kind,
because – fortunately! – Nature is not boring. . .
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f (x).

◮ E[X ] and σ(X ) are just convenient summaries.

◮ In the general case they do not convey a precise confidence
that X will occur in the range E[X ]± σ(X ), though this
probability is rather ‘high’ for typical f (x) of interest.

◮ Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).

◮ Anyway, it is important to be prepared to f (x) of any kind,
because – fortunately! – Nature is not boring. . .

◮ In particular, f (x) might be asymmetric or, ‘multinomial’, i.e.
with more than one local maximum.
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Probability distributions and ‘statistical’ distributions

It is important to stress the difference between

◮ Probability distribution
◮ To each possible outcome we associate how much we are

confident on it:
x ←→ f (x)

◮ Statistical distribution
◮ To each observed outcome we associated its (relative)

frequency
x ←→ fx

(e.g. an histogram of experimental observations)

Summaries (‘mean’, variance, ’σ’, ’skewness’, etc) have similar
names and analogous definitions, but conceptual different
meaning.
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (unless
one reshuffles those events,
and extracts one of them at
random).
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (unless
one reshuffles those events,
and extracts one of them at
random).
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Average and variance

x =
∑

x

x fx

σ2 =
∑

x

(x − x)2 fx
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (unless
one reshuffles those events,
and extracts one of them at
random).

x
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0
.0
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0
.0

6

Average and variance

x =
∑

x

x fx

σ2 =
∑

x

(x − x)2 fx

→ Just a rough empirical de-
scription of the shape
⇒ center of mass and momen-
tum of inertia!
(Famous ‘n/(n − 1)’ correc-
tion: interference descriptive
↔ inferential statistics.)
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Number of successes in n trials
Well known and understood Binomial distribution

◮ Each sequence of x successes and (n − x) failures has
probability Ps(x , n, p) = px(1− p)(n−x).
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Number of successes in n trials
Well known and understood Binomial distribution

◮ Each sequence of x successes and (n − x) failures has
probability Ps(x , n, p) = px(1− p)(n−x).

◮ If we are only interested into the number of successes,
independently of the order, we have to sum up all probabilities,
that is multiply Ps(x , n, p) by the number of sequences.
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Number of successes in n trials
Well known and understood Binomial distribution

◮ Each sequence of x successes and (n − x) failures has
probability Ps(x , n, p) = px(1− p)(n−x).

◮ If we are only interested into the number of successes,
independently of the order, we have to sum up all probabilities,
that is multiply Ps(x , n, p) by the number of sequences.

◮ The latter is the number of combinations of x elements taken
from n “objects”, and is equal to the binomial coefficient (and
hence the name).
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Number of successes in n trials
Well known and understood Binomial distribution

◮ Each sequence of x successes and (n − x) failures has
probability Ps(x , n, p) = px(1− p)(n−x).

◮ If we are only interested into the number of successes,
independently of the order, we have to sum up all probabilities,
that is multiply Ps(x , n, p) by the number of sequences.

◮ The latter is the number of combinations of x elements taken
from n “objects”, and is equal to the binomial coefficient (and
hence the name).

◮ We get finally

f (x |Bn,p) =

(

n

x

)

px (1− p)n−x =
n!

x! (n − x)!
px (1− p)n−x .
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Number of successes in n trials
Well known and understood Binomial distribution

◮ Each sequence of x successes and (n − x) failures has
probability Ps(x , n, p) = px(1− p)(n−x).

◮ If we are only interested into the number of successes,
independently of the order, we have to sum up all probabilities,
that is multiply Ps(x , n, p) by the number of sequences.

◮ The latter is the number of combinations of x elements taken
from n “objects”, and is equal to the binomial coefficient (and
hence the name).

◮ We get finally

f (x |Bn,p) =

(

n

x

)

px (1− p)n−x =
n!

x! (n − x)!
px (1− p)n−x .

◮ Summaries (we shall see how to get them very easily)

µ = E[X | Bn,p] = n p

σ[X | Bn,p] =
√

n p (1− p)

v ≡ σ

|µ| ∝
1√
n

.
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Binomial distribution
Barplot with R

> n=10; p=0.3; x=0:n; P=dbinom(x, n, p)
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Binomial distribution
Barplot with R

> n=10; p=0.3; x=0:n; P=dbinom(x, n, p)

> barplot(P, names=x, col=’cyan’, xlab=’x’, ylab=’f(x)’,

+ main=sprintf("binomial distr. n=%d, p=%.2f",n,p))

© GdA, GSSI-03 9/06/21, 17/67



Binomial distribution
Barplot with R

> n=10; p=0.3; x=0:n; P=dbinom(x, n, p)

> barplot(P, names=x, col=’cyan’, xlab=’x’, ylab=’f(x)’,

+ main=sprintf("binomial distr. n=%d, p=%.2f",n,p))
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Binomial distribution
Barplot with R

> n=10; p=0.3; x=0:n; P=dbinom(x, n, p)

> barplot(P, names=x, col=’cyan’, xlab=’x’, ylab=’f(x)’,

+ main=sprintf("binomial distr. n=%d, p=%.2f",n,p))
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> ( E.X <- sum(x*P) )

[1] 3
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Binomial distribution
Barplot with R

> n=10; p=0.3; x=0:n; P=dbinom(x, n, p)

> barplot(P, names=x, col=’cyan’, xlab=’x’, ylab=’f(x)’,

+ main=sprintf("binomial distr. n=%d, p=%.2f",n,p))
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> ( E.X <- sum(x*P) )

[1] 3

> ( sigma.X <- sqrt( sum(x^2*P) - E.X^2 ) )

[1] 1.449138
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Binomial for n→∞ and p → 0

m = n p = 1
x f (x)
B2, 12 B4, 14 B10, 1

10
B50, 1

50
B1000, 1

1000
B106,10−6

0 0.25 0.316 0.349 0.364 0.368 0.368
1 0.50 0.422 0.387 0.372 0.368 0.368
2 0.25 0.211 0.194 0.186 0.184 0.184
3 0.047 0.057 0.061 0.061 0.061
4 0.004 0.011 0.015 0.015 0.015
5 0.001 0.003 0.003 0.003
6 . . . . . . 0.001 0.001

. . . . . . . . . . . . . . .
10 10−10 . . . . . . . . .
. . . . . . . . . . . .
50 ≈ 10−85 . . . . . .
. . . . . . . . .

1000 ≈ 10−3000 . . .
. . . . . .

1000000 ≈ 10−6×106
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Calculating extreme probabilities with R

> n=10; dbinom(n, n, 1/n)

[1] 1e-10
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Calculating extreme probabilities with R

> n=10; dbinom(n, n, 1/n)

[1] 1e-10

> n=10; dbinom(n, n, 1/n, log=TRUE)/log(10)

[1] -10
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Calculating extreme probabilities with R

> n=10; dbinom(n, n, 1/n)

[1] 1e-10

> n=10; dbinom(n, n, 1/n, log=TRUE)/log(10)

[1] -10

> n=50; dbinom(n, n, 1/n, log=TRUE)/log(10)

[1] -84.9485

> n=1000; dbinom(n, n, 1/n, log=TRUE)/log(10)

[1] -3000

> n=1000000; dbinom(n, n, 1/n, log=TRUE)/log(10)

[1] -6e+06
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Pascal distribution

⇒ Trial number at which the k-th ‘success’ (exactly) occurs.
(For k = 1 it recovers the Geometric distribution.)
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Pascal distribution

⇒ Trial number at which the k-th ‘success’ (exactly) occurs.
(For k = 1 it recovers the Geometric distribution.)

◮ Exercise: get f (x | Pak,p)
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Pascal distribution

⇒ Trial number at which the k-th ‘success’ (exactly) occurs.
(For k = 1 it recovers the Geometric distribution.)

◮ Exercise: get f (x | Pak,p)

◮ we shall see in the sequel how to evaluate simply expected
value and standard deviation:
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Pascal distribution

⇒ Trial number at which the k-th ‘success’ (exactly) occurs.
(For k = 1 it recovers the Geometric distribution.)

◮ Exercise: get f (x | Pak,p)

◮ we shall see in the sequel how to evaluate simply expected
value and standard deviation:

◮ Guesses?

© GdA, GSSI-03 9/06/21, 20/67



Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

(Binomial well known. We shall not use the Pascal)
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Poisson distribution

One of the best known distributions by physicists.

For a while, just take a mathematical approach:

f (x | Pλ) =
λx

x!
e−λ

{

0 < λ <∞
x = 0, 1, . . . ,∞ .

Reminding also the well known property

Bn,p −−−−−−−−−→
n→∞
p → 0
(n p = λ)

Pλ .
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Poisson process

0 t

Let us consider some phenomena that might happen at a give
instant
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Poisson process

0 t

Let us consider some phenomena that might happen at a give
instant, such that

◮ Probability of 1 count in ∆T is proportional to ∆T , with ∆T
‘small’.

p = P(“1 count in ∆T ′′) = r ∆T

where r is the intensity of the process’
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Poisson process

0 t

Let us consider some phenomena that might happen at a give
instant, such that

◮ Probability of 1 count in ∆T is proportional to ∆T , with ∆T
‘small’.

p = P(“1 count in ∆T ′′) = r ∆T

where r is the intensity of the process’

◮ P(≥ 2 counts)≪ P(1 count) (OK if ∆T is small enough)
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Poisson process

0 t

Let us consider some phenomena that might happen at a give
instant, such that

◮ Probability of 1 count in ∆T is proportional to ∆T , with ∆T
‘small’.

p = P(“1 count in ∆T ′′) = r ∆T

where r is the intensity of the process’

◮ P(≥ 2 counts)≪ P(1 count) (OK if ∆T is small enough)

◮ What happens in one interval does not depend on what
happened (or ‘will happen’) in other intervals (if disjoints)
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Poisson process

0 t

Let us consider some phenomena that might happen at a give
instant, such that

◮ Probability of 1 count in ∆T is proportional to ∆T , with ∆T
‘small’.

p = P(“1 count in ∆T ′′) = r ∆T

where r is the intensity of the process’

◮ P(≥ 2 counts)≪ P(1 count) (OK if ∆T is small enough)

◮ What happens in one interval does not depend on what
happened (or ‘will happen’) in other intervals (if disjoints)

Let us divide a finite interval T in n small intervals,
i.e. T = n∆T , and ∆T = T/n.
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Poisson process → Poisson distribution

0 t

Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r ∆T = r
T

n
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Poisson process → Poisson distribution

0 t

Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r ∆T = r
T

n

If we are interested in the number of counts in T, independently
from the order: → Binomial : Bn,p
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Poisson process → Poisson distribution

0 t

Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r ∆T = r
T

n

If we are interested in the number of counts in T, independently
from the order: → Binomial : Bn,p
But n→∞ and p → 0 ⇒ Bn,p → Pλ where λ = n p = r T

⇒ λ depends only on the intensity of the process and on the finite
time of observation.
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Poisson process → waiting time

0 t

Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no sense to
talk about the i-th small interval the counts will occur!
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Poisson process → waiting time

0 t

Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no sense to
talk about the i-th small interval the counts will occur!

Let us restart from the Geometric and calculate P(X > x):

P(X > x) =
∑

i>x

f (i | Gp) = (1− p)x

(The count will not occur in the first x trials).
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Poisson process → waiting time

0 t

Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no sense to
talk about the i-th small interval the counts will occur!

Let us restart from the Geometric and calculate P(X > x):

P(X > x) =
∑

i>x

f (i | Gp) = (1− p)x

(The count will not occur in the first x trials).

In the domain of time, using p = r t/n and then making the limit:

P(T > t) = (1− p)n =
(

1− r t

n

)n
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Poisson process → waiting time

0 t

Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no sense to
talk about the i-th small interval the counts will occur!

Let us restart from the Geometric and calculate P(X > x):

P(X > x) =
∑

i>x

f (i | Gp) = (1− p)x

(The count will not occur in the first x trials).

In the domain of time, using p = r t/n and then making the limit:

P(T > t) = (1− p)n =
(

1− r t

n

)n

−−−→
n→∞

e−r t
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Poisson process → Exponential distribution

Knowing P(T > t) we get easily the cumulative F (t):

F (t) = P(T ≤ t) = 1− P(T > t) = 1− e−r t .

F (t) is now a continuous function!
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Poisson process → Exponential distribution

Knowing P(T > t) we get easily the cumulative F (t):

F (t) = P(T ≤ t) = 1− P(T > t) = 1− e−r t .

F (t) is now a continuous function!

In some region of t there is a concentration of probability more
than in other regions.
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Poisson process → Exponential distribution

Knowing P(T > t) we get easily the cumulative F (t):

F (t) = P(T ≤ t) = 1− P(T > t) = 1− e−r t .

F (t) is now a continuous function!

In some region of t there is a concentration of probability more
than in other regions.

→ This leads us to define a probability density function (pdf) for
continuous variables:

f (t) = d F (t)
d t

.

◮ In this case f (t) = r e−r t = 1
τ e

−t/τ

→ Exponential distribution (τ = 1/r): E[T ] = σ(T ) = τ .

(⇒ Properties of pdf assumed to be known for the moment.)
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Geometric ↔ Exponential

Geometric Exponential
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Exponential is just the limit to the continuum of the Geometric.
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Geometric ↔ Exponential
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Exponential is just the limit to the continuum of the Geometric.
‘No memory‘ property for both:
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Geometric ↔ Exponential

Geometric Exponential
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Exponential is just the limit to the continuum of the Geometric.
‘No memory‘ property for both: Assuming that a success (or a
count) has not happened until a certain trial (or time), the

distributions restart from there.
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Geometric ↔ Exponential

Geometric Exponential
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Exponential is just the limit to the continuum of the Geometric.
‘No memory‘ property for both: Assuming that a success (or a
count) has not happened until a certain trial (or time), the

distributions restart from there. No need to know the instant of
particle creation to measure ‘life time’ (→ the “1025 year old”

proton!).
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )

χ2

Gaussian
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Important properties of probability distributions

(Assumed known)

E(·) is a linear operator:

E(aX + b) = aE(X ) + b .

Transformation properties of variance and standard deviation:

Var(aX + b) = a2 Var(X ) ,

σ(aX + b) = |a|σ(X ) .
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From probability to future frequencies

Let us think to n independent Bernoulli trials that
have to be made.

Number of successes X ∼ Bn,p, with p.

We might be interested to the relative frequency of successes, i.e.
fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn?
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From probability to future frequencies
Let us think to n independent Bernoulli trials that
have to be made.

Number of successes X ∼ Bn,p, with p.

We might be interested to the relative frequency of successes, i.e.
fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn? f (fn) can be obtained from f (x).

E(fn) ≡
1

n
E(X | Bn,p) =

n p

n
= p

σ(fn) ≡
1

n
σ(X | Bn,p) =

√

p (1− p)√
n

−−−→
n→∞

0

We expect p, with uncertainty that decreases with
√
n:

→ Bernoulli’s theorem, the most known, misunderstood and
misused theorem of probability theory.
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From probability to future frequencies
Let us think to n independent Bernoulli trials that
have to be made.

Number of successes X ∼ Bn,p, with p.

We might be interested to the relative frequency of successes, i.e.
fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn? f (fn) can be obtained from f (x).

E(fn) ≡
1

n
E(X | Bn,p) =

n p

n
= p

σ(fn) ≡
1

n
σ(X | Bn,p) =

√

p (1− p)√
n

−−−→
n→∞

0

In particular, it justifies neither the ‘increased probability‘ of ’late
numbers’ at lotto, nor frequency based definition of probability
(Circular: cannot define probability from a theorem resulting
from Probability Theory!)
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About the misuse of Bernoulli theorem

“For those who seek to connect the notion of probabili-
ty with that of frequency, results which relate probability
and frequency in some way (and especially those results
like the ‘law of large numbers’) play a pivotal rôle, pro-
viding support for the approach and for the identification
of the concepts.
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About the misuse of Bernoulli theorem

“For those who seek to connect the notion of probabili-
ty with that of frequency, results which relate probability
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About the misuse of Bernoulli theorem

“For those who seek to connect the notion of probabili-
ty with that of frequency, results which relate probability
and frequency in some way (and especially those results
like the ‘law of large numbers’) play a pivotal rôle, pro-
viding support for the approach and for the identification
of the concepts. Logically speaking, however, one cannot
escape from the dilemma posed by the fact that the sa-
me thing cannot both be assumed first as a definition and
then proved as a theorem; nor can one avoid the contra-
diction that arises from a definition which would assume
as certain something that the theorem only states to be
very probable.”
(de Finetti)
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Probabilistic inference

applied
to the ‘binomial case’
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n independent Bernoulli processes
General case
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p n

x
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n) · f (p, n)
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x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n) · f (p, n)
= f (x | p, n) · f (p | n) · f (n)
= f (x | p, n) · f (n | p) · f (p)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I ):

f (x , p, n) = f (x | p, n) · f (p, n)
= f (x | p, n) · f (p | n) · f (n)
= f (x | p, n) · f (n | p) · f (p)
= f (x | p, n) · f (p) · f (n)

(n and p are independent)

© GdA, GSSI-03 9/06/21, 33/67



n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

◮ x is assumed (‘observed’)
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

◮ x is assumed (‘observed’) → f (p | n, x)
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)

Typical problems

◮ p is assumed → interested in f (x | n, p)
→ well known binomial;

◮ x is assumed (‘observed’) → f (p | n, x):
→ ?
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n independent Bernoulli processes
Graphical models of the typical problems

p n

x

√√

→ f (x | n, p)
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n independent Bernoulli processes
Graphical models of the typical problems

p n

x

√√

→ f (x | n, p)

p n

x

√

√ → f (p | n, x)
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n independent Bernoulli processes
Inferring p

p n

x

√

√

© GdA, GSSI-03 9/06/21, 36/67



n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)
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n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)
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n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

∫ 1
0 f (x | n, p) · f 0(p) dp
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f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

∫ 1
0 f (x | n, p) · f 0(p) dp

∝ f (x | n, p) · f 0(p)
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n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

∫ 1
0 f (x | n, p) · f 0(p) dp

∝ f (x | n, p) · f 0(p)
(denominator just normalization!)
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x

We get then, including normalization:

f (p | x , n) =

n!
(n−x)! x! p

x (1− p)n−x f◦(p)
∫ 1
0

n!
(n−x)! x! p

x (1− p)n−x f◦(p) dp
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =
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n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x

We get then, including normalization:

f (p | x , n) =

n!
(n−x)! x! p

x (1− p)n−x f◦(p)
∫ 1
0

n!
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∫ 1
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x (1− p)n−x f◦(p) dp
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x

We get then, including normalization:

f (p | x , n) =

n!
(n−x)! x! p

x (1− p)n−x f◦(p)
∫ 1
0

n!
(n−x)! x! p

x (1− p)n−x f◦(p) dp

=
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

(The binomial coefficient is irrelevant, not depending on p)
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

For teaching purposes we start from a uniform prior,
i.e. f◦(p) = 1:

f (p | x , n) =
px (1− p)n−x

∫ 1
0 p

x (1− p)n−x dp
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

For teaching purposes we start from a uniform prior,
i.e. f◦(p) = 1:

f (p | x , n) =
px (1− p)n−x

∫ 1
0 p

x (1− p)n−x dp

◮ The integral at the denominator is the special function “β”
(also defined for real values of x and n).
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

For teaching purposes we start from a uniform prior,
i.e. f◦(p) = 1:

f (p | x , n) =
px (1− p)n−x

∫ 1
0 p

x (1− p)n−x dp

◮ The integral at the denominator is the special function “β”
(also defined for real values of x and n).

◮ In our case these two numbers are integer and the integral
becomes equal to

x! (n − x)!

(n + 1)!
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Inferring “Bernoulli’s p”
Solution for uniform prior (think to Bayes’ billard)

f (p | x , n) =
(n + 1)!

x! (n − x)!
px (1− p)n−x
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Inferring “Bernoulli’s p”
Solution for uniform prior (think to Bayes’ billard)

f (p | x , n) =
(n + 1)!

x! (n − x)!
px (1− p)n−x

= (n + 1) · n!

x! (n − x)!
px (1− p)n−x
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Inferring “Bernoulli’s p”
Solution for uniform prior (think to Bayes’ billard)

f (p | x , n) =
(n + 1)!

x! (n − x)!
px (1− p)n−x

= (n + 1) · n!

x! (n − x)!
px (1− p)n−x
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n

E(p) =
x + 1

n + 2
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n

E(p) =
x + 1

n + 2
“recursive Laplace formula”

(“Laplace’s rule of succession”)
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n

E(p) =
x + 1

n + 2
“recursive Laplace formula”

(“Laplace’s rule of succession”)

Var(p) =
(x + 1)(n − x + 1)

(n + 3)(n + 2)2

=
x + 1

n + 2

(

n + 2

n + 2
− x + 1

n + 2

)

1

n + 3

= E(p) (1− E(p))
1

n+3
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp = E(p) (!!)
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp = E(p) (!!)

E(p) (and not the mode!) is the probability of every ‘future’ event
which is believed to have the same p of the ‘previous’ ones.
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp = E(p) (!!)

E(p) (and not the mode!) is the probability of every ‘future’ event
which is believed to have the same p of the ‘previous’ ones.
(But keep in mind the inductivist turkey!)
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n

Var(p) ≈ x

n

(

1− x

n

) 1

n
=

pm (1− pm)

n
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n

Var(p) ≈ x

n

(

1− x

n

) 1

n
=

pm (1− pm)

n

σ(p)(= σp) ≈
√

pm (1− pm)

n
∝ 1√

n
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n

Var(p) ≈ x

n

(

1− x

n

) 1

n
=

pm (1− pm)

n

σ(p)(= σp) ≈
√

pm (1− pm)

n
∝ 1√

n

Moreover f (p) tends to a Gaussian distribution:

p ∼ N (pm, σp)
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n

Var(p) ≈ x

n

(

1− x

n

) 1

n
=

pm (1− pm)

n

σ(p)(= σp) ≈
√

pm (1− pm)

n
∝ 1√

n

Moreover f (p) tends to a Gaussian distribution:

p ∼ N (pm, σp)

When n→∞, then σp → 0,
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n

Var(p) ≈ x

n

(

1− x

n

) 1

n
=

pm (1− pm)

n

σ(p)(= σp) ≈
√

pm (1− pm)

n
∝ 1√

n

Moreover f (p) tends to a Gaussian distribution:

p ∼ N (pm, σp)

When n→∞, then σp → 0, → and hence

P(Ei>n | x , n) “ −→ ”
x

n
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):

E(p) ≈ pm =
x

n

Var(p) ≈ x

n

(

1− x

n

) 1

n
=

pm (1− pm)

n

σ(p)(= σp) ≈
√

pm (1− pm)

n
∝ 1√

n

Moreover f (p) tends to a Gaussian distribution:

p ∼ N (pm, σp)

When n→∞, then σp → 0, → and hence

P(Ei>n | x , n) “ −→ ”
x

n

(Similarly to Bernoulli’s theorem, it is not a ‘mathematical’ limit!)
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◮ x large;
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n
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n

σ(p) ≈ 1√
n

√

x

n

(
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◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When
◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
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When
◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
— The probability of a future events is evaluated
— from the relative frequency of the past events
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When
◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
— The probability of a future events is evaluated
— from the relative frequency of the past events
— No need of ‘frequentistic definition’ !
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Probability vs frequency

Frequency and probability are related in probability theory:
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some assumptions (‘Bayes theorem’ → Laplace’s rule)
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Probability vs frequency

Frequency and probability are related in probability theory:

◮ Relative frequencies of successes in future trials can be
‘forecasted’ from p (Bernoulli theorem).

◮ Probability p can be evaluated from past frequencies, under
some assumptions (‘Bayes theorem’ → Laplace’s rule)

BUT

◮ There is no need to identify the two concepts.
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Probability vs frequency

Frequency and probability are related in probability theory:

◮ Relative frequencies of successes in future trials can be
‘forecasted’ from p (Bernoulli theorem).

◮ Probability p can be evaluated from past frequencies, under
some assumptions (‘Bayes theorem’ → Laplace’s rule)

BUT

◮ There is no need to identify the two concepts.

◮ It does not justify the frequentistic definition.
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Propagation of errors in the evaluation of efficiency
From a recent ‘tesi di laurea’ in Rome (‘quadriennale’)
(undergraduate thesis)
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σn: ???
(hereafter ns → n)

◮ N − n = 124
→ with σN = σn = 287:
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◮ . . . from two independent experimental values (N, n)
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Propagation of errors in the evaluation of efficiency

◮ Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). . .

◮ . . . from two independent experimental values (N, n) ???
◮ Eq. (4.51) correctly follows
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Propagation of errors in the evaluation of efficiency

◮ Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). . .

◮ . . . from two independent experimental values (N, n) ???
◮ Eq. (4.51) correctly follows from the bad reasoning

√
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Propagation of errors in the evaluation of efficiency

◮ Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). . .

◮ . . . from two independent experimental values (N, n) ???
◮ Eq. (4.51) correctly follows from the bad reasoning

√

→ σǫ = 0.0049 ≈ 0.005
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Propagation of errors in the evaluation of efficiency

◮ Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). . .

◮ . . . from two independent experimental values (N, n) ???
◮ Eq. (4.51) correctly follows from the bad reasoning

√

→ σǫ = 0.0049 ≈ 0.005
◮ How much is it wrong?

σ(ǫ)wrong

σ(ǫ)correct
=

1/
√
N
√

n/N · (1 + n/N)

1/
√
N
√

n/N · (1− n/N)
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◮ Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). . .

◮ . . . from two independent experimental values (N, n) ???
◮ Eq. (4.51) correctly follows from the bad reasoning

√

→ σǫ = 0.0049 ≈ 0.005
◮ How much is it wrong?
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σ(ǫ)correct
=
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√
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√
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√
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√
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Propagation of errors in the evaluation of efficiency

◮ Statistical ‘error’ (meant as ‘uncertainty’) obtained
propagating the errors (this time they are really errors). . .

◮ . . . from two independent experimental values (N, n) ???
◮ Eq. (4.51) correctly follows from the bad reasoning

√

→ σǫ = 0.0049 ≈ 0.005
◮ How much is it wrong?

σ(ǫ)wrong

σ(ǫ)correct
=

1/
√
N
√

n/N · (1 + n/N)

1/
√
N
√

n/N · (1− n/N)
=

√

1 + ǫm
1− ǫm

= 36
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◮ Finally,
the wrong σǫ = 0.005 = 0.5% becomes 0.005%
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Propagation of errors. . . and of mistakes

◮ Finally,
the wrong σǫ = 0.005 = 0.5% becomes 0.005% = 0.00005

Good luck to the experiment!
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Inferring the “Bernoulli’s p”
Approximate solution using the ‘Gaussian trick’

Exercise

◮ Given f (p) ∝ px (1− p)n−x ,

◮ define ϕ(p) = − ln f (p)

◮ and evaluate
◮

dϕ
dp

◮
d2ϕ
dp2

◮ Then estimate
◮ E(p) ≈ pm from minimum;
◮ σ2(p) from second derivative at the minimum.
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Inferring “Bernoulli’s p”
Observing x = 0

f (0 | Bn,p) = (1− p)n,
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Inferring “Bernoulli’s p”
Observing x = 0

f (0 | Bn,p) = (1− p)n,

f (p | x = 0, n,B) =
(1− p)n

∫ 1
0 (1− p)n dp

= (n + 1) (1− p)n,
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Inferring “Bernoulli’s p”
Observing x = 0

f (0 | Bn,p) = (1− p)n,

f (p | x = 0, n,B) =
(1− p)n

∫ 1
0 (1− p)n dp

= (n + 1) (1− p)n,

F (p | x = 0, n,B) = 1− (1− p)n+1 .
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Inferring “Bernoulli’s p”
Observing x = 0

f (0 | Bn,p) = (1− p)n,

f (p | x = 0, n,B) =
(1− p)n

∫ 1
0 (1− p)n dp

= (n + 1) (1− p)n,

F (p | x = 0, n,B) = 1− (1− p)n+1 .

To get the 95% probability upper bound:

F (p◦ | x = 0, n,B) = 0.95,

© GdA, GSSI-03 9/06/21, 49/67



Inferring “Bernoulli’s p”
Observing x = 0

f (0 | Bn,p) = (1− p)n,

f (p | x = 0, n,B) =
(1− p)n

∫ 1
0 (1− p)n dp

= (n + 1) (1− p)n,

F (p | x = 0, n,B) = 1− (1− p)n+1 .

To get the 95% probability upper bound:

F (p◦ | x = 0, n,B) = 0.95,

p◦ = 1− n+1
√
0.05 .
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Inferring “Bernoulli’s p”
Observing x = n

f (n | Bn,p) = pn
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Inferring “Bernoulli’s p”
Observing x = n

f (n | Bn,p) = pn

f (p | x = n,B) =
pn

∫ 1
0 pn dp

= (n + 1) pn
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Inferring “Bernoulli’s p”
Observing x = n

f (n | Bn,p) = pn

f (p | x = n,B) =
pn

∫ 1
0 pn dp

= (n + 1) pn

F (p | x = n,B) = pn+1

95% probability lower bound

F (p◦ | x = n,B) = 0.05 ,

p◦ =
n+1
√
0.05 .
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Inferring the “Bernoulli’s p”
A glance to upper/lower probabilistic limits

Probability level = 95%

n x = n x = 0

binomial binomial Poisson approx.
( p◦ = 3/n )

3 p ≥ 0.47 p ≤ 0.53 p ≤ 1
5 p ≥ 0.61 p ≤ 0.39 p ≤ 0.6
10 p ≥ 0.76 p ≤ 0.24 p ≤ 0.3
50 p ≥ 0.94 p ≤ 0.057 p ≤ 0.06
100 p ≥ 0.97 p ≤ 0.029 p ≤ 0.03
1000 p ≥ 0.997 p ≤ 0.003 p ≤ 0.003
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Upper/lower probability bounds – caveat!
The probabilistic upper/lower bounds of the previous slides depend
on the assumption f (p) = 1
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The probabilistic upper/lower bounds of the previous slides depend
on the assumption f (p) = 1

◮ A flat prior seems armless. . .
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Upper/lower probability bounds – caveat!
The probabilistic upper/lower bounds of the previous slides depend
on the assumption f (p) = 1

◮ A flat prior seems armless. . .

◮ . . . but it isn’t!
◮ Imagine that p refers to a branching ratio:

f0(p) = 1 implies

P(p ≤ 0.1) = P(p ≥ 0.9)

P(p ≤ 0.01) [= P(p ≥ 0.99)]
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Upper/lower probability bounds – caveat!
The probabilistic upper/lower bounds of the previous slides depend
on the assumption f (p) = 1

◮ A flat prior seems armless. . .

◮ . . . but it isn’t!
◮ Imagine that p refers to a branching ratio:

f0(p) = 1 implies

P(p ≤ 0.1) = P(p ≥ 0.9)

P(p ≤ 0.01) [= P(p ≥ 0.99)] =
1

10
P(p ≤ 0.1)

. . . . . .

Really do you believe so?
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Upper/lower probability bounds – caveat!
The probabilistic upper/lower bounds of the previous slides depend
on the assumption f (p) = 1

◮ A flat prior seems armless. . .

◮ . . . but it isn’t!
◮ Imagine that p refers to a branching ratio:

f0(p) = 1 implies

P(p ≤ 0.1) = P(p ≥ 0.9)

P(p ≤ 0.01) [= P(p ≥ 0.99)] =
1

10
P(p ≤ 0.1)

. . . . . .

Really do you believe so?

Exercise: try to plot f (p | x = 0, n = 100) in log-log scale
> p=10^seq(-5,-1,len=100);

> plot(p, (1-p)^100, ty=’l’, log=’xy’); grid()

(and think about it!)
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Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes’ rule

f (p | x , n) ∝ px (1− p)n−x f◦(p)
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Let us restart from the Bayes’ rule

f (p | x , n) ∝ px (1− p)n−x f◦(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model f◦(p) with something
reasonable and do the math.
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Let us restart from the Bayes’ rule

f (p | x , n) ∝ px (1− p)n−x f◦(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model f◦(p) with something
reasonable and do the math.

For example, you might thing that p ∼ O
(

10−6
)

.

© GdA, GSSI-03 9/06/21, 53/67



Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes’ rule

f (p | x , n) ∝ px (1− p)n−x f◦(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model f◦(p) with something
reasonable and do the math.

For example, you might thing that p ∼ O
(

10−6
)

.
Then, e.g., f◦(p) = 106 exp

[

−106 p
]

with E(p) = 10−6 and σ(p) = 10−6.
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Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes’ rule

f (p | x , n) ∝ px (1− p)n−x f◦(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model f◦(p) with something
reasonable and do the math.

For example, you might thing that p ∼ O
(

10−6
)

.
Then, e.g., f◦(p) = 106 exp

[

−106 p
]

with E(p) = 10−6 and σ(p) = 10−6.

◮ Do the math and calculate the posterior.
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Very rare processes
Sensitivity bounds: some hints for self study

Let us restart from the Bayes’ rule

f (p | x , n) ∝ px (1− p)n−x f◦(p)

If you believe that p has to be very small, because you are dealing
with a rather rare decay, just model f◦(p) with something
reasonable and do the math.

For example, you might thing that p ∼ O
(

10−6
)

.
Then, e.g., f◦(p) = 106 exp

[

−106 p
]

with E(p) = 10−6 and σ(p) = 10−6.

◮ Do the math and calculate the posterior.

◮ Anticipation of the result
◮ if the prior is not updated at all, or if it is not changed

significantly, than the experimental information is irrelevant.
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!
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→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
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Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p.
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p.
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p.
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p.
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b

∝ pa+x (1− p)b+(n−x)
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p.
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b

∝ pa+x (1− p)b+(n−x)

∝ pa
′

(1− p)b
′
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
In general, given the generic uncertain number X ,

f (x |Beta(r , s)) = 1

β(r , s)
x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
In general, given the generic uncertain number X ,

f (x |Beta(r , s)) = 1

β(r , s)
x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1

◮ The denominator is just for normalization, i.e.

β(r , s) =

∫ 1

0
x r−1(1− x)s−1 dx
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
In general, given the generic uncertain number X ,

f (x |Beta(r , s)) = 1

β(r , s)
x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1

◮ The denominator is just for normalization, i.e.

β(r , s) =

∫ 1

0
x r−1(1− x)s−1 dx

Indeed this integral defines the beta function, resulting in

β(r , s) =
Γ(r) Γ(s)

Γ(r + s)
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
In general, given the generic uncertain number X ,

f (x |Beta(r , s)) = 1

β(r , s)
x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1

◮ The denominator is just for normalization, i.e.

β(r , s) =

∫ 1

0
x r−1(1− x)s−1 dx

Indeed this integral defines the beta function, resulting in

β(r , s) =
Γ(r) Γ(s)

Γ(r + s)

Try e.g.
> p<-seq(0,1,by=0.01)

> plot(p, dbeta(p, 3, 5), ty=’l’, col=’blue’)
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Beta distribution
Some examples

A) r = s = 1, 1.1 e 0.9 B) r = s = 2, 3, 4, 5
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C) r = s = 0.8, 0.5, 0.2, 0.1 D) r = 0.8; s = 1.2, 1.5, 2, 3
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Beta distribution
Some examples

E) s = 0.8; r = 1.2, 1.5, 2, 3 F) s = 2; r = 0.8, 0.6, 0.4, 0.2
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G) (r , s) = (3, 5), (5, 5), (5, 3) H) (r , s) = (30, 50), (50, 50), (50, 30)

0.2 0.4 0.6 0.8 1
x

0.5

1

1.5

2

2.5

f

0.2 0.4 0.6 0.8 1
x

2

4

6

8

f

© GdA, GSSI-03 9/06/21, 57/67



Beta distribution
Summaries

E(X ) =
r

r + s

Var(X ) =
rs

(r + s + 1) (r + s)2
.

Mode, unique if r > 1 and s > 1:

r − 1

r + s − 2

© GdA, GSSI-03 9/06/21, 58/67



A useful app
https://play.google.com/store/apps/details?id=com.mbognar.probdist
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A useful app
An example
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1 .
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1 .

Simple updating rule:

rf = ri + x

sf = si + (n − x)
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1 .

Simple updating rule:

rf = ri + x

sf = si + (n − x)

Check the case of uniform prior (ri = si = 1)

E(X ) =
rf

rf + sf
=

x + 1

n + 2
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1 .

Simple updating rule:

rf = ri + x

sf = si + (n − x)

Check the case of uniform prior (ri = si = 1)

E(X ) =
rf

rf + sf
=

x + 1

n + 2

Var(X ) =
rf sf

(rf + sf + 1) (rf + sf )2
=

(x + 1)(n − x + 1)

(n + 3) (n + 2)2
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1 .

Simple updating rule:

rf = ri + x

sf = si + (n − x)

Check the case of uniform prior (ri = si = 1)

E(X ) =
rf

rf + sf
=

x + 1

n + 2

Var(X ) =
rf sf

(rf + sf + 1) (rf + sf )2
=

(x + 1)(n − x + 1)

(n + 3) (n + 2)2

mode(X ) =
rf − 1

rf + sf − 2
=

x

n
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1 .

Simple updating rule:

rf = ri + x

sf = si + (n − x)

Check the case of uniform prior (ri = si = 1)

E(X ) =
rf

rf + sf
=

x + 1

n + 2

Var(X ) =
rf sf

(rf + sf + 1) (rf + sf )2
=

(x + 1)(n − x + 1)

(n + 3) (n + 2)2

mode(X ) =
rf − 1

rf + sf − 2
=

x

n

√
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Conjugate priors

The Beta distribution is an example of conjugate prior:
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Conjugate priors

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.
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Conjugate priors

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.

Note:

◮ not all conjugate priors are as flexible as the Beta.
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Conjugate priors

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.

Note:

◮ not all conjugate priors are as flexible as the Beta.

(In particular, the Gaussian is self-conjugate,
which is not so great. . . )
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More on priors
Data dominated inference

Let’s look again at how the prior gets updated

f (p | n, x , ri , si ) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1
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Let’s look again at how the prior gets updated

f (p | n, x , ri , si ) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1

rf = ri + x

sf = si + (n − x)
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More on priors
Data dominated inference

Let’s look again at how the prior gets updated

f (p | n, x , ri , si ) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1

rf = ri + x

sf = si + (n − x)

E(p) =
rf

rf + sf
=

ri + x

ri + si + n

Var(p) =
rf sf

(rf + sf + 1) (rf + sf )2

=
(ri + x) · (si + n − x)

(ri + si + n + 1) (ri + si + n)2

© GdA, GSSI-03 9/06/21, 63/67



More on priors
Data dominated inference

Let’s look again at how the prior gets updated

f (p | n, x , ri , si ) ∝
[

px(1− p)n−x
]

×
[

pri−1(1− p)si−1
]

∝ px+ri−1(1− p)n−x+si−1

rf = ri + x

sf = si + (n − x)

E(p) =
rf

rf + sf
=

ri + x

ri + si + n

Var(p) =
rf sf

(rf + sf + 1) (rf + sf )2

=
(ri + x) · (si + n − x)

(ri + si + n + 1) (ri + si + n)2

If x ≫ ri and (n − x)≫ si

rf ≈ x

sf ≈ (n − x)
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?

◮ From the past data (and assuming a flat prior), we ‘know’
that p ≈ 0.5.
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?

◮ From the past data (and assuming a flat prior), we ‘know’
that p ≈ 0.5.

◮ If we were sure that p was 1/2, then we could simply use
B10, 1/2.
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?

◮ From the past data (and assuming a flat prior), we ‘know’
that p ≈ 0.5.

◮ If we were sure that p was 1/2, then we could simply use
B10, 1/2.

◮ But we are not sure about it: we need to take into account all
possible values, each weighted by f (p)
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)

◮ f (x) =
∫ 1
0 f (x | p) f (p) dp.
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)

◮ f (x) =
∫ 1
0 f (x | p) f (p) dp.

◮ More precisely,

f (x1 | n1, n0, x0) =
∫ 1

0
f (x1 | n1, p) f (p | x0, n0) dp

◮ X1 → f1
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)

◮ f (x) =
∫ 1
0 f (x | p) f (p) dp.

◮ More precisely,

f (x1 | n1, n0, x0) =
∫ 1

0
f (x1 | n1, p) f (p | x0, n0) dp

◮ X1 → f1 (Predicting a future frequency from a past
frequency)
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Applications to Covid-19 tests and vaccines
(Left to self-reading)

◮ GdA, A. Esposito, Checking individuals and sampling
populations with imperfect tests,
arXiv:2009.04843 [q-bio.PE]
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Applications to Covid-19 tests and vaccines
(Left to self-reading)

◮ GdA, A. Esposito, Checking individuals and sampling
populations with imperfect tests,
arXiv:2009.04843 [q-bio.PE]

◮ GdA, A. Esposito, What is the probability that a vaccinated
person is shielded from Covid-19? A Bayesian MCMC based
reanalysis of published data with emphasis on what should be
reported as ‘efficacy’,
arXiv:2102.11022 [stat.AP]

(Only limited to data published in 2020)
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Applications to Covid-19 tests and vaccines
(Left to self-reading)

◮ GdA, A. Esposito, Checking individuals and sampling
populations with imperfect tests,
arXiv:2009.04843 [q-bio.PE]

◮ GdA, A. Esposito, What is the probability that a vaccinated
person is shielded from Covid-19? A Bayesian MCMC based
reanalysis of published data with emphasis on what should be
reported as ‘efficacy’,
arXiv:2102.11022 [stat.AP]

(Only limited to data published in 2020)

Both written (also) with teaching purposes,
also providing R and JAGS code.
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Applications to Covid-19 tests and vaccines
(Left to self-reading)

◮ GdA, A. Esposito, Checking individuals and sampling
populations with imperfect tests,
arXiv:2009.04843 [q-bio.PE]

◮ GdA, A. Esposito, What is the probability that a vaccinated
person is shielded from Covid-19? A Bayesian MCMC based
reanalysis of published data with emphasis on what should be
reported as ‘efficacy’,
arXiv:2102.11022 [stat.AP]

(Only limited to data published in 2020)

Both written (also) with teaching purposes,
also providing R and JAGS code.
(The R code can be used as a kind of pseudocode
by those who prefer to call JAGS from Python.)
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The End
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