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The numerics of preserving structures



Geometric numerical integration

The denomination recalls the approach to geometry formulated by
Felix Klein in his Erlangen program (1893);

geometry = the study of invariants under certain transformations;

geometric numerical methods launched to retain peculiar features
of dynamical systems under discretizations;

Arnold (2002), speech addressed to the participants of the
International Congress of Mathematicians in Beijing:

“The design of stable discretizations of systems of PDEs often
hinges on capturing subtle aspects of the structure of the system in
the discretization. This new geometric viewpoint has provided a
unifying understanding of a variety of innovative numerical
methods developed over recent decades”;



Geometric numerical integration (ctd.)

subtle connection with the so-called geometric integration theory
by Hassler Whitney (1957);

Arnold shows that the function spaces introduced by Whitney (the
so-called Whitney elements) represent what is required for a
geometric discretization of many PDEs.

Douglas N. Arnold, Differential complexes and numerical stability, Proceedings of the
ICM, Beijing 2002, vol. 1, 137–157 (2002).

R. McLachlan, Featured Review: Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. SIAM Review
45(4), 817–821 (2003).

E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration.
Structure-preserving algorithms for ordinary differential equations, Second edition,
Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin (2006).

E. Hairer, G. Wanner, Geometric numerical integration illustrated by the
Störmer-Verlet method, Acta Numer. 12, 399–450 (2003).



Geometric numerical integration (ctd.)

A famous method: leapfrog method, also known as Störmer-Verlet
method. This method, for the discretization of the second order
problem

q̈ = f(q),

is given by
qn+1 − 2qn + qn−1 = h2f(qn).

Extensively used in many fields, such as celestial mechanics and
molecular dynamics.

First due to Störmer (1907), a variant of this scheme to compute
the motion of ionized particles in the Earth’s magnetic field
(aurora borealis);

above formulation due to Verlet (1967) for the computer
simulation of molecular dynamics models;

interested in the history of science, he discovered that his scheme
was previously used by several authors: for instance, by Newton in
his Principia (1687), to prove Kepler’s second law.



Geometric numerical integration (ctd.)

Seminal contribution by De Vogelaere (1956), “a marvellous paper,
short, clear, elegant, written in one week, submitted for publication
and never published”;

examples of numerical methods (such as the symplectic Euler
method) retaining the symplecticity of Hamiltonian problems;

still regarding Hamiltonian problems, successive contributions by
Ruth (1983) and Kang (1985);

1988 starting year for the establishment of a theory of conservative
numerics for Hamiltonian problems: criterion for the numerical
conservation of the symplecticity via Runge-Kutta methods
independently by Lasagni, Sanz-Serna, Suris, depending on a
similar condition discovered by Cooper (1987) for the numerical
conservation of quadratic first integrals.

R. D’Ambrosio, Numerical approximation of differential problems, Springer, to appear.



Geometric numerical integration: applications

Hamiltonian dynamics;

Molecular dynamics is a rich source of applications for geometric
integration;

weather prediction;

robotics;

study of the Schrödinger equation and statistical mechanics.

N. Bou-Rabee, J. M. Sanz-Serna, Geometric integrators and the Hamiltonian Monte
Carlo method, Acta Numerica 27, 113–206 (2018).

M. Fernandez-Pendas, E. Akhmatskaya, J. M. Sanz-Serna, Adaptive multi-stage
integrators for optimal energy conservation in molecular simulations, J. Comp. Phys.
327, 434–449 (2016).

B.J. Leimkuhler, S. Reich, Simulating Hamiltonian dynamics, Cambridge University
Press (2004).

R. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer. Math.
66(1), 465–492 (1993).

M.Q. Zhang, Explicit unitary schemes to solve quantum operator equations of motion,
J. Stat. Phys. 65(3), 793–799 (1991).



Stochastic geometric numerical integration



Nonlinear SDEs

Retaining dissipativity of stochastic differential equations

E. Buckwar, R. D’Ambrosio, Exponential mean-square stability properties of stochastic
linear multistep methods, submitted.

R. D’Ambrosio, S. Di Giovacchino, Mean-square contractivity of stochastic
theta-methods, Comm. Nonlin. Sci. Numer. Simul. 96, article number 105671 (2021).

R. D’Ambrosio, S. Di Giovacchino, Nonlinear stability issues for stochastic
Runge-Kutta methods, Comm. Nonlin. Sci. Numer. Simul. 94, article number 105549
(2021).

R. D’Ambrosio, S. Di Giovacchino, Optimal ϑ-methods for mean-square dissipative
stochastic differential equations, submitted.

D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential
equations with jumps, Numer. Math. (2005).



Memorandum on nonlinear deterministic
equations
Consider a nonlinear test problem{

y′(t) = ϕ
(
t, y(t)

)
, t ≥ 0,

y(0) = y0,

with ϕ : R× Rm → Rm satisfying a one-sided Lipschitz condition(
ϕ(t, y1)− ϕ(t, y2)

)T
(y1 − y2) ≤ 0, (?)

for all t ≥ 0 and y1, y2 ∈ Rm. Denote by y(t) and ỹ(t) two solutions
with initial conditions y0 and ỹ0, respectively. Condition (?) implies
the contractivity of the trajectories∥∥y(t2)− ỹ(t2)

∥∥ ≤ ∥∥y(t1)− ỹ(t1)
∥∥,

for 0 ≤ t1 ≤ t2, where ‖ · ‖ is any norm in Rm, and the corresponding
problem is said to be dissipative.
Contractive numerical solutions for dissipative problems: AN-stability,
G-stability, algebraic stability, . . . (pioneered by Dahlquist, 1975).



Stochastic contractivity

Nonlinear Itō problem:

dX(t) = f(X(t))dt+ g(X(t))dW (t), t ∈ [0, T ]

Assumptions

(i) C1-continuity of drift and diffusion;

(ii) one-sided Lipschitz condition for the drift

< x− y, f(x)− f(y) >≤ µ‖x− y‖2, ∀x, y ∈ Rn;

(iii) global Lipschitz for the diffusion

‖g(x)− g(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rn.



Stochastic contractivity (ctd.)

Theorem (Higham, Kloeden, 2005)

Assume (i)− (iii) hold. Then, two solutions X(t) e Y (t) of an Itō SDE
with E‖X0‖2 <∞ and E‖Y0‖2 <∞ satisfy

E‖X(t)− Y (t)‖2 ≤ E‖X0 − Y0‖2eαt,

where
α = 2µ+ L.

α < 0 provides mean-square contractivity.

D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential
equations with jumps, Numer. Math. (2005).

E. Buckwar, R. D’Ambrosio, Exponential mean-square stability properties of stochastic
linear multistep methods, submitted.

R. D’Ambrosio, S. Di Giovacchino Mean-square contractivity of stochastic θ-methods,
Comm. Nonlinear Sci Numer. Simul. (2021).

R. D’Ambrosio, S. Di Giovacchino Nonlinear stability issues of stochastic Runge-Kutta
methods, Comm. Nonlinear Sci Numer. Simul. (2021).



Analysis of one-step methods

Theorem

Assume (i)− (iii) hold. Then, any one-step stochastic method

α2Xi+1 + α1Xi = ∆t(β2f(Xi+1) + β1f(Xi) + γ1g(Xi)∆Wi).

satisfies the following inequality

E‖Xi+1 − Yi+1‖2 ≤ E‖X0 − Y0‖2eνti+1 ,

with ν =
1

∆t
log βOS,

being

βOS =
α2

1 − 2α1β1µ∆t+ β2
1M∆t2 + γ2

1L∆t3

α2 − 2β2µ∆t

and M = sup
t∈[0,T ]

E|f ′(X(t))|2.



Contractivity of one-step methods

A one-step method is exponential mean-square contractive if ν < 0, i.e.
if

0 < βOS < 1.

Example: Stochastic trapezoidal rule

Xi+1 = Xi +
1

2
∆tf(Xi) +

1

2
∆tf(Xi+1) + g(Xi)∆Wi,

βOS =
4− 4µ∆t+ (M + 4L)∆t2

4(1− µ∆t)
.

Hence, it is contractive if

∆t <
8|µ|

M + 4L
.



Numerical test

Let f(x) = −4x− x3, g(x) = x.

Then, µ = −4, L = 1.
α = 2µ+ L = −7 < 0 ⇒ exponential mean-square contractivity.

Stepsize restriction for the trapezoidal method:

∆t <
8

5
.

Figure: Mean-square deviations over 1000 paths computed by the trapezoidal
method with stepsizes ∆t = 75/128 ≈ 0.59 and ∆t = 125/64 ≈ 1.95



Useful recursion for two-step methods

Stochastic two-step linear methods (Buckwar et al., BIT 2006)

α2Xi+1 + α1Xi + α0Xi−1 = ∆t(β2f(Xi+1) + β1f(Xi) + β0f(Xi−1)

+γ1g(Xi)∆Wi + γ0g(Xi−1)∆Wi−1).

Theorem

Assume (i)− (iii) hold. Then, any two numerical solutions {Xi}i and {Yi}i
generated by a two-step method satisfy

E‖Xi+1 − Yi+1‖2 ≤ βTSE‖Xi − Yi‖2 + γTSE‖Xi−1 − Yi−1‖2,

with

βTS =
α2
1 + α0α1 + (−2α1β1µ− (α1β0 + α0β1M)) ∆t+ (β2

1 + β1β0)M∆t2 + γ21L∆t3

α2 − 2β2µ∆t
,

γTS =
α2
0 + α0α1 + (−2α0β0µ− (α1β0M + α0β1)) ∆t+ (β2

0 + β1β0)M∆t2 + γ20L∆t3

α2 − 2β2µ∆t
.



Analysis of two-step methods

Theorem

Assume (i)− (iii) hold. Then, any two-step stochastic method satisfies

E‖Xn+1 − Yn+1‖2 ≤ E‖X0 − Y0‖2eηtn+1 ,

with

η =
1

∆t
log (ζn+1) ,

where ζn+1 is recursively defined by the three-term formula

ζn+1 = βTSζn + γTSζn−1,

with ζ1 = βOS and ζ2 = βTSβOS + γTS.

βTS and γTS are given in the useful recursion; βOS characterizes the
one-step method employed to compute the missing starting values X1

and Y1.



Contractivity of two-step methods

A two-step method is exponential mean-square contractive if η < 0, i.e.
if, after performing n steps,

0 < ζn < 1,

Example: Adams-Moulton method

Xn+1−Xn = ∆t

(
5

12
f(Xn+1) +

8

12
f(Xn)− 1

12
f(Xn−1) + g(Xn)∆Wn

)
.

It satisfies

βTS =
36− (3− 48µ)∆t+ 14M∆t2 + 36L∆t3

6(6− 5µ∆t)
,

γTS =
(12 + 7∆t)M∆t

24(5µ∆t− 6)
.

In order to check 0 < ζn < 1, we compute the values of ζn for large
enough values of n, assuming to employ the trapezoidal method as a
starting method.



Numerical test

Let f(x) = −4x− x3, g(x) = x.

Satisfies exponential mean-square contractivity.
Stepsize restriction for the Adams-Moulton method: for n = 24, we
have

∆t ≤ 0.6031007782344122.

Figure: Mean-square deviations over 1000 paths computed by the
Adams-Moulton method with stepsizes ∆t = 25/28 ≈ 0.89 and
∆t = 75/128 ≈ 0.58



Stochastic θ-methods

θ-Maruyama

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn,

θ-Milstein

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn

+
1

2
g′(Xn)g(Xn)(∆W 2

n −∆t),

Nonlinear stability analysis:

R. D’Ambrosio, S. Di Giovacchino Mean-square contractivity of stochastic θ-methods,
Commun. Nonlinear Sci. Numer. Simul. (2021).



θ-Maruyama

Theorem

Under the assumptions (i)–(iii), any two θ-Maruyama numerical
solutions Xn and Yn, n ≥ 0, satisfy the inequality

E |Xn − Yn|2 ≤ E |X0 − Y0|2 eν(θ,∆t)tn ,

where

ν(θ,∆t) =
1

∆t
lnβ(θ,∆t), β(θ,∆t) = 1 +

α+ (1− θ)2M∆t

1− 2θµ∆t
∆t,

with
M = sup

t∈[0,T ]
E|f ′(X(t))|2.

Theorem

For any fixed value of θ ∈ [0, 1], |ν(θ,∆t)− α| = O(∆t).



θ-Milstein

Theorem

Under the assumptions (i)–(iii), any two θ-Maruyama numerical
solutions Xn and Yn, n ≥ 0, satisfy the inequality

E |Xn − Yn|2 ≤ E |X0 − Y0|2 eε(θ,∆t)tn ,

where

ε(θ,∆t) =
1

∆t
ln γ(θ,∆t), γ(θ,∆t) = β(θ,∆t) +

M̃∆t2

2(1− 2θµ∆t)
,

with M̃ = sup
t∈[0,T ]

E|h′(X(t))|2, h(X(t)) = g(X(t))g′(X(t)).

Theorem

For any fixed value of θ ∈ [0, 1], |ε(θ,∆t)− α| = O(∆t).



Region of mean-square contractivity

Definition

For a nonlinear stochastic differential equation satisfying assumptions
(i)− (iii), a θ-method is said to generate mean-square contractive
numerical solutions in a region R ⊆ R+ if, for a fixed θ ∈ [0, 1],

ν(θ,∆t) < 0, ∀∆t ∈ R

for the θ-Maruyama,

ε(θ,∆t) < 0, ∀∆t ∈ R

for the θ-Milstein.

Definition

A stochastic θ-method is said unconditionally mean-square contractive
if, for a given θ ∈ [0, 1], R = R+.



Mean-square contractivity: θ-Maruyama

Mean-square contractivity holds true if

0 < β(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

R =


(

0,
|α|

(1− θ)2M

)
, θ < 1,

R+, θ = 1.

The θ-Maruyama method with θ = 1 (implicit Euler-Maruyama) is
unconditionally mean-square contractive.



Mean-square contractivity: θ-Milstein

Mean-square contractivity holds true if

0 < γ(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

R =



(
0,

2|α|
2(1− θ)2M + M̃

)
, θ < 1,(

0,
2|α|
M̃

)
, θ = 1.

Parameter estimation as in global optimization algorithms.



Numerical experiments
Problem 1: stochastic Ginzburg-Landau

M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential
equations with non- globally Lipschitz continuous coefficients, Memoirs of the
American Mathematical Society 236(1112), doi: 10.1090/memo/1112 (2015).

f(X(t)) = −4X(t)−X(t)3, g(X(t)) = X(t)

X0 = 1, Y0 = 0. For this problem L = 1 and µ = −4, so α = −7 < 0.

stochastic trapezoidal methods (θ = 1/2): R =
(
0, 7

4

)
;

0 1 2 3 4 5 6 7 8 9 10

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

t = 0.2344

 = -7

t = 0.3906

 = -5

t = 0.7812

 = -2

t = 1.5625

 = -0.65

 t = 1.9531



Numerical experiments
Problem 1 (ctd.)

stochastic implicit Euler, unconditionally mean-square contractive;
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Numerical experiments
Problem 1 (ctd.)

θ-Milstein method with θ = 1/2: R =
(
0, 14

9

)
.
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Numerical experiments
Problem 2

f(X(t)) = −4

[
sin(X1(t))

sin(X2(t))

]
, g(X(t)) =

1

7

 X1(t)
3

2
X2(t)

5

2
X1(t) −1

2
X2(t)

 .
Initial data: X0 = [1 1]T and Y0 = [0 0]T. For this problem the
constants L and µ are estimated as L = 0.148 and µ = −3.56, so
α ≈ −7.5 < 0.

Stochastic trapezoidal method: R = (0, 1.1875) ;

stochastic implicit Euler method, unconditionally mean-square
contractive.



Numerical experiments
Problem 2 (ctd.)
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Figure: Mean-square deviations over 2000 paths for the trapezoidal method.



Numerical experiments
Problem 2 (ctd.)

0 1 2 3 4 5 6 7 8 9 10
10

-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

t = 2.3438

 = - 2

t = 1.1719

 = - 3

 t = 0.7812

 = -3.5

t = 0.3906

 = -5

t = 0.2344

 = - 5.4

t = 0.0781

 = - 7.5

Figure: Mean-square deviations over 2000 paths for the implicit Euler method.


