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Falsificationism and p-values

◮ arXiv:physics/0412148 [physics.data-an]

◮ arXiv:1112.3620 [physics.data-an]

◮ arXiv:1609.01668 [physics.data-an]
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Testing one hypothesis

◮ Basic Idea:
◮ let’s start from a ‘conventional’ model

[Standard Modell, rather ‘established theory’, etc:]

→ “H0” (“null hypothesis”)
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Testing one hypothesis

◮ Basic Idea:
◮ let’s start from a ‘conventional’ model

[Standard Modell, rather ‘established theory’, etc:]

→ “H0” (“null hypothesis”)

⇒ search for violations of H0

◮ Ideally

→ ‘falsify’

◮ In practice:

→ does it make sense?
→ how is it done?

Let’s review the practice and what is behind it ⇒
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Falsificationism

Usually referred to Popper

and still considered by many as the key of scientific progress.
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Falsificationism

Usually referred to Popper

and still considered by many as the key of scientific progress.

if Ci −→/ E0, then E
(mis)
0 −→/ Ci

⇒ Causes that cannot produce the observed effects are ruled out
(‘falsified’).
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Falsificationism

Usually referred to Popper

and still considered by many as the key of scientific progress.

if Ci −→/ E0, then E
(mis)
0 −→/ Ci

⇒ Causes that cannot produce the observed effects are ruled out
(‘falsified’).

It seems OK – ’obvious’ ! – but it is indeed näıve
for several aspects.
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Proof by contradiction . . . ‘extended’. . .

Falsification rule: to what is it ‘inspired’?
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Falsification rule: to what is it ‘inspired’?

Proof by contradiction of classical, deductive logic:

◮ Assume that a hypothesis is true;

◮ Derive ‘all’ logical consequences;

◮ If (at least) one of the consequences is known to be false,
then the hypothesis is rejected.
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Proof by contradiction of classical, deductive logic:

◮ Assume that a hypothesis is true;

◮ Derive ‘all’ logical consequences;

◮ If (at least) one of the consequences is known to be false,
then the hypothesis is rejected.

Popperian falsificationism

extends the reasoning to experimental sciences
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Proof by contradiction . . . ‘extended’. . .

Falsification rule: to what is it ‘inspired’?

Proof by contradiction of classical, deductive logic:

◮ Assume that a hypothesis is true;

◮ Derive ‘all’ logical consequences;

◮ If (at least) one of the consequences is known to be false,
then the hypothesis is rejected.

Popperian falsificationism

extends the reasoning to experimental sciences

is this extension legitimate?
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Falsificationism? OK, but. . .

◮ What shall we do of all hypotheses not yet falsified?
(Limbus? How should we progress?)
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Falsificationism? OK, but. . .

◮ What shall we do of all hypotheses not yet falsified?
(Limbus? How should we progress?)

◮ What to do if nothing of what can be observed is incompatible
with the hypothesis (or with many hypotheses)?

E.g. Hi being a Gaussian f (x |µi , σi )

⇒ Given any pair or parameters {µi , σi} (i.e. ∀Hi ), all values of
x from −∞ to +∞ are possible.
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Falsificationism? OK, but. . .

◮ What shall we do of all hypotheses not yet falsified?
(Limbus? How should we progress?)

◮ What to do if nothing of what can be observed is incompatible
with the hypothesis (or with many hypotheses)?

E.g. Hi being a Gaussian f (x |µi , σi )

⇒ Given any pair or parameters {µi , σi} (i.e. ∀Hi ), all values of
x from −∞ to +∞ are possible.

⇒ Having observed any value x, none of Hi can be, strictly
speaking, falsified.

x
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Falsificationism in action. . .

Obviously, this does not means that falsificationism is never
applicable,
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or due to ‘errors’ in measurement).

⇒ Practically never in the experimental sciences!

◮ Science proceeds, in practice, rather differently:
The natural development of Science shows that researches
are carried along the directions that seem more credible
(and hopefully fruitful) at a given moment. A behavior
“179 degrees or so out of phase from Popper’s idea
that we make progress by falsificating theories”
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Falsificationism in action. . .

Obviously, this does not means that falsificationism is never
applicable, but as long as no stochastic processes are involved
(randomness inherent to the physical processes,
or due to ‘errors’ in measurement).

⇒ Practically never in the experimental sciences!

◮ Science proceeds, in practice, rather differently:
The natural development of Science shows that researches
are carried along the directions that seem more credible
(and hopefully fruitful) at a given moment. A behavior
“179 degrees or so out of phase from Popper’s idea
that we make progress by falsificating theories”
(Wilczek, http://arxiv.org/abs/physics/0403115 )

⇒ logically speaking, Popper’s falsificationism
has to be considered . . . falsified!
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”,
in which the impossible is replaced by the improbable!

But from the ‘impossible’ to the ‘improbable’ there is not just a
question of quantity, but a question of quality.

This mechanism, logically flawed, is particularly dangerous
because is deeply rooted in most scientists, due to education
and custom, although not supported by logic.

⇒ Basically responsible of all fake claims of discoveries in the
past decades.

[ I am particularly worried about claims concerning our health,
or the status of the Planet, etc. . . . ]
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In summary

A) if Ci −→/ E , and we observe E
⇒ Ci is impossible (‘false’)
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In summary

A) if Ci −→/ E , and we observe E
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−→
small probability

E , and we observe E

⇒ Ci has small probability to be true
“most likely false”
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In summary
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In summary

A) if Ci −→/ E , and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−→
small probability

E , and we observe E NO

⇒ Ci has small probability to be true
“most likely false”

But it is behind the rational behind

the statistical hypothesis tests!

© GdA, GSSI-02 8/06/21, 9/48



P(A |B)↔ P(B |A)

Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)
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P(A |B)↔ P(B |A)

Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)

◮ P(Positive |HIV ) 6= P(HIV |Positive)

◮ P(Win |Play) 6= P(Play |Win) [Lotto]

◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)

In particular

◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect
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P(A |B)↔ P(B |A)

Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)

◮ P(Positive |HIV ) 6= P(HIV |Positive)

◮ P(Win |Play) 6= P(Play |Win) [Lotto]

◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)

In particular

◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect, often the only one!
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‘Low probability’ events

Typical values of statistical practice to ‘reject’ a hypothesis are
5%, 1%, . . .

© GdA, GSSI-02 8/06/21, 11/48



‘Low probability’ events

Typical values of statistical practice to ‘reject’ a hypothesis are
5%, 1%, . . .

BUT the greatest majority of the events of interest have very
low probability (before occurring!).

© GdA, GSSI-02 8/06/21, 11/48



‘Low probability’ events

Typical values of statistical practice to ‘reject’ a hypothesis are
5%, 1%, . . .

BUT the greatest majority of the events of interest have very
low probability (before occurring!).

For example, imagine a Gaussian random generator (H0, with
µ = 3, σ = 1) gives us xobs = 3.1416.
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‘Low probability’ events

Typical values of statistical practice to ‘reject’ a hypothesis are
5%, 1%, . . .

BUT the greatest majority of the events of interest have very
low probability (before occurring!).

For example, imagine a Gaussian random generator (H0, with
µ = 3, σ = 1) gives us xobs = 3.1416.

→ What ‘was’ the probability to give exactly that number?

P(xobs = 3.1416 |H0) =

∫ 3.14165

3.14155
fG(x |µ, σ)dx

≈ fG(3.1416 |µ, σ)× 0.0001

≈ 39× 10−6
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BUT the greatest majority of the events of interest have very
low probability (before occurring!).

For example, imagine a Gaussian random generator (H0, with
µ = 3, σ = 1) gives us xobs = 3.1416.

→ What ‘was’ the probability to give exactly that number?

P(xobs = 3.1416 |H0) =

∫ 3.14165

3.14155
fG(x |µ, σ)dx

≈ fG(3.1416 |µ, σ)× 0.0001

≈ 39× 10−6

→ What is the probability that xobs comes from H0?
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‘Low probability’ events

Typical values of statistical practice to ‘reject’ a hypothesis are
5%, 1%, . . .

BUT the greatest majority of the events of interest have very
low probability (before occurring!).

For example, imagine a Gaussian random generator (H0, with
µ = 3, σ = 1) gives us xobs = 3.1416.

→ What ‘was’ the probability to give exactly that number?

P(xobs = 3.1416 |H0) =

∫ 3.14165

3.14155
fG(x |µ, σ)dx

≈ fG(3.1416 |µ, σ)× 0.0001

≈ 39× 10−6

→ What is the probability that xobs comes from H0?
◮ Certainly NOT ≈ 39× 10−6;
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Most events ‘had’ very small probability to occur!

P(xobs = 3.1416 |H0) ≈ 39× 10−6

P(H0 | xobs = 3.1416) = 1 .
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Most events ‘had’ very small probability to occur!

P(xobs = 3.1416 |H0) ≈ 39× 10−6

P(H0 | xobs = 3.1416) = 1 .

Other, real life example:

◮ I shut a picture with my faithful pocket camera.
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Most events ‘had’ very small probability to occur!

P(xobs = 3.1416 |H0) ≈ 39× 10−6

P(H0 | xobs = 3.1416) = 1 .

Other, real life example:

◮ I shut a picture with my faithful pocket camera.

◮ What is the probability of every configuration of the three
RGB codes of the 20MB pixels, given this scene?

P(Picture ≡ Xrecorded |This scene) ≪ 1
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P(xobs = 3.1416 |H0) ≈ 39× 10−6

P(H0 | xobs = 3.1416) = 1 .

Other, real life example:

◮ I shut a picture with my faithful pocket camera.

◮ What is the probability of every configuration of the three
RGB codes of the 20MB pixels, given this scene?

P(Picture ≡ Xrecorded |This scene) ≪ 1

◮ But
P(This scene |Picture) = 1
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Most events ‘had’ very small probability to occur!

P(xobs = 3.1416 |H0) ≈ 39× 10−6

P(H0 | xobs = 3.1416) = 1 .

Other, real life example:

◮ I shut a picture with my faithful pocket camera.

◮ What is the probability of every configuration of the three
RGB codes of the 20MB pixels, given this scene?

P(Picture ≡ Xrecorded |This scene) ≪ 1

◮ But
P(This scene |Picture) = 1

What else?

An so on. . .
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Probability of something else. . .
Besides the logical flow, the ‘technical issue’ of low probability
events which would lead to reject any hypothesis forces the
statisticians to rethink the question. . .
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but, instead of repent, throw everything away and finally start
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3.14155
fG(x |µ, σ)dx ≈ 44%

© GdA, GSSI-02 8/06/21, 13/48



Probability of something else. . .
Besides the logical flow, the ‘technical issue’ of low probability
events which would lead to reject any hypothesis forces the
statisticians to rethink the question. . .

but, instead of repent, throw everything away and finally start
to read Laplace, they made a new invention:
→ what matters is not the probability of the xobs , but rather
the probability of xobs or of any other less probable value:

P(X ≥ 3.1416) =

∫ +∞

3.14155
fG(x |µ, σ)dx ≈ 44%

P(X ≥ xobs) ⇒ ‘p-value’

© GdA, GSSI-02 8/06/21, 13/48



Probability of something else. . .
Besides the logical flow, the ‘technical issue’ of low probability
events which would lead to reject any hypothesis forces the
statisticians to rethink the question. . .

but, instead of repent, throw everything away and finally start
to read Laplace, they made a new invention:
→ what matters is not the probability of the xobs , but rather
the probability of xobs or of any other less probable value:

P(X ≥ 3.1416) =

∫ +∞

3.14155
fG(x |µ, σ)dx ≈ 44%

P(X ≥ xobs) ⇒ ‘p-value’

⇒ Magically the ‘result’ becomes rather probable!
Why, we, silly, worried about it?

© GdA, GSSI-02 8/06/21, 13/48



Probability of something else. . .
Besides the logical flow, the ‘technical issue’ of low probability
events which would lead to reject any hypothesis forces the
statisticians to rethink the question. . .

but, instead of repent, throw everything away and finally start
to read Laplace, they made a new invention:
→ what matters is not the probability of the xobs , but rather
the probability of xobs or of any other less probable value:

P(X ≥ 3.1416) =

∫ +∞

3.14155
fG(x |µ, σ)dx ≈ 44%

P(X ≥ xobs) ⇒ ‘p-value’

⇒ Magically the ‘result’ becomes rather probable!
Why, we, silly, worried about it?

⇒ ‘Statisticians’ are happy. . .

© GdA, GSSI-02 8/06/21, 13/48



Probability of something else. . .
Besides the logical flow, the ‘technical issue’ of low probability
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→ what matters is not the probability of the xobs , but rather
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⇒ ‘Statisticians’ are happy. . .
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Probability of something else. . .
Besides the logical flow, the ‘technical issue’ of low probability
events which would lead to reject any hypothesis forces the
statisticians to rethink the question. . .

but, instead of repent, throw everything away and finally start
to read Laplace, they made a new invention:
→ what matters is not the probability of the xobs , but rather
the probability of xobs or of any other less probable value:

P(X ≥ 3.1416) =

∫ +∞

3.14155
fG(x |µ, σ)dx ≈ 44%

P(X ≥ xobs) ⇒ ‘p-value’

⇒ Magically the ‘result’ becomes rather probable!
Why, we, silly, worried about it?

⇒ ‘Statisticians’ are happy. . .
scientists and general public get cheated. . .
(From the logical point of view the situation gets worsened:
→ conclusions depend on events not actually observed!)
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Which p-value?. . .

’p-value’ = ‘probability of the tail(s)’
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Which p-value?. . .
’p-value’ = ‘probability of the tail(s)’

Of what?

→ the test variable (‘θ’) is absolutely arbitrary:

θ = θ(x)

→ f (θ) [p.d.f]

Experiment: → θobs = θ(xobs)

p-value = P(θ ≥ θobs) (‘one tail’)
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Which p-value?. . .

◮ far from exhaustive list,

◮ with arbitrary variants:
⇒ practitioners chose the one that

provide the result they like
better:
→ like if you go around until
“someone agrees with you”
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Which p-value?. . .

◮ far from exhaustive list,

◮ with arbitrary variants:
⇒ practitioners chose the one that

provide the result they like
better:
→ like if you go around until
“someone agrees with you”

◮ personal ‘golden rule’:
“the more exotic is the name of
the test, the less I believe the
result”, because I’m pretty sure
that several ‘normal’ tests have
been discarded in the
meanwhile...
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Or look around, searching for ‘significance’

If changing the test does not help, change hypotheses...

[ http://xkcd.com/882/ ]
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Or look around, searching for ‘significance’

If changing the test does not help, change hypotheses...

[ http://xkcd.com/882/ ]
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Or look around, searching for‘significance’
If changing the test does not help, change hypotheses...

[ http://xkcd.com/882/ ]
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P-hacking (“p-value hacking”)
The ‘science’ of inventing significant results. . .

http://www.r-bloggers.com/p-hacking-or-cheating-on-a-p-value/

◮ Google for “p-hacking”
© GdA, GSSI-02 8/06/21, 19/48
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Continuing

from last lecture
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainties: ∪5j=0 Hj = Ω

∪2i=1 Ei = Ω .
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

◮ What happens after we have extracted one ball and looked its
color?
◮ Intuitively feel how to roughly change our opinion about

◮ the possible cause
◮ a future observation

© GdA, GSSI-02 8/06/21, 21/48



Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

◮ What happens after we have extracted one ball and looked its
color?
◮ Intuitively feel how to roughly change our opinion about

◮ the possible cause
◮ a future observation

◮ Can we do it quantitatively, in an ‘objective way’?
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

◮ What happens after we have extracted one ball and looked its
color?
◮ Intuitively feel how to roughly change our opinion about

◮ the possible cause
◮ a future observation

◮ Can we do it quantitatively, in an ‘objective way’?

◮ And after a sequence of extractions?
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
◮ What happens after we have extracted one ball and looked its

color?
◮ Intuitively feel how to roughly change our opinion about

◮ the possible cause
◮ a future observation

◮ Can we do it quantitatively, in an ‘objective way’?

◮ And after a sequence of extractions?

Note: In general, we are uncertain about all the combinations
of Ei and Hj :

E1 ∩ H0, E1 ∩ H1, . . . , E2 ∩ H5,

and these 12 constituents are not equiprobable.
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Subjective nature of probability

“Since the knowledge may be different with different persons
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times,
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence,
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)

Probability depends on the status of information of the subject
who evaluates it.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)

P(E ) −→ P(E | Is(t))

where Is(t) is the information available to subject s at time t.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)

P(E ) −→ P(E | Is(t))

where Is(t) is the information available to subject s at time t.

Examples:

◮ tossing coins and dice;

◮ the three box problem.
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . .
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . . the numerical
probability P of this event is to be a real number by the
indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event
comes true”

(Schrödinger, 1947)
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . . the numerical
probability P of this event is to be a real number by the
indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event
comes true”

⇒ How much we believe something
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . . the numerical
probability P of this event is to be a real number by the
indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event
comes true”

→ ‘Degree of belief’←
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False, True and probable

Probability

0,10 0,20 0,30 0,400 0,50 0,60 0,70 0,80 0,90 1

0 1

0

0

E

1

1

?

Event E

logical point of view FALSE

cognitive point of view FALSE

psychological

(subjective)

point of view

if certain FALSE

if uncertain,

with

probability

UNCERTAIN

TRUE

TRUE

TRUE
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
◮ Coherent bet
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn as
3,512th part of that of the sun. Applying my probabilistic
formulae to these observations, I find that the odds are
11,000 to 1 that the error in this result is not a hundredth
of its value.” (Laplace)
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn as
3,512th part of that of the sun. Applying my probabilistic
formulae to these observations, I find that the odds are
11,000 to 1 that the error in this result is not a hundredth
of its value.” (Laplace)

→ P(3477 ≤ MSun/MSat ≤ 3547 | I (Laplace)) = 99.99%
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn as
3,512th part of that of the sun. Applying my probabilistic
formulae to these observations, I find that the odds are
11,000 to 1 that the error in this result is not a hundredth
of its value.” (Laplace)

→ P(3477 ≤ MSun/MSat ≤ 3547 | I (Laplace)) = 99.99%

Is a ‘conventional’ 95% C.L. lower/upper bound a 19 to 1 bet?
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Standard textbook definitions

p =
# favorable cases

#possible equiprobable cases

p =
#times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equiprobable cases

p =
#times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equally possible cases

p =
#times the event has occurred

# independent trials under same conditions

Note!: “lorsque rien ne porte à croire que l’un de ces cas doit arriver
plutot que les autres” (Laplace)

Replacing ‘equi-probable’ by ‘equi-possible’ is just cheating
students (as I did in my first lecture on the subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
#times the event has occurred

# independent trials under same condition

Future ⇔ Past (belief!)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications
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Standard textbook definitions
It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
#times the event has occurred

# trials under

Future ⇔ Past (belief!)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications

Future ⇔ Past: avoid the end of the inductivist turkey!
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

◮ Rule A is recovered immediately (under the assumption of
equiprobability, when it applies).

◮ Rule B results from a theorem of Probability Theory
(under well defined assumptions).
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

◮ Rule A is recovered immediately (under the assumption of
equiprobability, when it applies).

◮ Rule B results from a theorem of Probability Theory
(under well defined assumptions):
⇒ Laplace’s rule of succession (see later)
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Mathematics of beliefs

The good news:
The basic laws of degrees of belief are the same we get
from the inventory of favorable and possible cases, or
from events occurred in the past.

It can be proved that

the requirement of coherence leads to the famous 4
basic rules =⇒

[ Details skipped. . . ]
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)

© GdA, GSSI-02 8/06/21, 30/48



Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!

(Liberated by a curious ideology that forbids its use)
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A simple, powerful formula
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A simple, powerful formula

P(A |B | I )P(B | I ) = P(B |A, I )P(A | I )
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A simple, powerful formula

Take the courage to use it!
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A simple, powerful formula

It’s easy if you try. . . !
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A simple, powerful formula

[ Bayes Theorem ]
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A nice and powerful formula!

GdA and Allen Caldwell, Stellenbosch, South Africa, November 2013

[ T-shirts kindly provided by Pangea Formazione ]
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}.

P(Ci |E ) ∝ P(E |Ci )
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes.

P(Ci |E ) =
P(E |Ci )∑
j P(E |Cj)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)
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Laplace’s “Bayes Theorem”
“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )

(Philosophical Essai on Probabilities)

[ In general P(E ) =
∑

j P(E |Cj)P(Cj) (weighted average, with
weigths being the probabilities of the conditions) if Cj form a
complete class of hypotheses ]
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )∑
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

Most convenient way to remember Bayes theorem
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Laplace’s teaching

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]
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=
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◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!
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Laplace’s teaching

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!
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Laplace’s teaching

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.
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Laplace’s teaching

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.

◮ There is no conceptual problem with the fact that
P(data |H1)→ 0 (e.g. 10−37), provided the ratio
P(data |H0)/P(data |H1) is not undefined.
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Bayes factor (’likelihood ratio’)

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)
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Bayes factor (’likelihood ratio’)

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)
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Bayes factor (’likelihood ratio’)

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)

If H0 and H1 are ‘complementary’, that is H1 = H0, then

posterior odds = Bayes factor× prior odds
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Application to the Aids test problem
(Left as exercise)

Apply this reasoning to the Aids test problem (Italian citizen
chosen at random!) taking a number of HIV infected Italians of
≈ 100k:
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Application to the Aids test problem
(Left as exercise)

Apply this reasoning to the Aids test problem (Italian citizen
chosen at random!) taking a number of HIV infected Italians of
≈ 100k:

1. use the ’standard’ Bayes theorem formula;
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Application to the Aids test problem
(Left as exercise)

Apply this reasoning to the Aids test problem (Italian citizen
chosen at random!) taking a number of HIV infected Italians of
≈ 100k:

1. use the ’standard’ Bayes theorem formula;

2. use the Bayes factor;

3. try to vary the assumed number of infected Italians
◮ by ±10%;
◮ by ±30%;
◮ by ±50%.

And, needless to say, try to think to Covid-19 test issues:

◮ dependence on priors;

◮ dependence on the fact that the test performances
unavoidably some degree of uncertanty.

© GdA, GSSI-02 8/06/21, 38/48



But statistical tests do work!

Someone would object that p-values and, in general, ‘hypothesis
tests’ usually do work!
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As it usually work overtakes in curve
on remote mountain road!
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But statistical tests do work!

Someone would object that p-values and, in general, ‘hypothesis
tests’ usually do work!

◮ Certainly! I agree!
As it usually work overtakes in curve
on remote mountain road!

◮ But now we are also able to explain the reason.
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But statistical tests do work!

f(θ)

θmis θ

H0

p−value = 0.010

Why should the observation of θmis should diminish our confidence
on H0?

© GdA, GSSI-02 8/06/21, 39/48



But statistical tests do work!

f(θ)

θmis θ

H0

H1

f(θmis| H1)

f(θmis| H0)

Because often we give some chance to a possible alternative
hypothesis H1, even if we are not able to exactly formulate it.
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But statistical tests do work!

f(θ)

θmis θ

H0

H1

f(θmis| H1)

f(θmis| H0)

Indeed, what really matters is not the area to the right of θmis .
What matters is the ratio of f (θmis |H1) to f (θmis |H0)!
⇒ to a ‘small’ area it corresponds a ‘small’ f (θmis |H0).
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But statistical tests do work!

f(θ)

θmis θ

H0

H1

f(θmis| H1)

f(θmis| H0)

But is the alternative hypothesis H1 is unconceivable, or hardly
believable, the ‘smallness’ of the area is irrelevant
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

© GdA, GSSI-02 8/06/21, 40/48



Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

Arguments used to derive Gaussian distribution

◮ f (µ | {x}) ∝ f ({x} |µ) · f0(µ)

◮ f0(µ) ‘flat’ (all values a priory equally possible)

◮ posterior maximized at µ = x
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The Gauss’ Bayes Factor
It might be curious to learn that Gauss had proved, with
emphasis, the rule to update the ratio of probabilities of
complementary hypotheses, in the light of an observed event
which could be due to either of them.
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Although he focused on a priori equally probable hypotheses
(explicitely stated!), in order to solve the problem on which
he was interested in, the theorem can be easily extended
to the general case.

© GdA, GSSI-02 8/06/21, 41/48



The Gauss’ Bayes Factor
It might be curious to learn that Gauss had proved, with
emphasis, the rule to update the ratio of probabilities of
complementary hypotheses, in the light of an observed event
which could be due to either of them.

Although he focused on a priori equally probable hypotheses
(explicitely stated!), in order to solve the problem on which
he was interested in, the theorem can be easily extended
to the general case.

And the resulting factor turns out to be what is presently known
as Bayes Factor.

© GdA, GSSI-02 8/06/21, 41/48



The Gauss’ Bayes Factor
It might be curious to learn that Gauss had proved, with
emphasis, the rule to update the ratio of probabilities of
complementary hypotheses, in the light of an observed event
which could be due to either of them.

Although he focused on a priori equally probable hypotheses
(explicitely stated!), in order to solve the problem on which
he was interested in, the theorem can be easily extended
to the general case.

And the resulting factor turns out to be what is presently known
as Bayes Factor.

⇒ arXiv:2003.10878 [math.HO]
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The Gauss’ Bayes Factor
It might be curious to learn that Gauss had proved, with
emphasis, the rule to update the ratio of probabilities of
complementary hypotheses, in the light of an observed event
which could be due to either of them.

Although he focused on a priori equally probable hypotheses
(explicitely stated!), in order to solve the problem on which
he was interested in, the theorem can be easily extended
to the general case.

And the resulting factor turns out to be what is presently known
as Bayes Factor.

⇒ arXiv:2003.10878 [math.HO]

(And, by the way, Enrico Fermi derived analysis tools
based on his Bayes Theorem. . .

⇒ arXiv:physics/0509080 [physics.hist-ph] )
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:

◮ E1 = White

◮ E2 = Black
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )
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P(Hj | I )

◮ P(Hj | I ) = 1/6
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2
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P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus’ in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.

© GdA, GSSI-02 8/06/21, 43/48



Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
(taking into account all possible hypotheses Hj)
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

But it easy to prove that P(Ei | I ) is related to the other
ingredients, usually easier to ‘measure’ or to assess somehow,
though vaguely

© GdA, GSSI-02 8/06/21, 43/48



Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

But it easy to prove that P(Ei | I ) is related to the other
ingredients, usually easier to ‘measure’ or to assess somehow,
though vaguely

‘decomposition law’: P(Ei | I ) =
∑

j P(Ei |Hj , I ) · P(Hj | I )
(→ Easy to check that it gives P(Ei | I ) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )·P(Hj | I )∑
j P(Ei |Hj , I )·P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) =
∑

j P(Ei |Hj , I ) · P(Hj | I )

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

We are ready!
−→ Let’s play with our toy
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We are ready

Now that we have set up our formalism, let’s play a little

◮ analyse real data

◮ some simulations

◮ make variations
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We are ready

Now that we have set up our formalism, let’s play a little

◮ analyse real data

◮ some simulations

◮ make variations

Let’s play!
◮ Hugin Expert (Lite – demo version);

◮ R scripts
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).
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◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
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(The frequency based answer is, at most, the solution to a
different problem...)
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Learning by simulations

◮ History of P(Hj | obs. sequence).

◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)

◮ Comparison of P(Hj | obs. sequence) with frequentistic
methods?
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).

◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)

◮ Comparison of P(Hj | obs. sequence) with frequentistic
methods?

NO!
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Playing with the six boxes
Learning by simulations

◮ History of P(Hj | obs. sequence).

◮ History of P(B/W | obs. sequence).
◮ Comparison of the P(B/W | obs. sequence) with the relative

frequency with the color has occurred in the past (“probability
evaluated by relative frequency”).
◮ Why does the Bayesian solution performs better?
→ It takes into account at the best all available information.

(The frequency based answer is, at most, the solution to a
different problem...)

◮ Comparison of P(Hj | obs. sequence) with frequentistic
methods?

NO!
◮ Don’t even think: frequentists refuse to assign probabilities to

hypotheses (in general), to causes, to true values, etc.
(And you have seen the results. . . )
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How does it work?

Simple case (no reporter/composition/etc. complications)
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How does it work?

Simple case (no reporter/composition/etc. complications)

◮ Update probabilities of hypotheses (cause, Box): inference:

P (n)(Bj) ∝ P(E
(n)
i |Bj) · P

(n−1)(Bj)
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How does it work?

Simple case (no reporter/composition/etc. complications)

◮ Update probabilities of hypotheses (cause, Box): inference:

P (n)(Bj) ∝ P(E
(n)
i |Bj) · P

(n−1)(Bj)

◮ Update probabilities of next extraction: prediction:

P (n+1)(Ei) =
∑
j

P(Ei |Bj) · P
(n)(Bj)
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How does it work?
General case (more complicate ‘network’)
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How does it work?
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for example including uncertain Composition (C ) and a Reporter
for each estraction (R):
◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Composition (C ) and a Reporter
for each estraction (R):
◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .

◮ Condition on the ‘observations’:

P(C ,B ,E ,R(k>n) |R(k≤n)) =
P(C ,B ,E ,R)

P(R(k≤n))
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P(C ,B ,E ,R)

P(R(k≤n))

No real distinction between inference and prediction
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How does it work?
General case (more complicate ‘network’)
for example including uncertain Composition (C ) and a Reporter
for each estraction (R):
◮ Write down the joint distribution of all variables in the game:

P(C ,B ,E ,R)

E : E
(1)
i ,E

(2)
i ,E

(3)
i , . . .

R : R
(1)
i ,R

(2)
i ,R

(3)
i , . . .

◮ Condition on the ‘observations’:

P(C ,B ,E ,R(k>n) |R(k≤n)) =
P(C ,B ,E ,R)

P(R(k≤n))

No real distinction between inference and prediction

(We shall see it later in the case of continuous distributions)
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The End
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