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Stability regions: Euler-Maruyama
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Numerical evidence

Mean Square:A= 3,u=+3
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Improve stability regions

Stochastic J-methods:

Xn+1 = Xn+ Q=9 Atf(tn, Xn) +OALf (tn+1, Xnt1) + VALg(ty, Xn) Vi,

with 9 € [0,1] and V,, standard normal random variable.

ﬁ E. Buckwar, T. Sickenberger, A comparative linear mean-square stability analysis of
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1110-1127.

ﬁ D. Higham, Mean-square and asymptotic stability of the stochastic theta method,
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differential equations, STAM J. Numer. Anal., 33 (1996), pp. 333-344.

@ One-parameter family of one-step methods;

o the value of ¥ can be chosen to enlarge the stabilty region of EM;
e implicit methods for ¥ # 0.



Improve stability regions (ctd.)

Applying stochastic ¥-methods to the stochastic Dahlquist test
equation
dX(t) = AX(t)dt + pX (t)dW (t),
with A\, u € C, yields
Xpy1 = (CL + an)Xna

with
1+ (1-9A . VA
CETT oA VT TS 9AN
Then,

E[Xnt1]? = (laf* + [ E| X, [
As a consequence,
lim E|X,|> =0 < |a)® + |b]? < 1.
n—oo
Therefore, a stochastic ¥-method is mean-square stable if and only if

114 (1 — 9)AtA| + At|p|?

1.
1= OALN] <




Improve stability regions (ctd.)

In summary,

1
SSDE = {)\,,U, eC: RG(A) + §|,U,|2 < O},

14+ (1—-9 2
SSTM:{:c,yE(C:| +( )z| + 1yl <1},

|1 — Yx|
with x = MAt and y = pvAt. From Higham (2000):
THEOREM 4.1. For all At > 0 we have
SsTMm(f,At) C Sspg for 0 <8 < %,

]
Ssm(3, At) = Ssp,
SSTM(gs At) D Sgpr  for % < .

For0 <6< %, given (A, ) € Sgpg, the STM is mean-square stable if and only if

—2(R{A} + 3uf)

(4.3) At < — a9



Improve stability regions (ctd.)

In other terms,

0 if0 <V < %, the method is stable under stepsize restrictions (they
may be severe);

o if ) = % (stochastic trapezoidal method), the stability region of
the method coincides with that of the problem;

o if ¥ > %, the stability region of the method contains that of the

problem and the method is stable for any choice of the stepsize.

Then, for % < ¢ <1, we have the mean-square generalization of the

deterministic A-stability.



