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Geometric numerical integration

@ The denomination recalls the approach to geometry formulated by
Felix Klein in his Erlangen program (1893);

e geometry = the study of invariants under certain transformations;

@ geometric numerical methods launched to retain peculiar features
of dynamical systems under discretizations;

e Arnold (2002), speech addressed to the participants of the
International Congress of Mathematicians in Beijing:

“The design of stable discretizations of systems of PDEs often
hinges on capturing subtle aspects of the structure of the system in
the discretization. This new geometric viewpoint has provided a
unifying understanding of a variety of innovative numerical
methods developed over recent decades”;



Geometric numerical integration (ctd.)

@ subtle connection with the so-called geometric integration theory
by Hassler Whitney (1957);

e Arnold shows that the function spaces introduced by Whitney (the
so-called Whitney elements) represent what is required for a
geometric discretization of many PDEs.

ﬁ Douglas N. Arnold, Differential complexes and numerical stability, Proceedings of the
ICM, Beijing 2002, vol. 1, 137-157 (2002).

ﬁ R. McLachlan, Featured Review: Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. SIAM Review
45(4), 817-821 (2003).

ﬁ E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration.
Structure-preserving algorithms for ordinary differential equations, Second edition,
Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin (2006).

ﬁ E. Hairer, G. Wanner, Geometric numerical integration illustrated by the
Stormer-Verlet method, Acta Numer. 12, 399-450 (2003).



Geometric numerical integration (ctd.)

A famous method: leapfrog method, also known as Stormer-Verlet
method. This method, for the discretization of the second order
problem

q= f(q),
is given by
Gn+1 — 2qn + Gn-1 = th(Qn)'

Extensively used in many fields, such as celestial mechanics and
molecular dynamics.

o First due to Stormer (1907), a variant of this scheme to compute
the motion of ionized particles in the Earth’s magnetic field
(aurora borealis);

e above formulation due to Verlet (1967) for the computer
simulation of molecular dynamics models;

o interested in the history of science, he discovered that his scheme
was previously used by several authors: for instance, by Newton in
his Principia (1687), to prove Kepler’s second law.



Geometric numerical integration (ctd.)

e Seminal contribution by De Vogelaere (1956), “a marvellous paper,
short, clear, elegant, written in one week, submitted for publication
and never published’;

e examples of numerical methods (such as the symplectic Euler
method) retaining the symplecticity of Hamiltonian problems;

o still regarding Hamiltonian problems, successive contributions by
Ruth (1983) and Kang (1985);

o 1988 starting year for the establishment of a theory of conservative
numerics for Hamiltonian problems: criterion for the numerical
conservation of the symplecticity via Runge-Kutta methods
independently by Lasagni, Sanz-Serna, Suris, depending on a
similar condition discovered by Cooper (1987) for the numerical
conservation of quadratic first integrals.

D R. D’Ambrosio, Numerical approximation of differential problems, Springer, to appear.



Geometric numerical integration: applications
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Hamiltonian dynamics;

Molecular dynamics is a rich source of applications for geometric
integration;

weather prediction;

robotics;

study of the Schrodinger equation and statistical mechanics.

N. Bou-Rabee, J. M. Sanz-Serna, Geometric integrators and the Hamiltonian Monte
Carlo method, Acta Numerica 27, 113-206 (2018).

M. Fernandez-Pendas, E. Akhmatskaya, J. M. Sanz-Serna, Adaptive multi-stage
integrators for optimal energy conservation in molecular stmulations, J. Comp. Phys.
327, 434-449 (2016).

B.J. Leimkuhler, S. Reich, Stmulating Hamiltonian dynamics, Cambridge University
Press (2004).
R. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer. Math.

66(1), 465-492 (1993).

M.Q. Zhang, Explicit unitary schemes to solve quantum operator equations of motion,
J. Stat. Phys. 65(3), 793-799 (1991).



Stochastic geometric numerical integration
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Nonlinear SDEs

Retaining dissipativity of stochastic differential equations

@ E. Buckwar, R. D’Ambrosio, Exponential mean-square stability properties of stochastic
linear multistep methods, submitted.

R. D’Ambrosio, S. Di Giovacchino, Mean-square contractivity of stochastic
theta-methods, Comm. Nonlin. Sci. Numer. Simul. 96, article number 105671 (2021).

@ R. D’Ambrosio, S. Di Giovacchino, Nonlinear stability issues for stochastic
Runge-Kutta methods, Comm. Nonlin. Sci. Numer. Simul. 94, article number 105549
(2021).

R. D’Ambrosio, S. Di Giovacchino, Optimal 9-methods for mean-square dissipative
stochastic differential equations, submitted.

D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential
equations with jumps, Numer. Math. (2005).



Memorandum on nonlinear deterministic
equations

Consider a nonlinear test problem
{ y'(t) = o(ty(t), t=0,
y(O) = Yo,

with ¢ : R x R™ — R™ satisfying a one-sided Lipschitz condition

(p(t,y1) — @t y2)) (y1 — y2) <0, (%)

for all t > 0 and y1,y2 € R™. Denote by y(t) and g(t) two solutions
with initial conditions yo and go, respectively. Condition (x) implies
the contractivity of the trajectories

ly(t2) — G(t2)| < ||w(ta) — G(t1)

for 0 <ty < ty, where || - || is any norm in R™, and the corresponding

problem is said to be dissipative.
Contractive numerical solutions for dissipative problems: AN-stability,

G-stability, algebraic stability, ... (pioneered by Dahlquist, 1975).

Y




Stochastic contractivity

Nonlinear 1to problem:
dX(t) = f(X(t))dt + g(X(t))dW (t), te€]0,T]

Assumptions
(i) C'-continuity of drift and diffusion;
(71) one-sided Lipschitz condition for the drift
<z —y, fl&)= fly) >< pllz —y|?, Yo,y eRY

(777) global Lipschitz for the diffusion

lg(x) — g)I” < Lz —yl*, Vz,y € R




Stochastic contractivity (ctd.)

Theorem (Higham, Kloeden, 2005)
Assume (i) — (iii) hold. Then, two solutions X (t) e Y (t) of an Ito SDE
with E|| Xo||? < oo and E||Yyl||? < oo satisfy

E|X(t) - Y(®)|* < E[Xo - Yo|*e*,

where
oa=2u+ L.

provides mean-square contractivity.

@ D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential
equations with jumps, Numer. Math. (2005).

@ E. Buckwar, R. D’Ambrosio, Exponential mean-square stability properties of stochastic
linear multistep methods, submitted.

@ R. D’Ambrosio, S. Di Giovacchino Mean-square contractivity of stochastic 6-methods,
Comm. Nonlinear Sci Numer. Simul. (2021).

R. D’Ambrosio, S. Di Giovacchino Nonlinear stability issues of stochastic Runge-Kutta
methods, Comm. Nonlinear Sci Numer. Simul. (2021).




Analysis of one-step methods

Theorem

Assume (1) — (ii1) hold. Then, any one-step stochastic method

arXip1 + o Xy = At(Bof (Xiy1) + Brf(Xs) +11g(Xe) AW;).

satisfies the following inequality

E|| Xit1 — Yz’+1H2 < E|Xo— Y'OHQGVt'H»l’
) 1
with V=R log Bos,
being
ot — 201 B pAt + BZM AL + V%LAtg’

fos = g — 2B At

and M = sup E|f'(X ()%
t€[0,T]




Contractivity of one-step methods

A one-step method is exponential mean-square contractive if v < 0, i.e.
if
0 < fBos < 1.

Example: Stochastic trapezoidal rule
1 1
Xi+1 =X, + iAtf(Xz) + iAtf(Xi-i—l) -+ g(X,)AWZ

4 — 4pAt + (M + 4L)At?
Bos =
4(1 — pAt)

Hence, it is contractive if

8|ul
At < —FEL
S M +4L



Numerical test
Let f(z) = —dx — 23, g(z) = z.
Then, p=—4, L = 1.

a=2u+L=-7<0 = exponential mean-square contractivity.

Stepsize restriction for the trapezoidal method:

8
At < —.
5

0

Figure: Mean-square deviations over 1000 paths computed by the trapezoidal
method with stepsizes At = 75/128 ~ 0.59 and At = 125/64 ~ 1.95



Useful recursion for two-step methods
Stochastic two-step linear methods (Buckwar et al., BIT 2006)
asXip1 + a1 X+ agXi_1 = At(Bof(Xip1) + B1f(Xi) + Bof(Xio1)
+719(Xi) AW 4+ 709(Xi—1) AWi_1).

Theorem

Assume (i) — (iii) hold. Then, any two numerical solutions {X;}; and {Y:}:
generated by a two-step method satisfy

E||Xit1 — Yie1|? < BrsEX; — Y| + yrsE|| X1 — Yioa %,
with

a? + apoq + (=201 B1p — (a1 B0 + aof1M)) At + (82 + B180) MAE? + 42 LAL
Brs = ,
ag — 2Ba2uAt

o +aoar + (—2a0fop — (1 BoM + aoBr)) At + (BZ + B1B0) MAL? 4+ vZ LAL3
- az — 202uAt '

YTSs




Analysis of two-step methods

Theorem
Assume (1) — (ii1) hold. Then, any two-step stochastic method satisfies

E||Xn+1 - Yvn+1||2 < E“XO — }/0||2e77tn+1,

with )
=308 (Car1),

where Cpy1 15 Tecursively defined by the three-term formula
Cnt1 = BrsCn +¥15Cn-1,

with (1 = Pos and (2 = BrsPos + VTs-

Brs and g are given in the useful recursion; Sog characterizes the
one-step method employed to compute the missing starting values X3
and Y7.



Contractivity of two-step methods

A two-step method is exponential mean-square contractive if n < 0, i.e.
if, after performing n steps,

0<¢, <1,

Example: Adams-Moulton method

5 8 1
Xp+1— X, = At <12f(Xn+1) + Ef(Xn) — Ef(Xn_ﬁ + g(Xn)AWn> .
It satisfies

36 — (3 — 48u) At + 14MAt? + 36 LAt3

Prs = 6(6 — buAt) ’
(124 TAt) MAE
TS = Tou(5uit — 6)

In order to check 0 < (,, < 1, we compute the values of (, for large
enough values of n, assuming to employ the trapezoidal method as a
starting method.



Numerical test

Let f(z) = —4a — 23, g(z) = z.
Satisfies exponential mean-square contractivity.

Stepsize restriction for the Adams-Moulton method: for n = 24, we
have

5

At < 0.6031007782344122.

10
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Figure: Mean-square deviations over 1000 paths computed by the

Adams-Moulton method with stepsizes At = 25/28 ~ 0.89 and
At = 75/128 ~ 0.58



Stochastic f-methods
f-Maruyama

Xn+1 = Xn + (1 - Q)Atf(Xn) + HAtf(Xn—H) + g(Xn)AWm

0-Milstein
Xny1 = Xp + (1 = 0)ALf(Xy) + OALf (Xnt1) + 9(Xn) AW,

+ o0 (X)g(X,) (A3 — Ab),

Nonlinear stability analysis:

@ R. D’Ambrosio, S. Di Giovacchino Mean-square contractivity of stochastic 6-methods,
Commun. Nonlinear Sci. Numer. Simul. (2021).



f-Maruyama

Theorem

Under the assumptions (i)—(iii), any two 6-Maruyama numerical
solutions X, and Yy, n > 0, satisfy the inequality

E|X, — Y, <E|Xo - Yp|? &/®:20)n,

where

B 1 . o+ (1 - H)QMAt
v(0,A0) = 5 Inp0, A, 56,00 =1+ —F—p 0

with

M = sup E[f'(X(t))]*.
t€[0,T]

Theorem

For any fized value of 6 € [0,1], [v(6, At) — a| = O(At).




6-Milstein

Theorem

Under the assumptions (i)-(iii), any two 0-Maruyama numerical
solutions Xy, and Yy, n > 0, satisfy the inequality

E|X, — Yol> <E|Xo — Yp|? eOA0

where
M A2
6(‘9, At) - At 111'7(9, At)v 7(97 At) - 5(0’ At) m’
with

W= sup BINCXO, HCX(0) = o(X(O)g(X(0)

Theorem

For any fized value of 0 € [0,1], |e(0, At) — a] = O(AL).




Region of mean-square contractivity

Definition

For a nonlinear stochastic differential equation satisfying assumptions
(i) — (ii7), a f-method is said to generate mean-square contractive
numerical solutions in a region R C R" if, for a fixed 6 € [0, 1],

v(0,At) <0, VAteR
for the 6-Maruyama,
e(0,At) <0, VAteR

for the 6-Milstein.

Definition

A stochastic #-method is said unconditionally mean-square contractive
if, for a given 6 € [0,1], R = R*.




Mean-square contractivity: 6-Maruyama

Mean-square contractivity holds true if

0 < pB(0,At) <1,

for any At € R, i.e.

The 6-Maruyama method with § = 1 (implicit Euler-Maruyama) is
unconditionally mean-square contractive.



Mean-square contractivity: 6-Milstein

Mean-square contractivity holds true if
0 <~v(0,At) < 1,

for any At € R, i.e.

0, 2|of — |, <1,
R 2(1-6)2M + M

(0.2, o=1.
M

Parameter estimation as in global optimization algorithms.




Numerical experiments

Problem 1: stochastic Ginzburg-Landau

ﬁ M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential
equations with non- globally Lipschitz continuous coefficients, Memoirs of the
American Mathematical Society 236(1112), doi: 10.1090/memo/1112 (2015).

FX(1) = —4X(t) - X(#)°,  g(X(1) = X(t)
Xo =1, Yy =0. For this problem L =1 and = —4,s0 a = —7 < 0.
o stochastic trapezoidal methods (§ = 1/2): R = (0, );
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Numerical experiments
Problem 1 (ctd.)

@ stochastic implicit Euler, unconditionally mean-square contractive;

10710

1071°
—® = At =1.5625
1020 o=
—a=-2
>
—e = At=2.3438
0B H——a=-15 0
= = At =(0.2344
1070 a=-3
= =At=0.1562
—a=-6
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Numerical experiments
Problem 1 (ctd.)

o ¢-Milstein method with 6 =1/2: R = (0, ).

10'10

10'15
= = At=0.1562
ool %% 7
=& = At =0.3906
—a=-55
10| =e=At=0.7812 4
—a=-2
el | T "At 13281
—a=-05
=& = At =1.7969
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Numerical experiments

Problem 2
sin( X (1)) [ o S
f(X(t))=—4[.(X (t))], oxXW) =7 1
S22 SXi(t) —5Xa(t)

2

Initial data: Xo =[1 1] and Yy = [0 0]". For this problem the
constants L and p are estimated as L = 0.148 and p = —3.56, so
a~ —=7.5<0.

e Stochastic trapezoidal method: R = (0, 1.1875);

@ stochastic implicit Euler method, unconditionally mean-square

contractive.



Numerical experiments
Problem 2 (ctd.)

1070
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Figure: Mean-square deviations over 2000 paths for the trapezoidal method.
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Numerical experiments
Problem 2 (ctd.)

10" g
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10-10
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Figure: Mean-square deviations over 2000 paths for the implicit Euler method.



