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Chapter 1

Useful Mathematical
Tools

1.1. Gaussian Integrals

1.1.1. Multidimensional Gaussian Integrals. Gaussian integrals are ubiquitous in theoret-
ical physics and constitute the basis of many calculations. Moreover, they allow us to introduce
the formalism of generating functions.

We begin by remembering the simplest of those integrals:

(1.1)

∫ ∞
−∞

dxe−
ax2

2 =

√
2

a
π

which can be proven by considering the square of the integral and switching to polar coordinates.
The argument of the exponent can be regarded as a quadratic form on R (as a vector space);
we generalize that concept by introducing a n dimensional positive definite symmetric matrix A
(i.e. it has all positive eingevalues) that naturally induces a quadratic form A(~x) on Rn

(1.2) A(~x) =
n∑

i,j=1

xiAi,jxj = ~xTA~x

Embedding this in an exponential, for convenience with a prefactor 1/2, yields a Gaussian weight
G(~x) = exp[−A(~x)/2]. An example of such weight for a two-dimensional vector ~x = (x1, x2) and

A =

[
3 −1
−1 3

]
is shown in Fig. 1. A has eigenvalues λ1 = 2 and λ2 = 4, which are inversely proportion to the
decay of the function G along the two orthogonal directions x′1 and x′2. In the following we adopt
G as a weight in the distriburion of ~x. In this case, the off-diagonal terms A12 = A21 introduce
a correlation between x1 and x2, i.e. their covariance is not zero.

Now consider the Gaussian integral

(1.3) Z[A] =

∫
Rn
dnx e−

1
2
A(~x) =

∫
Rn
dnx e−

1
2

∑n
i,j=1 xiAi,jxj

The variables are in general coupled by Aij 6= 0 and the integral is solved by diagonalizing
the matrix A (this can be done thanks to the spectral theorem) via an orthogonal matrix
O : OOT = In and changiing the variables: x′ = Ox. The Jacobian of this trasformation is 1.
Hence, by calling ai, i = 1...n the eigenvalues of A, we have

(1.4) Z[A] =
n∏
i=1

∫ ∞
−∞

dxie
−ai

2
x2
i =

(2π)n/2√
detA

1
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Figure 1. Three-dimensional plot (left) and contour plot (right) of the Gaussian weight dis-
cussed in the text. By expressing such weight in the orthonormal basis (x′1, x

′
2), one would

obtain uncorrelated Gauss weights.

since
∏n
i=1 ai = detA.

The last result that we need is a further generalization of Z[A]; it is done by adding a linear

term to the argument of the exponential, i.e.
∑n

i=1 bixi = ~bT~x = ~b · ~x where b ∈ Rn.

(1.5) Z[A,~b] =

∫
Rn
dnx e−

1
2
A(~x)+~b·~x = Z[A, 0]e

1
2
~bTA−1~b

(we have defined Z[A, 0] = Z[A]). This result can be derived by either completing the square or

by changing the variables to ~y = ~x− ~x∗ where ~x∗ = A−1~b is the extremum of the exponential’s

argument. From now on we call Z[A,~b] a generating function.

1.1.2. Correlations Functions. Since we calculated Z[A, 0] we can now define a Gaussian
probability density over x ∈ RN (namely a multivariate normal distribution with zero mean and
covariance matrix A−1),

(1.6) p(~x) =
1

Z[A, 0]
e−

1
2
A(~x)

From this distribution we can calculate expected values of products (also called correlation
functions) of l of the variables xi.

(1.7) 〈xk1 ...xkl〉 =
1

Z[A, 0]

∫
Rn
xk1 ...xkle

− 1
2
A(~x)

where kj = 1...N . To do so we exploit the generating function property of Z[A, b], i.e.:

〈xk1 ...xkl〉 =
1

Z[A, 0]

∫
Rn
xk1 ...xkle

− 1
2
A(~x) =

=
1

Z[A, 0]

∂

∂bk1

...
∂

∂bkl

∫
Rn
dnx e−

1
2
A(~x)+~b·~x

∣∣∣∣
b=0

=
1

Z[A, 0]

∂

∂bk1

...
∂

∂bkl
Z[A, b]

∣∣∣∣
b=0

=
∂

∂bk1

...
∂

∂bkl
e

1
2
~bTA−1~b(1.8)

Hence, for symmetry, any correlation function that has an odd number of variables vanishes
identically (at least one xi remains with an odd power while this Gaussian is an even function
centered around the origin). Instead any even correlation function can be calculated using
Wick’s Theorem, as discussed below.
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1.1.3. Wick’s Theorem. We discovered that correlation functions can be computed using
derivatives of Z[A, b]. Wick’s theorem states that any even-number correlation function can be
written as the sum of products of two points correlation functions. For instance, by defining
Ci,j = A−1

i,j , we have

(1.9) 〈xaxbxcxd〉 = CabCcd + CacCbd + CadCbc

where indices could also be equal (e.g. a = b is allowed but one still needs to compute all terms as
if they were distinct). In the right-hand side one notes that there are all possible pairs of indices
(a, b, c, d), obtained from their permutations. This is also the structure in general of Wick’s
Theorem. By defining a permutation P of indices (k1, k2, . . . , kl) for even l as (kP1 , k

P
2 , . . . , k

P
l ),

one has

(1.10) 〈xk1xk2 . . . xkl〉 =
∑

“all′′P
CkP1 kP2

. . . CkPl−1k
P
l

Here we thus summed products of Cab taking into account all possible permutations of the
indices. The number of terms in this expression, in the case of l = 2m variables, is (2m − 1)!!
(double factorial).

1.2. Steepest descent method

We recall the method of steepest descent to approximate integrals with Gaussian integrals in
some suitable limit. Here we deal with real variables and thus we are discussing Laplace’s
method. More in general, such integrals would be available also for complex variables within a
saddle point scheme.

We deal with integrals of the form
∫
dnx e−F (~x)/λ for λ→ 0. We have

(1.11) I(λ) =

∫
dnx e−F (~x)/λ ≈ λn/2e−F (~xc)/λ (2π)n/2

det(∂2F (~xc))
1/2

where ~xc is the maximum of F (~x) and ∂2F (~xc) is a shorthand notation for the matrix with
second derivatives of F , which plays the role of A in the previous section: ∂2

xi,xjF (~xc) = Aij . To

derive this result we just change the variable ~x = ~xc +
√
λ~y, expand the exponent argument in

λ and ignore all factors O(λ1/2).

Sometimes it is more natural to think of a parameter s → ∞ (e.g. the systems size in a
thermodynamic limit). Trivially, one may set s = 1/λ in the previous treatment. In more general
contexts the integral could contain also another function g(x) as a prefactor of the exponential.
Moreover, the range C of integration needs not to be the full real line. In the one-dimensional
case, such integral becomes

(1.12) I(s) =

∫
C
g(x)esf(x)dx ≈ (2π)1/2g(xc)e

sf(xc)

|sf ′′(xc)|1/2

where xc is the maximum of f(x) within the interval C. This formula holds if the maximum xc
stays far from the boundary of C. See the exercises for an example in which it is better to not
apply directly this formula (because xc tends to the boundary for increasing s).

1.3. Fourier Transform (FT)

The FT of a function f(x) is here defined as

F(f) = f̃(k) =

∫ ∞
−∞

e−ikxf(x)dx

and its inverse consequently is defined as

F−1(f̃) =
1

2π

∫ ∞
−∞

eikxf̃(k)dk
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Note that other definitions with different splitting of the 2π factor and with opposite signs in
the exponential are also used in other contexts. We stick to this one in most of our lessons.

1.3.1. FT of the Dirac’s Delta δ(x). One finds immediately that

F(δ) =

∫ ∞
−∞

e−ikxδ(x)dx = 1

and consequently that there is a representation of the δ function in terms of the inverse Fourier
transform, δ = F−1(1), which becomes

δ(x) =
1

2π

∫ ∞
−∞

eikxdk

This is a form used often to perform useful mathematical tricks.

1.3.2. FT of the Heavyside function θ(x). The step function, or Heavyside function, is
defined as

θ(x) =

 1 if x > 0
1/2 if x = 0
0 if x < 0

The 1/2 value at x = 0 derives from the definition of the step function as a shift of the rescaled
“sign” function, θ(x) = 1/2 + sgn(x)/2, where

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

By noting that

δ(x) =
d

dx
θ(x) =

1

2

d

dx
sgn(x)

and by recalling (exercise: use partial integration) that the FT of a derivative of f(x) is

F
(
d

dx
θ(x)

)
= ikf̃(k)

we arrive at

θ̃(k) =
1

ik
F
(
d

dx
θ(x)

)
+ F

(
1

2

)
=

1

ik
F (δ(x)) +

1

2
F(1)

=
1

ik
+ πδ(k)(1.13)

where we used F(1) = 2πδ(k) in the last step.

1.4. Gaussian with imaginary mean

We want to give a sense to the Gaussian integral

(1.14)

∫
R
e−a(x−ib)2

dx

where b ∈ R. Since the integrand is analytic, we can continue it to a complex variable z and
consider a contour ΓR = γ1∪γ2∪γ+∪γ− where γ1 is the interval [−R,R], −γ2 is [−R+ib, R+ib],
γ+ is [R,R + ib] and γ− is [−R + ib,−R]. The contribution for R → ∞ is zero on ΓR and on
γ±; instead γ1,2 give opposite results, hence:

(1.15)

∫
R
e−a(x−ib)2

dx =

√
π

a
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Figure 2. Contour used to compute the Fresnel integral.

This implies that

(1.16)

∫
R
e−ax

2+bxdx =

√
π

a
e
b2

2a

for all b ∈ C and a > 0.

1.4.1. Fresnel integral. The Fresnel integral

(1.17)

∫ ∞
−∞

dk

2π
e−iak

2−ibk = (4πai)−1/2e
ib2

4a

has a structure for example found in the FT of the Schrödinger equation (see below). It looks
like a normal Gaussian integral where complex variables are used for its variance and mean.
However, to prove its convergence, we follow an explicit procedure. We thus prove its formula
by showing that I(a, b) ≡ limε→0 Iε(a, b), where

(1.18) Iε(a, b) = lim
R→∞

∫ R

−R

dk

2π
e−ak

2ei(π/2−ε)−ibk

is a deformed and regularized version of I(a, b).

We consider a, b ∈ R and we start with the case a > 0. By looking at the exponent in Iε we
find it useful to introduce the variable z = kei(π/4−ε/2) = keiφε with angle φε = π/4− ε/2 < π/4
for small ε > 0. This variable moves along a line γ in the complex plane that is tilted of φε with
respect to the real axis. We then construct a contour ΓR = γR ∪ γ+ ∪ γ̄R ∪ γ− (see Figure 2)
composed of

• γ+ = {z = Reiθ : θ ∈ [0, φε]}
• γ− = {z = Reiθ : θ ∈ [π, π + φε]}
• γR = {|z| ≤ R, arg z = φε}
• γR = [−R,R] (with orientation reversed)

In Γ a portion γR is tilted as γ and will tend to it for R→∞.

The closed contour in the complex plane allows us to use Cauchy’s Theorem. In this case
the contour encloses no pole and the full integral along Γ of an analytic function is zero. The
strategy is to show that the contributions on γ+ and γ− become negligible for R→∞ and that
the integral on γR (after reversing its orientation) matches that on γR.



6 1. Useful Mathematical Tools

Consider the integrand calculated on γ+ with parametrization z = Reiθ for 0 ≤ θ ≤ φε. To
show that it becomes negligible we use an inequality for its modulus. Thus,

R

∣∣∣∣e−iφε2π

∫
γ+

e−az
2−izbdz

∣∣∣∣ ≤ R ∫ φε

0
dθ
∣∣∣eiθ−aR2e2iθ−iRbei(θ−φε)

∣∣∣
= R

∫ φε

0
dθ e−aR

2cos(2θ)+Rb sin(θ−φε) −−−→
R→0

0

because φε < π/4 and the term with cos(2φ) > 0 in the exponent guarantees the decay with R.
The same holds on γ−.

By calling b′ = be−iφε , on γ̄R we have

lim
R→∞

e−i(φε)

2π

∫ R

−R
e−az

2−ib′z =
(π
a

)1/2 e−
b′2
4a

2π
−−→
ε→0

(4πai)−1/2e
ib2

4a

(to show how a Gaussian integral with imaginary b is computed, see the exercises). Since the
integral over ΓR is zero by Cauchy we conclude that

I(a, b) ≡ lim
ε→0

Iε(a, b) =

∫ ∞
−∞

dk

2π
e−iak

2−ibk = (4πai)−1/2e
ib2

4a

for a > 0.

For the case a < 0 use I(a, b) = I∗(−a,−b), (−ia) = (ia)∗, and b2 = (b2)∗ to show that the
same formula holds.

1.4.2. Example: Schrödinger Equation. Consider the free Schrödinger equation:

(1.19) i~∂tψ(x, t) = − ~2

2m
∂2
xψ(x, t)

Set ~ = 1 and move to Fourier space:

ψ(x, t) =

∫
dp

2π
ψ̃(p, t)eipx(1.20)

i∂tψ̃(p, t) =
p2

2m
ψ̃(p, t)(1.21)

ψ̃(p, t) = ψ̃(p, 0)e−i
p2t
2m(1.22)

Since we use ψ(x, 0) = δ(x) we have ψ̃(p, t) = e−i
p2t
2m . To find ψ(x, t) we make use of Fresnel

integrals (a = t
2m and b = −ix):

(1.23) ψ(x, t) =
1

2π

∫
dpe−i

p2t
2m

+ipx =

(
4π

t

2m
i

)−1/2

e
i(−ix)2

4 t
2m =

( m

2πti

)1/2
e−

mx2

2it

Putting back ~:

(1.24) ψ(x, t) =
( m

2π~it

)1/2
e−

mx2

2~it

This is called the propagator for the free Schrödinger equation.

1.5. Indented Integrals and ε prescription

In some integrals of complex variables one finds poles tending to the real axis for say ε → 0,
which are dealt with a limiting procedure as follows. We show that these integrals, pictorially
represented by the green path in the upper panel of Figure. 3, are equivalent to another limiting
procedure in which the pole already lays on the real axis and is progressively encircled by a
contour (lower panel of Figure. 3). In the depicted scenario, the pole is approaching x0 from
above and the contour is encircling the pole. The other case with contour not encircling a pole
that is approaching x0 from below is found in the exercises.
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Figure 3. Contour used to compute the indented integral discussed in the text. The green
portion is the path Γpri where the principal value of the integral emerges.

The equation we want to prove is, for any analytic function in the upper complex plane
Im(z) ≥ 0 that tends to zero sufficiently fast for |z| → ∞,

(1.25) lim
ε→0+

∫
R

f(x)

x− x0 − iε
dx = P

∫
R

f(x)

x− x0
dx+ iπf(x0)

The validity for a quite generic f leads physicists to crudely summarize the equation with the
notation

lim
ε→0

1

x− x0 − iε
= P

1

x− x0
+ iπδ(x− x0)

The notation P
∫
. . . denotes the principal value of an integral:

P
∫
R

f(x)

x− x0
dx = lim

δ→0

[∫ x0−δ

−∞

f(x)

x− x0
dx+

∫ ∞
x0+δ

f(x)

x− x0
dx

]
For instance, for f = 1/x2 and x0 = 0, for symmetry we have

P
∫
R

1

x3
dx = lim

δ→0

[∫ −δ
−∞

1

x3
+

∫ ∞
δ

1

x3

]
= lim

δ→0
0 = 0

Without principal value extraction, the integral of 1/x3 in R would not be well defined.

To prove (1.25), we use Cauchy Theorem for closed contours once more, and again we need
that the contribution of the integral in the outer semicircle Γext (Figure 3) vanishes for R→∞.
In this case it is granted by the selection of functions f(z) that tend to zero quickly enough for
R→∞.
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The two remaining contributions to the integral for δ → 0 become, respectively, the principal
value (integral on Γpri in the Figure) and half of the residue in x0 (integral on the semicircle
Γint), which is indeed iπf(x0)

1.6. Characteristic Functions

Here we define the characteristic function for a random variable and then prove the central limit
theorem for the sum of independent and identically distributed (i.i.d.) random variables. Let
be x a random variable with probability density p(x). Its mean or first moment µ is defined as

(1.26) µ = 〈x〉 =

∫
dxx p(x)

and its variance, also known as second cumulant or central second moment, σ2 is

(1.27) σ2 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2

In general for a function f(x) it holds that

(1.28) 〈f〉 =

∫
dx f(x)p(x)

(1.29) p(f) = 〈δ(f − f(x))〉 =

∫
dx p(x)δ(f − f(x))

(1.30) 〈fk〉 =

∫
dx fk(x)p(x)

If f(x) = x the expected values 〈xk〉 for k ≥ 1 ∈ N are called moments of the random variable
x. The moments are easily computed using the Fourier transform of the distribution of x (here
defined with plus sign in the exponent eikx; the inverse thus gets a minus in the exponent, see
the Dirac δ(x) = F−1(1) below), also known as the characteristic function of x, which we denote
by ϕ(k):

(1.31) ϕ(k) = 〈eikx〉 =

∫
dx eikxp(x)

Indeed, since eikx = 1 + ikx− 1
2k

2x2 + ... =
∑∞

n=0
inknxn

n! , the series representation for ϕ(k) is

(1.32) ϕ(k) = 〈eikx〉 =
∞∑
n=0

inkn

n!
〈xn〉

from which

(1.33) 〈xn〉 = (−i)n ∂

∂kn
ϕ(k)

∣∣∣∣
k=0

A nice property is that a probability density arising from the convolution of two other probability
densities,

p(x) =

∫
dx′p1(x′)p2(x− x′) =

∫
dx′
∫
dx′′δ(x− x′ − x′′)p1(x′)p2(x′′)

has a characteristic function that is the product of the other two

ϕ(k) = ϕ1(k)ϕ2(k)

Such property is useful when considering the sum x = x′ + x′′ of two i.i.d. variables x′ and
x′′ = x− x′.
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Figure 4. Convergence to a normal distribution (red curve) for the rescaled sum of i.i.d vari-
ables, each one following a flat distribution as in the first panel. The panels are for n = 1, 2, 3, 4
and blue curves are the probability densities of rescaled sums Yn.

1.7. Central Limit Theorem

Consider a set x = {x1, . . . , xn} of n i.i.d. random variables with mean µ and variance σ2 and
call Sn =

∑n
i=1 xi their sum. We want to prove that this sum follows to a better and better

degree a Gaussian distribution in the limit of large n, that is, we aim at proving the
Central Limit Theorem: a properly normalized sum of i.i.d. random variables tends toward
a normal distribution even if original variables are not normally distributed. It is required that
their distribution has a finite variance σ2 <∞.

A pictorial example of this convergence is shown in Figure 4.

With the sum Sn we define the random variable

(1.34) Yn(x) ≡ Sn − nµ√
nσ

It is easy to find that 〈Yn〉 = 0 and Var(Yn) = 1. Thus, this variable is rescaled to remain with
a constant variance and zero mean for all n’s.

We want to find the distribution for Yn in the limit n→∞:

p(Yn(x) = y) = 〈δ(y − Yn(x))〉

=

〈
1

2π

∫
R
dα e−iα[y−Yn(x)]

〉
=

〈
1

2π

∫
R
dα e−iαy+iα[

∑
i xi−nµ]/(

√
nσ)

〉
=

1

2π

∫
R
dα e

−iαy−iα nµ√
nσ

∫ n∏
i=1

dxip(xi)e
iα√
nσ
xi =

=
1

2π

∫
R
dα e

−iα
(
y+ nµ√

nσ

)(∫
dx p(x)e

iα√
nσ
x
)n

(1.35)
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The quantity in the parenthesis is the characteristic function for k = α√
nσ

, hence for n→∞

ϕ

(
k =

α√
nσ

)
= 1 + iµ

α√
nσ
− α2

2nσ2

(
σ2 + µ2

)
+ o(n−3/2) =(1.36)

= e
iαµ√
nσ
−α

2

2n
+o(n−3/2)

(1.37)

Please spend a second to appreciate that in the last step there remains only −α2

2n in the second
order in α of the exponent. One can check that the Taylor expansion of the last function gives
the previous one in (1.36).

In the end,

p(Yn(x) = y) =
1

2π

∫
R
dα e

−iαy−iα nµ√
nσ

(
e
iαµn√
nσ
−α

2

2
+o(n−1/2)

)
(1.38)

=
1

2π

∫
R
dα e−iαy−

α2

2
+o(n−1/2)(1.39)

→ 1√
2π
e−

y2

2 for n→∞(1.40)

Since we have limn→∞ Yn(x) ∼ N (0, 1) from the normal distribution properties we find Sn →
N (nµ, nσ2) and 1

nSn → N (µ, σ
2

n ). In Figure 4 there is an example of flat p(x) and distributions
of rescaled sums of up to n = 4 i.i.d. variables x.

Problems

Exercise 1.1. Given ~x = (x1, x2),

A =

(
3 −1
−1 3

)
and ~b = (1, 0), compute the Gaussian integrals

Z(A) =

∫
d2x exp

[
−1

2
~xTA~x

]
and

Z(A,~b) =

∫
d2x exp

[
−1

2
~xTA~x+~b · ~x

]
Exercise 1.2. With the saddle-point strategy, compute the approximation for large s of

I(s) =

∫ ∞
−∞

esx−coshxdx

Exercise 1.3. With the saddle-point strategy, compute the approximation for large N of

I(N) =

∫ ∞
0

cos(x)e−N [(x−π/3)2+(x−π/3)4]dx

Exercise 1.4. Show that the following formula holds for the Fourier transform (F(f) = f̃(k))
of a derivative of the function f(x) (under the usual mathematical assumptions for having a
Fourier transform and its derivative):

F
(
d

dx
θ(x)

)
= ikf̃(k)

Exercise 1.5. Show that F(1) = 2πδ(k).

Exercise 1.6. To complete the case discussed during the lecture, compute

lim
ε→0

1

x− x0 + iε
= P [

1

x− x0
]− iπδ(x− x0)
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Note that this limit and that discussed in the lecture are a physicists’ crude shorthand notation
for the full equation

lim
ε→0+

∫ ∞
−∞

f(x)

x− x0 ∓ iε
dx = P

∫ ∞
−∞

f(x)

x− x0
dx± iπf(x0)

and f(z)→ 0 for |z| → ∞ and analytic in the Im(z) ≥ 0 portion of the complex plane.

Exercise 1.7. Compute the Gaussian integral

I =

∫ ∞
−∞

dxe−ax
2+bx =

√
π

a
eb

2/(4a)

for a ∈ R, a > 0 and complex b = β + iν (with β, ν ∈ R). For the solution, one may shift to
a new variable z with x = z + iq, so that the exponent in the integral does not contain a term
∼ iz and the new path of integration can be mapped back to the real axis by using Cauchy’s
theorem.





Chapter 2

Stochastic Processes and
Path Integrals

2.1. Diffusion Equation

Suppose we have a particle in a bath composed of another kind of particles, e.g. a fluid as air
or water. Moreover, the inertia of this particle is low enough to make the collision between that
particle and the bath particles produce movement. This process could be described in principle
using Newton’s law of motion (we stay for now in the classical framework) but in practice this
is impossible: we would have to deal with a number of order 1023 of equations of motion; the
solution to this problem is found treating the bath as a random noise applied to the particle
(this is possible if we are interested to time scales much larger than the time between successive
collisions of the particles of the bath). To begin, we introduce the particle density ρ at position
x ∈ Rd and at time t such that the integral over a region A ⊆ Rd of ρ gives the fraction of
particles inside that region:

(2.1)

∫
A
ddxρ(x, t)

We are now considering an ensemble of independent particles, rather than just one, moving in
the fluid. Since the particles leave or enter the region A through the boundary, ∂A, we need to
introduce the current vector j(x, t) whose surface integral

∫
S n̂(x) · j(x, t)dS is the net number

of particles crossing S per unit time. n̂(x) represents the unit normal vector at the position x
on the surface S.

(2.2) ∂t

∫
A
ddxρ(x, t) = −

∫
∂A

j(x, t) · ˆn(x)dS = −
∫
A
ddx∇ · j(x, t)

In the previous equation n̂ is oriented outward the region A: the minus sign is due to the fact

that when j(x, t) · ˆn(x) > 0(< 0) particles are leaving (entering in) A. Since the region A is
arbitrary we get:

(2.3) ∂tρ(x, t) = −∇ · j(x, t)
At this moment we don’t have any external field so the only way to construct the current j(x, t)
is from ρ and its derivatives; assuming ρ is small (along with its derivatives) we choose:

(2.4) j(x, t) = −D(x, t)∇ρ(x, t)

(the minus sign is due to a similar argument as before); we arrive at:

(2.5) ∂tρ(x, t) =∇ · (D(x, t)∇ρ(x, t))

For constant D we derive Fick’s Law (diffusion equation):

(2.6) ∂tρ(x, t) = D∇2ρ(x, t)

13
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Side note: we can always choose ρ normalized to 1 and interpret it as a probability distribution,
thing that we’ll do later on.
Let us consider for simplicity the 1-dimensional case and evaluate the average and the variance
of the position of our particle(s). In general the average of a function f(x) at time t is defined
as

(2.7) 〈f(x)〉t ≡
∫ ∞
−∞

ρ(x, t)f(x)dx

Using eq. (2.6) and the boundary conditions limx→±∞ ρ(x, t) = 0 and
limx→±∞ ∂ρ(x, t)/∂x = 0 one finds that

(2.8)
d

dt
〈f(x)〉t = · · · = D

∫ ∞
−∞

ρ(x, t)
d2f(x)

dx2
dx

from which we derive that d〈x〉t/dt = 0 and d〈x2〉t/dt = 2D. If the initial condition is
ρ(x, 0) = δ(x), i.e. initially the particle is at the origin, 〈x〉t = 0 and 〈x2〉t = 2Dt implying
that Vartx ≡ 〈x2〉t − 〈x〉2t = 2Dt. The last result is due to Einstein (1905)

2.2. Random walk and diffusion equation

We can derive diffusion equation using a more ”microscopic” (not in the strict sense) approach,
by means of Discrete Markov Process. Consider a particle moving on a one dimensional lattice
of spacing l and take a discrete time with unit ε. We call the transition matrix of jumping in a
time step ε from site j to site i Wij whereas the probability of being at site i at time tn = nε
is denoted wi(tn). By the definition of the transition matrix we have the following evolution
equation, known as Master Equation (ME):

(2.9) wi(tn) =
∑
j

Wijwj(tn−1)

In vector form:

w(tn) = Ww(tn−1) = Wnw(0)

Notice that since probability must be conserved, i.e.
∑

iwi(tn) = 1 ∀ tn, and this is guaranteed
if we require that

∑
jWij = 1 ∀ i. Suppose that the only possible jumps are the ones from

nearest neighbour sites, i.e.:

(2.10) Wij = p+δi,j+1 + p−δi,j−1

where p+ is the probability of a right jump, while p− = 1 − p+ of a left one. We now derive
wi(tn); in n time steps n+ steps on the right are done and n− on the left such that n+ +n− = n;
the position i is i = n+ − n−, i.e.:

n+ ≡
n+ i

2
∈ {0, 1, . . . , n− 1, n}(2.11)

n− ≡
n− i

2
∈ {0, 1, . . . , n− 1, n}(2.12)

If n ± −i is odd or |i| > n the probability is zero (why?) otherwise the solution of the ME eq.
(2.9) is the binomial n+ ∼ B(p+, n):

(2.13) wi(n) =

(
n

n+

)
p
n+
+ p

n−
− =

(
n

n+

)
p
n+
+ p

n−n+
− =

(
n

n+

)
p
n+i

2
+ p

n−i
2
−

Notice that the above solution satisfies the initial condition wi(0) = δi,0. To calculate moments
we use the generating function method. For our case we define the following function

(2.14) ŵ(z, n) =
n∑

n+=0

zn+

(
n

n+

)
p
n+
+ p

n−n+
− = (p+z + p−)n
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Why is ŵ(z = 1, n) = 1 ?
The moments of wi(tn) can be easily calculated as derivative of the generating function:

〈n+〉 = z ∂
∂z ŵ|z=1 = np+(2.15)

〈n2
+〉 =

(
z ∂
∂z

)2
ŵ|z=1 = np+(1 + (n− 1)p+)(2.16)

Since xi = il(n+ − n−) = l(2n+ − n) we obtain:

(2.17) 〈x〉tn = nl(p+ − p−)

(2.18) Vartn(x) = 4l2p+p−n

2.2.1. The continuum limit. We consider now the continuum limit in space and time. We
start with the simplest case p+ = p− = 1/2 and n = t/ε. Then 〈x〉tn = 0 and

Vart(x) =
l2

ε
t

A meaningful continuum limit with fixed t, l → 0 and ε → 0 and thus n → ∞ is obtained

keeping l2

ε ≡ 2D constant:

(2.19) Vart(x) = 2Dt

This is the same result obtained in previous section.
We want now to see where the exact solution of the ME, eq. (2.13) converges in the large n
limit for given t = nε and x = li. We use the Stirling’s approximation

(2.20) lnn! = n lnn− n+
1

2
ln(2πn) +O(1/n)

in order to evaluate lnwi(tn). After some elementary steps one gets:

(2.21) wi(tn) =

√
2

πn
e−

i2

2n
+O(i2/n2)

Consider now a ∆x = 2kl such that l << ∆x << Dt with k and define the probability
distribution in the continuum limit as

(2.22) w(x, t)∆x =
i+k∑
j=i−k

wj(tn) ≈ kwi(tn)

where tn = t and x = il and we have taken into account that only half of the terms appearing
in the summation is different from zero. The final result is:

(2.23) w(x, t) =
1√

4πDt
e−

x2

4Dt

For further insights let’s take the continuum limit of the discrete ME itself, eqs. (2.9) and (2.10):

(2.24) wi(tn+1) =
1

2
(wi−1(tn) + wi+1(tn))

Since we are looking for a continuum distribution we substitute il with x tn = nε and lwi(tn) =
w(x, t) the previous eq. can be re-written as:

(2.25) w(x, t+ ε) =
1

2
(w(x− l, t) + w(x+ l, t))

(2.26) w(x, t+ ε)− w(x, t) =
1

2
(w(x− l, t) + w(x+ l, t)− w(x, t))

Expanding according to Taylor w(x, t+ ε) = w(x, t) + ε∂tw(x, t) + . . . and w(x± l, t) = w(x, t)±
l∂xw(x, t) + 1/2l2∂2

xw(x, t) + . . . and taking ε→ 0, l→ 0 and n→∞ keeping l2

ε ≡ 2D fixed, we
obtain:

(2.27) ∂tw(x, t) = D∂2
xw(x, t)

i.e. we arrived at the diffusion equation (2.6). Find out what the dots in the above Taylor
expansions are and show that in the continuum limit the neglected terms converges to zero.
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2.2.2. Solution of the diffusion equation in R. We assume that the diffusion occurs in R
since Rd is just a trivial extension of the formulas we will derive. Thus ∇2 is simply ∂2

x whose
eigenfunctions are:

(2.28) ∂2
xϕk(x) = −k2ϕk(x)

(2.29) ϕk(x) = eikx

for k ∈ R. We will use the measure dk/2π in k-space and the normalization of the eigenfunction
is such that

(2.30)

∫
R
ϕk(x)ϕ∗k′(x)dx =

∫
R
ei(k−k

′)xdx = 2πδ(k − k′)

whereas

(2.31)

∫
R
ϕk(x)ϕ∗k(x

′)
dk

2π
=

∫
R
ei(x−x

′)k dk

2π
= δ(x− x′)

Expanding w(x, t) in terms of eigenfuntions ϕk (it is a complete basis in L2 and it leads to the
well known Fourier’s transform):

(2.32) w(x, t) =

∫
R
ck(t)ϕk(x)

dk

2π

and using eq. (2.27) one obtains:

dck(t)

dt
= −Dk2ck(t)

ck(t) = ck(t0)e−Dk
2(t−t0)

(2.33) w(x, t) =

∫
R
ck(t0)e−Dk

2(t−t0)eikx
dk

2π

The initial condition leads to:

w(x, t0) =

∫
R
ck(t0)eikx

dk

2π
and inverting the Fourier’s transform

ck(t0) =

∫
R
w(x′, t0)e−ikx

′
dx′

If the particle is at x0 at time t = t0 then w(x, t0) = δ(x− x0) we obtain ck(t0) = e−ikx0 and:

(2.34) w(x, t) ≡W (x, t|x0, t0) =
1√

4πD(t− t0)
e
− (x−x0)2

4D(t−t0) t > t0,

which is the same as eq. (2.23) as obtained in the continuum limit of the discrete ME. In the
previous equation we have introduced the the so called propagator for the Brownian motion,
W (x, t|x0, t0), which is the solution of the diffusion eq. (2.27) satisfying the initial condition
W (x, t0|x0, t0) = δ(x− x0). It satisfies:

W (x, t|x0, t0) = W (x− x0, t− t0|0, 0)

Show that the general solution of eq. (2.27) with arbitrary initial condition w(x, t0) is given by

(2.35) w(x, t) =

∫
dx0W (x, t|x0, t0)w(x0, t0)

Considering now t0 < t′ < t:

w(x′, t′) =

∫
dx0W (x′, t′|x0, t0)w(x0, t0)

w(x, t) =

∫
dx′W (x, t|x′, t′)w(x′, t′)
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we obtian by combining these two equations:

w(x, t) =

∫
dx′W (x, t|x′, t′)

∫
dx0W (x′, t′|x0, t0)w(x0, t0)

by comparison with the previous result (2.35), given the generic w(x, t0), we get:

(2.36) W (x, t|x0, t0) =

∫
dx′W (x, t|x′, t′)W (x′, t′|x0, t0)

i.e. the propagator satisfies the Einstein-Smoluchowski-Kolmogorov-Chapman relation.

2.2.3. Scale invariance of the diffusion. If we set x0 = 0 = t0 we notice that eq. (2.34)
obeys the following homogeneity equation

(2.37) W (x, t|0, 0) = λW (λx, λ2t|0, 0)

This could have been deduced directly from the diffusion eq. (2.27). Indeed it is immediate
to prove that if W (x, t|0, 0) satisfies the diffusion equation then also W (λx, λ2t|0, 0) satisfies it.
The extra factor λ in the r.h.s. of eq. (2.37) is a consequence of the fact that the l.h.s. is
normalized to 1.

2.3. Wiener Path Integral

2.3.1. Correlation functions. The joint probability distribution to find the Brownian par-
ticle at positions in the intervals (x1, dx1) at time t1, (x2, x2 +dx2) at time t2, ..., (xn, xn+dxn)
at time tn with t0 <, . . . , < tn is given by

dPt1,...,tn(x1, . . . , xn|x0, t0) = W (xn, tn|xn−1, tn−1)W (xn−1, tn−1|xn−2, tn−2)

· · ·W (x1, t1|x0, t0)dx1dx2 . . . dxn =

= exp{−
n∑
i=1

(xi − xi−1)2

4∆tiD
}

n∏
i=1

dxi√
4πD∆ti

(2.38)

where initially, at time t0, the particle is at x0. The average of a generic function, f(x(t1), . . . , x(tn)),
of the positions of the particle at times t1, ... tn is then defined as

(2.39) 〈f(x(t1), . . . , x(tn))〉w =

∫
Rn
f(x1, . . . , xn)dPt1,...,tn(x1, . . . , xn|x0, t0)

Let T be a finite subset of R or an interval, e.g.: T = {t1, ..., tn} or T = [0,∞) and RT as the set
of all functions having as domain T : in our example if T = [0,∞), RT is the set of all functions
x : [0,∞) → R or if T = {t1, ..., tn}, RT is the set of all sequences {x1, ..., xn} = {x(t1)...x(tn)}
for some xi’s. In the following we will be interested in T = [0, t) where 0 < t ≤ ∞.
Using T and RT , we want to construct a Brownian motion measure Pw for appropriate sets
A ⊂ RT , i.e. associate a probability to this set.
We begin with a special case: consider n ∈ N and a finite set of time instants {t1, ..., tn} (where
ti < ti+1 and ti ∈ R). Define ∆ti = ti−ti−1 and Hi = [ai, bi] ∀i = 1...n with ai < bi ∈ R. We now
define the cylindrical sets of RT as subsets of the form A = {x(t) : x(t1) ∈ H1, ..., x(tn) ∈ Hn}.
We can now use the probability distribution (2.38) to define the measure of A-like sets as:

(2.40) Pw(A) ≡ Pt1,...,tn(A) =

∫
H1

dx1...

∫
Hn

dxn

n∏
i=1

1

(4πD∆ti)1/2
exp

{
−(xi − xi−1)2

4D∆ti

}
,

which is nothing else that the probability of a Brownian particle, starting at x0 at time t0, is
found, at later times ti, in the interval Hi with i = 1, . . . , n. Notice that this relation is valid
for any n ∈ N and by the use of Kolgomorov extension theorem we are free to extend this result
to any subset of the σ- algebra of RT , F , generated by the cylindrical subsets. This way we
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constructed a probability space (RT ,F , Pw) where F is the set of measurable subsets of RT to
which A belongs. 1 The measure so obtained will be written as

(2.41) Pw(A) =

∫
A
dxw(τ),

Practically for any computation we rely on discretization; for example, if we have to find the
expected value of a functional of the trajectory x(τ) such as F (x(τ)) =

∫∞
0 a(τ)x(τ)dτ we should

use
∑n

i=0 ∆tia(ti)x(ti), use the finite dimensional probability distribution (2.38) and at the end
of the calculation take the limit n→∞ (in the following n we will denoted by N with the tacit
assumption that at the end N → ∞). This is what we will be illustrating in the next section
for some typical examples where the calculations can be analytically performed.

2.4. Some Calculations

Before continuing we define C = [0, 0; t] as the ensemble of trajectories of RT starting from 0 at
time 0 and lasting a time span t; C = [0, 0;x, t] as the ensemble of trajectories of RT obtained
by fixing the endpoints: the particle starts at time 0 from position 0 ending up, after a time t,
at position x.

2.4.1. Identity. Using normalization of Wiener measure:

(2.42) 〈1〉w =

∫
C=[0,0;t]

1dxw(τ) = 1

2.4.2. Probability of returning at the origin after a time t. We already know the answer
since this is nothing else W (x = 0, t|0, 0) = (4πDt)−1/2 as given by eq. (2.34). We want to
re-derive it using the path integral.

(2.43) W (x, t|0, 0) = 〈δ(x− x(t))〉w = lim
N→∞

WN (x, t|0, 0)

where

(2.44) WN (x, t|0, 0) =

∫ N+1∏
i=1

dxi√
4πD∆ti

e
−
∑N
i=0

(xi+1−xi)
2

4D∆ti δ(x− xN+1)

The delta sets xN+1 ≡ x(t) to x. For simplicity we illustrate the procedure for x = 0 and we
will use a uniform time mesh, i.e. ∆ti = t/(N + 1) = ε, even though the calculation can be
done without any difficulty for a generic mesh (a more practical method will be developed in a
successive chapter). Since the argument of the exponential in the integrand is quadratic in the
x’s we can introduce a matrix A such that

(2.45) WN (x = 0, t|0, 0) =
1

(4πDε)
N+1

2

∫
dNxe−

1
4Dε

xTANx = (4πDεdetAN )−1/2

with
AN (i, i) = 2

AN (i, j) = −δi,j+1 − δi,j−1

Notice that in the above equations we have used the fact that x0 = xN+1 = 0 and we are
integrating over xi with i = 1, . . . , N . We need to compute the determinant of AN : using
Laplace expansion in the last column we obtain:

detAN = 2 detAN−1 − detAN−2

with initial conditions A1 = 2 and A2 = 3 w obtain:

detAN = N + 1

1For a very nice and rigorous account of the above procedure see chapter 7 of Billingsley, P. (2013) Probability and
measure, John Wiley & Sons.
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leading to WN (x = 0, t|0, 0) = [4πDε(N + 1)]−1/2. Since (N + 1)ε = t we have that WN (x =
0, t|0, 0) is independent of N and so the limit is trivial and we get

(2.46) 〈δ(x(t))〉w =
1

(4πDt)1/2
,

which is the expected result.

2.4.3. Two point correlation. To compute the two point correlation function it’s straight-
forward to use eqs. (2.38)and (2.39):

(2.47) 〈x(t1)x(t2)〉w =

∫
dx1√

4πD∆t1

dx2√
4πD∆t2

e
− x2

1
4D∆t1 e

− (x2−x1)2

4D∆t2 x1x2

Using x = x1 and y = x2 − x1 one immediately gets:

< x(t1)x(t2) >w= 2Dt1

If the initial condition is x(t0) = x0 the above equation becomes (see exercises)

(2.48) 〈x(t1)x(t2)〉w = x2
0 + 2Dmin{t1 − t0, t2 − t0}

2.4.4. Averaging a functional of the full trajectory. We want to compute the expected

value for the functional F (
∫ t

0 a(τ)x(τ)dτ). First introduce A(τ) =
∫ t
τ a(s)ds, i.e. Ȧ(τ) = −a(τ);

then integration by parts and using that x(0) = 0:

(2.49)

∫ t

0
a(τ)x(τ)dτ =

∫ t

0
A(x(τ))ẋ(τ)dτ =

∫ x(t)

0
A(x)dx

Discretizing:
N∑
i=1

A(xi)(xi − xi−1) =

N∑
i=1

Ai(xi − xi−1)

Then the average of the functional F is the limit N →∞ of (we set D = 1/4 in the following ...
the D can be recovered in the final formulas by replacing t with 4Dt):

(2.50) IN =

∫ N∏
i=1

dxi

(π∆ti)1/2
F (

N∑
i=1

Ai(xi − xi−1))e
−
∑N
i=1

(xi−xi−1)2

∆ti

and by the change of variables xi − xi−1 = yi (show that the Jacobian of the transformation is
1) we get

(2.51) IN =

∫ N∏
i=1

dyi

(π∆ti)1/2
F (

N∑
i=1

Aiyi)e
−
∑N
i=1

y2
i

∆ti

We introduce the identity
∫
δ(z −

∑N
i=1Aiyi)dz = 1 and interchange the integrals so that the

last to be done is the one over z and then use the Fourier representation of the delta2:∫
dα

2π

∫
dzeiαzF (z)

∫ N∏
i=1

dyi

(π∆ti)1/2
e
−
∑N
i=1(

y2
i

∆ti
+iαAiyi)

=

∫
dzF (z)

∫
dα

2π
exp

{
−α

2

4

N∑
i=1

A2
i∆ti + iαz

}
=

=

√
1

π
∑N

i=1A
2
i∆ti

∫
dzF (z) exp

{
−z2/

N∑
i=1

A2
i∆ti

}

22πδ(x) =
∫
R e

iαxdα
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As N →∞:

(2.52) lim
N→∞

N∑
i=1

A2
i∆ti =

∫ t

0
A2(τ)dτ =

∫ t

0
[

∫ t

τ
a(s)ds]2dτ ≡ R

(2.53) 〈F (

∫ t

0
a(τ)x(τ)dτ)〉w =

√
1

πR

∫
dzF (z)e−z

2/R

For D 6= 1/4 send R→ 4DR.

As an example use F (z) = ehz. We obtain the moment generating function for
∫ t

0 a(τ)x(τ)dτ :

(2.54) 〈eh
∫ t
0 a(τ)x(τ)dτ 〉w = eh

2R/4

(2.55) 〈
(∫ t

0
a(τ)x(τ)dτ

)2k+1

〉W = 0

(2.56) 〈
(∫ t

0
a(τ)x(τ)dτ

)2k

〉 =

(
R

2

)2 (2k)!

2kk!

2.4.5. The Gelfand-Yaglom method. In this section we want to compute the expected
value for the functional:

(2.57) e−
∫ t
0 p(τ)x2(τ)dτ

Start by discretizing:

(2.58) I
(N)
4 =

∫ ( N∏
i=1

dxi√
πε

)
e−
∑N
i=1[

(xi−xi−1)2

ε
+pix

2
i ε]

We can re-written the argument of exponential as a bilinear form using the matrix a: this matrix,
calling ai = piε+ 2

ε for i = 1 . . . N − 1 and aN = pN ε+ 1
ε , is a three-diagonal matrix having as

diagonal elements ai’s and −1
ε as the other two off-diagonals elements.

(2.59) a =



a1 −1
ε 0 . . . . . . 0

−1
ε a2

−1
ε . . . . . . 0

0 −1
ε a3 −1

ε · · · 0
... . . . −1

ε . . . . . .
...

... −1
ε

0 . . . . . . 0 −1
ε aN


So, in terms of det a, we have that:

I
(N)
4 = (εN det a)−1/2 = (det(εa))−1/2

We denote the determinant of the matrix εa by DN
1 and define DN

k as the determinant of the
matrix obtained by removing the first k − 1 rows and columns from εa.

(2.60) DN
k =



εak −1 0 · · · · · · 0
−1 εak+1 −1 0 · · · 0

0 −1
. . .

. . .
. . .

...
... 0

. . .
. . . −1 0

...
...

. . . −1 εaN−1 −1
0 0 · · · 0 −1 εaN


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By Laplace expansion on the first row of DN
k :

DN
k = εakD

N
k+1 −DN

k+2 = (ε2pk + 2)DN
k+1 −DN

k+2(2.61)

DN
k − 2DN

k+1 +DN
k+2

ε2
= pkD

N
k+1(2.62)

Calling τ = (k − 1)/N , DN
k−1 = D(τ) in the ε→ 0 and N →∞ at fixed τ we arrive at:

(2.63) ∂2
τD(τ) = p(τ)D(τ)

From this we find that DN
1 → D(0).

Since D
(N)
N = pN ε

2 + 1 we find that D(t) = 1.

Since D
(N)
N−1 = pNpN−1ε

4 + 2pN ε
2 + pN−1ε

2 + 1 we have that:

Ḋ(t) = lim
ε→0

D
(N)
N −D(N)

N−1

ε
= 0

Going back to our integral:

I4 =
1√
D(0)

For p(τ) = k2:

D(τ) = Aekτ +Be−kτ(2.64)

Ḋ(τ) = k
(
Aekτ −Be−kτ

)
(2.65)

Using the previous stated final conditions, D(t) = 1 and Ḋ(t) = 0:

D(τ) =
1

2
e(t−τ)k +

1

2
e−(t−τ)k = cosh[(t− τ)k](2.66)

D(0) = cosh(kt)(2.67)

From which:

(2.68) lim
N→∞

I
(N)
4 = I4 =

1√
cosh(kt)

A generalization of the previous computation is:

(2.69) 〈e−
∫ t
0 p(τ)x2(τ)dτδ(x(t)− x)〉w

i.e. the previous expected value but with fixed endpoint. Start by rewriting the delta function
in its Fourier representaion we get:

(2.70) 〈e−
∫ t
0 p(τ)x2(τ)dτδ(x− x(t))〉w =

∫ ∞
−∞

dα

2π
eiαx〈e−

∫ t
0 p(τ)x2(τ)dτe−iαx(t)〉w

As usual we discretize the expected value (a is the matrix above) and obtain that the above
expectation is the N →∞ limit of:

Î
(N)
4 (x) =

∫ ∞
−∞

dα

2π
eiαx

∫ ( N∏
i=1

dxi√
πε

)
e−
∑N
i=1[

(xi−xi−1)2

ε
+pix

2
i ε−iαxN ] =(2.71)

=

∫ ∞
−∞

dα

2π
eiαx

∫
dNx

(πε)N/2
e−x

T ax−iαxN = (πa−1
N,ND

(N)
1 )−1/2e

− x2

a−1
N,N(2.72)

where a−1 is the inverse matrix of a. The value of a−1
N,N can be determined from the form of the

matrix a:

(2.73) a−1
N,N =

|a′|
|a|

=
εN |a′|
D

(N)
1

=
D̃

(N−1)
1

D
(N)
1
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we introduced a′ as the matrix obtained from removing the last row and column from a. Intro-

duce now D̃
(N−1)
k as the determinant of the matrix obtained from D

(N−1)
1 ≡ εN |a′| by eliminating

the first k − 1 rows and columns:

(2.74) D̃
(N−1)
k = ε



εak −1 0 · · · · · · 0
−1 εak+1 −1 0 · · · 0

0 −1
. . .

. . .
. . .

...
... 0

. . .
. . . −1 0

...
...

. . . −1 εaN−2 −1
0 0 · · · 0 −1 εaN−1


As N →∞ we get for D̃ the same differential equation as the one of D:

(2.75) ∂2
τ D̃(τ) = p(τ)D(τ)

but with different initial conditions (remember that ε = t/N with fixed t:

D̃
(N−1)
N−1 = ε2aN−1 = pN−1ε

3 + 2ε→ 0(2.76)

D̃
(N−1)
N−2 = ε

(
ε2aN−2aN−1 − 1

)
=(2.77)

= ε
(
pN−1pN−2ε

4 + 2 (pN−1 + pN−2) ε2 + 3
)

(2.78)

(2.79)
D̃

(N−1)
N−1 − D̃

(N−1)
N−2

ε
=

2ε− 3ε+ o(ε)2

ε
→ −1

leading to the final conditions D̃(t) = 0 and ˙̃D(t) = −1. So given D(τ) and D̃(τ):

(2.80) Î
(N)
4 (x) =

1√
πD̃

(N−1)
1

e
−x2 D

(N)
1

D̃
(N−1)
1 → Î4(x) =

1√
πD̃(0)

e
−x2D(0)

D̃(0)

2.4.6. A special solvable case. For the special case p(τ) = k2 we have to solve the following
differential equations:

(2.81) ∂2
τD(τ) = k2D(τ), 0 ≤ τ ≤ t, D(t) = 1, ∂τD(τ)|τ=t = 0

(2.82) ∂2
τ D̃(τ) = k2D̃(τ), 0 ≤ τ ≤ t, D̃(t) = 0, ∂τ D̃(τ)|τ=t = −1

The two independent solutions for both differential equations are exp{±kτ} (see also eqs. (2.64)
- (2.66)) . Thus

(2.83) D(τ) = Aekτ +Be−kτ , D̃(τ) = Ãekτ + B̃e−kτ

where the constants A,B, Ã, B̃ have to be chosen in oder to satisfy the final conditions. This
immediately gives

(2.84) D(τ) = cosh[k(t− τ)], D̃(τ) = sinh[k(t− τ)]

and, using (2.80),

(2.85) Î4(x) =

√
k

π sinh(kt)
e−x

2k coth(kt)

Integrating the above equation over x we get

(2.86)

∫ ∞
−∞

dxÎ4(x) =

∫ ∞
−∞

dx〈e−
∫ t
0 p(τ)x2(τ)δ(x− x(t))〉w = I4

where I4 is given by eq. (2.68).
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2.5. Heuristics

2.5.1. Formal expression of the Wiener measure. Eqs. (2.38) and (2.41) can be written is
the suggestive form

(2.87) dxw(τ) = N
t∏

τ=0+

dx(τ)e−
1

4D

∫ t
0 ẋ(τ)2dτ ,

where the normalization constant N is given by:

(2.88) N =

[∫ t∏
τ=0+

dx(τ)e−
1

4D

∫ t
0 ẋ(τ)2dτ

]−1

and it is infinite! Of course this formula is purely formal and we have seen several instances how
one should interpret it: discretize it together the functional of which we wish to calculate the
Wiener expectation value and, only at the end of the calculation, take the continuum limit of
the chosen discretization. 3 The fact that the above expression is formal derives also by the fact
that the Brownian trajectories, {x(τ) : 0 ≤ τ ≤ t}, are never differentiable, as explained in the
subsection 2.5.3. However the formal expression (2.87) will be very useful for the calculation of
averages of functionals that are exponentials of quadratic expressions of the trajectory, {x(τ) :
0 ≤ τ ≤ t}, or for powerful approximations based on a generalization of the saddle point method.
We will see applications to the former case later on.

2.5.2. Continuity of the Brownian trajectories. The rigorous proof that Brownian trajec-
tories, {x(τ) : 0 ≤ τ ≤ t}, are continuous it is not easy. One has to go through: i) the definition
of a suitable σ-algebra in RT , i.e. the ensembles of trajectories that are measurable; ii) the
definition of a suitable probability measure, i.e. the Wiener measure; iii) then show that the
ensemble of trajectories that are continuous belongs to the σ-algebra; iv) and finally show that
the ensemble of trajectories that are not continuous has measure zero. For a very nice and
rigorous account of the above procedure see chapter 7 of Billingsley, P. (2013) Probability and
measure, John Wiley & Sons. 4 An heuristic account of the continuity of Brownian trajectories
can be derived estimating how probable would be to observe a jump ∆x < ε at some generic
time τ when the discretized form of the Wiener measure with a mesh size ∆t→ 0+. This entails
to evaluate the following integral:

(2.89) P (|∆x| < ε) = lim
∆t→0+

∫
|∆x|<ε

d∆x√
4πD∆t

e−
(∆x)2

4D∆t ,

which can be easily shown to be 1 independently of ε > 0 (see exercise 2.15), i.e. the probability
to observe a discontinuity less than an arbitrary small amount is equal to 1.

2.5.3. Differentiability of the Brownian trajectories. Similar comments as above can be
done concerning the differentiability of Brownian trajectories. Using an heuristic approach and
from the following result (see exercise 2.16):

(2.90) P (|∆x/∆t| > k) = lim
∆t→0+

∫
|∆x|>k∆t

d∆x√
4πD∆t

e−
(∆x)2

4D∆t = 1 ∀k > 0 ,

one argue that the Brownian trajectories are never differentiable.

Problems

Exercise 2.1. Use
∫∞

0 xn−1e−xdx ≡ Γ(n), n > 0 and that Γ(n + 1) = n! together to the
saddle point approximation to derive the result used in chapter 2 of the Lecture Notes (LN in
the following) lnn! = n lnn− n+ (1/2) ln(2πn) +O(1/n), eq. (2.20).

3Notice that besides the naive discretization we have used, there are other methods: for example there is one described
in your textbook in sec. 1.2.7.

4The proof presented in your textbook in sec. 1.1.2, besides not being rigorous, is not correct.
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Exercise 2.2. Implement a numerical simulation to explicitly show how the solution of the ME
for the 1-dimensional random walk with p± = 1/2 tends to the Gaussian.

Exercise 2.3. Write the analogous of eq. (2.25) in the LN for the case with p+ = 1− p− 6= p−
and determine: i) how they depend on l and ε in order to have a meaningful continuum limit;
ii) the resulting continuum equation and how to map it in the diffusion eq. (2.27).

Exercise 2.4. Write the analogous of eq. (2.25) for the case where the probability to make
a step of length sl ∈ {±nl : n positive integer} is p(s) = (1/Z) exp{−|s|α} where α is some
fixed constant. Determine: i) the normalization constant Z; ii) what is the condition to have a
meaningful continuum limit, discussing why the neglected terms do not contribute to such limit;
iii) which equation you get in the continuum limit.

Exercise 2.5 Use eq. (2.34) to determine 〈x〉t, 〈x2〉t and Vart(x).

Exercise 2.6 Consider the diffusion eq. (2.27) in the domain [0,∞) instead of (−∞,∞) like
in the sec. 2.2 of the LN. To do that one needs the boundary condition (bc) that w(x, t) has
to satisfy at 0. Determine the bc for the following two cases and for each of them solve the
diffusion equation with the initial condition w(x, t = 0) = δ(x− x0) with x0 > 0.
1) Case of reflecting bc : when the particle arrives at the origin it bounces back and remains in
the domain. How is the flux of particles at 0?
2) Case of absorbing bc : when the particle arrives at the origin it is removed from the system
(captured by a trap acting like a filter!) What is w(x = 0, t) at all time t? Notice that in this case
we do not expect that the probability is conserved, i.e. Survival probability P(t) ≡

∫∞
0 w(x, t)dx

decreases with t. Calculate it and determine its behavior in the two regimes t << x2
0/D and

t >> x2
0/D. Why x2

0/D is a relevant time scale? 5

(Hint: use the fact that e±ikx are eigenfunctions of ∂2
x corresponding to the same eigenvalue

and choose an appropriate linear combination of them so to satisfy the bc for the two cases.
Be aware to ensure that the eigenfunctions so determined are orthonormal. Use the fact that∫
R e

iqxdx = δ(q))

Exercise 2.5. For a Brownian motion X(s), 0 ≤ s ≤ t, with diffusion coefficient D and initial
condition X(0) = 0 show that

(2.91) Prob

(
sup

0≤s≤t
X(s) ≥ a

)
=

2√
4πDt

∫ ∞
a

e−
z2

4Dtdz = erfc

(
a√
4Dt

)
(Hint: some of the results of previous exercise are useful to derive the above result.)

Exercise 2.6. Solve the diffusion eq. ∂w(x, t)/∂t = D∇2w(x, t) in Rd. 1) Determine the
propagator w(x, t|x0, t0); 2) the averages 〈x〉 and 〈x2〉; 3) the general solution for a generic
initial condition w(x0, t0).

Exercise 2.7. Deduce the analogous of eq. (2.37) in the Lecture Notes for the d-dimensional
case of the previous exercise.

Exercise 2.8. Prove by a direct calculation that the propagator in eq. (2.34) satisfies eq. (2.36)
(ESCK relation).

Exercise 2.9. If in eqs. (2.49-53) we use a(τ) = δ(τ − t′) with 0 < t′ < t and F (z) = δ(z − x)
what do we get? Is this a known result?

5This case has some relevance for the determination of the extinction time distribution of species with initial population

equal to x0. Indeed one might consider that the population of a species undergoes a 1-dimensional random walk and an
extinction occurs when the population reaches zero for the first time.
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Exercise 2.10. Using the Wiener measure explain what the following average means

(2.92) 〈δ(x1 − x(t1))δ(x2 − x(t2)) · · · δ(xn − x(tn))〉w
where 0 < t1 < t2 < · · · < tn < t.

Exercise 2.11. Determine the following average J(x) = 〈e−ik2
∫ t
0 x

2(τ)dτδ(x− x(t))〉w using the
Wiener measure as done in sec. 2.4.5 with the initial condition x(0) = 0. Determine also∫
R J(x)dx.

Exercise 2.12. Determine K(a, k) = 〈e−
∫ t
0 [a(ẋ(τ))2+ikẋ(τ)]dτ 〉w, where a and k are arbitrary

(real) constants. How this result can be used to determine 〈δ(x− x(t))〉w?

Exercise 2.13. Show that P (|∆x| < ε) = lim∆t→0+

∫
|∆x|<ε

d∆x√
4πD∆t

e−
(∆x)2

4D∆t = 1 for ∀ε > 0. We

have used this result to argue that Brownian trajectories are continuous with probability 1.

Exercise 2.14. Show that P (|∆x/∆t| > k) = lim∆t→0+

∫
|∆x|>k∆t

d∆x√
4πD∆t

e−
(∆x)2

4D∆t = 1 for ∀k >
0. We have used this result to argue that Brownian trajectories are never differentiable with
probability 1.





Chapter 3

Fokker-Planck Equation
and Stochastic Processes

In this chapter we will define more general stochastic processes starting from discrete time and
discrete state space and then considering both the continuum time and state space version. This
will naturally lead to the so called Fokker-Planck equation describing the time evolution of the
probability distribution function of a generic state variable. An corresponding description in
terms of single trajectories of the state variable will lead to the Langevin equation, the analogous
of the Newton equation with a stochastic noise. We will show that the Langevin equation can be
formulated in terms of path integrals using what we have learn in chapter 2. The introduction of
the stochastic noise necessitates of new rules for the differential calculus, which we will illustrate
using practical examples.

3.1. Master Equation

We want to describe a process where a particle evolves in time via a discrete Markov Process:
this particle would jump from state/position j to a state/position i in a time step ε > 0 according
to a transition matrix Wij . The probability wj(tn+1) at time tn+1 would then be given by:

(3.1) wi(tn+1) =
∑
j

Wij(tn)wj(tn),

where the following condition has to be satisfied by the transition matrix:

(3.2) 1 =
∑
i

Wij(tn),

which guarantees that eq. (3.1) preserves normalization (see exercise 3.1). The time instants
are tn = nε, n ∈ N, while the position is taken to lie in a one dimensional lattice of spacing `.
We want define a continuous version of this equation. Let us introduce the probability density
w(xi, tn) such that the probability to find the particle in an interval of size ` around position
xi ≡ i`, is w(xi, tn)` = wi(tn). Instead of using the previous equation we prefer the more general
integral formulation

(3.3) w(x, tn+1) =

∫
dz W (z|x− z, tn)w(x− z, tn)

where W (z|x−z, t) describes the probability of moving by an amount z starting from x−z with
the analogous of (3.2) being

(3.4) 1 =

∫
dz W (z|x, tn) .

27
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Using (3.4) we can re-write eq.(3.3) as:

(3.5) w(x, tn+1)− w(x, tn) =

∫
dz[W (z|x− z, tn)w(x− z, tn)−W (z|x, tn)w(x, tn)] .

The goal is now to find a suitable W depending on the temporal step, ε, so that in the small
ε limit we get a meaningful continuum time limit. The l.h.s. of eq. (3.5) can be expanded
as w(x, tn+1) − w(x, tn) = ∂tw(x, tn)ε + O(ε2), whereas in the r.h.s. we can expand W (z|x −
z, tn)w(x− z, tn) in the argument x− z for z ≈ 0. Indeed we expect that in the very short time
interval tn+1 − tn = ε the probability to make large jumps is negligible. We thus obtain

∂tw(x, tn) = − lim
ε→0

∫
dz
{
z∂x
[
W (z|x, tn)w(x, tn)

]
+(3.6)

− z2

2
∂2
x

[
W (z|x, tn)w(x, tn)

]
+ . . .

}
/ε(3.7)

Exchanging the derivatives with the integral and writing tn = t we get:

(3.8) ∂tw(x, t) =
∞∑
k=1

(−1)k

k!
∂kx

[
w(x, t) lim

ε→0

∫
dzzkW (z|x, t)/ε

]
If the jump is the one of a Brownian motion we expect that

∫
dzz2W (z|x, t) ≈ ε since it

represents the mean square average of a jump during the time intervalε. On the other hand if
there is a bias due to some external force (analogous to the p± in sec. 2.2) we expect that that
also

∫
dzzW (z|x, t) ≈ ε. This is consistent with the Newton equation of a particle moving in a

viscous fluid in presence of an external force Fext(x), mẍ(t) = −γx(t) +Fext(x(t)), where 1/γ is
the mobility (γ is the friction coefficient ... see more later on). If m/γ, which has the dimension
of a time scale, is much smaller of the time scale of observation, the dynamics becomes simply
ẋ(t) = Fext(x(t))/γ and for a small time increment x(t+ε)−x(t) = εFext(x(t))/γ+O(ε2). These
observations on the mean and variance jump size being both of order of the time interval ε, lead
to the following ansatz for the transition matrix:

(3.9) W (z|x, t) = F

z − f(x, t)ε√
εD̂(x, t)

 1√
εD̂(x, t)

for some functions f , D̂ and F satisfying the following conditions:∫
dyF (y) = 1(3.10) ∫
dyF (y)y = 0 .(3.11)

The first condition on F imply the normalization, eq. (3.4) (see exercise), whereas the second
condition guarantees that

(3.12)

∫
dz zW (z|x, t) = f(x, t)ε

Furthermore (see exercises)

(3.13)

∫
dz z2W (z|x, t) = εD̂(x, t)

∫
dyF (y)y2 +O(ε2)

and

(3.14)

∫
dz zkW (z|x, t) = O(εk/2), k ≥ 3 ,

that is all other integer moments of F are negligible in the small ε limit. Thus taking the the
ε→ 0 limit and setting D = 1

2D̂
∫
dyF (y)y2 we finally get:

(3.15) ∂tw(x, t) = ∂x [−f(x, t)w(x, t) + ∂x [D(x, t)w(x, t)]]
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This is the Fokker-Planck equation and it is a particular case of continuity equation

(3.16) ∂tw(x, t) = −∂xJ(x, t)

where J(x, t) = f(x, t)w(x, t)− ∂x [D(x, t)w(x, t)] is the probability current. The form eq.(3.16)
guarantees probability conservation during the time evolution. Notice that in the particular case
f = 0 and D(x, t) = D independent of x and t we recover the diffusion equation of chapter 2,
eq.(2.27).

3.2. Langevin Equation

We will now introduce a more intuitive and physical approach based on the Brownian motion
described in chapter 2 and on Newton equation. Let’s go back to the Wiener path integral and
in particular to the probability density of a jump of size xi+1 − xi = z at a generic time instant
ti during the time interval ∆ti:

(3.17) dP(xi+1 − xi = zi) =
dzi√

4πD∆ti
e
− z2i

4D∆ti ,

which is equivalente to the following (discrete) time evolution:

(3.18) xi+1 = xi + zi

where xi ≡ x(ti) and zi is a random noise drawn from a normal distribution, i.e.

(3.19) zi ∼ N (0,
√

2D∆ti) .

We can re-write the above equations in terms of a rescaled random variable ∆Bi such that
zi =

√
2D∆Bi (i.e.: ∆Bi ∼ N (0,∆ti)) as:

(3.20) ∆x(t) = x(t+ ∆t)− x(t) =
√

2D∆B(t) with ∆B(t) ∼ N (0,∆t) ,

or in the infinitesimal form:

(3.21) dX(t) =
√

2DdB(t) ,

where B(t) is a Brownian motion. We recall eq.(2.38) for the joint probability distribution of
a Brownian trajectory to visit positions in the intervals (B1, dB1) at time t1, (B2, B2 + dB2) at
time t2, ..., (BN , BN + dBN ) at time tN with t0 <, . . . , < tN

dPt1,...,tN (B1, . . . , BN |B0, t0) = e
−
∑N
i=1

(Bi−Bi−1)2

2∆ti

N∏
i=1

dBi√
2π∆ti

(3.22)

In the following we will assume that the initial condition B0 = 0. Very often in the physics
literature one finds that eq.(3.21) is written in the formal way:

(3.23)
dX

dt
(t) =

√
2Dξ(t)

dB

dt
(t) ≡ ξ(t) ,

One can show that the statistical properties of B(t) imply that ξ(t) is a gaussian variable (and
as such its statistical properties are determined only by its mean and covariance) with (see
exercise)

(3.24) 〈ξ(t)〉 = 0 and 〈ξ(t1)ξ(t2)〉 = δ(t2 − t1) .

However as seen in sec.2.5.3 Brownian trajectories are never differentiable and thus the above
equation has no rigorous meaning and Van Kampen refers to it as a quasi equation. Eq.(3.21)
is the rigorous way to write it and ∆B(t) as appearing in eq.(3.20) is given by

(3.25) ∆B(t) =

∫ t+∆t

t
dB(t) ,

where the r.h.s. represents the first (trivial) case of stochastic integral (see next sections for a
simplified introduction).
If the motion occurs in 3-d space the generalization of the above equations is

(3.26) ∆xµ(t) = xµ(t+ ∆t)− xµ(t) =
√

2D∆Bµ(t) µ = 1, 2, . . . , d ,
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In the infinitesimal form:

(3.27) dXµ(t) =
√

2DdBµ(t) ,

and ∆Bµ(t) =
∫ t+∆t
t dBµ(t) in eq.(3.26). where ∆Bµ(t) are random variable with normal

distribution N (0,∆t)1. In the infinitesimal form:

(3.29) dXµ(t) =
√

2DdBµ(t) ,

and ∆Bµ(t) =
∫ t+∆t
t dBµ(t) in eq.(3.26). In order to make progress we now consider a particle

of mass m whose size is much larger than the particles composing the fluid where it is moving,
referred as Brownian particle in the following. The fluid particles could be of the order of 1nm
in diameter whereas the Brownian particles could be as small as a dust particle, i.e. of order
10−1000 nm in diameter (see exercise). In general the Brownian particle, besides to the friction,
is also subjected to force composed by a deterministic external force, Fext, and the one, Fnoise,
due to the collisions with fluid particles of the thermal bath. Thus the Newton equation becomes
(we consider again the 1-D case for simplicity but the generalization to general case is obvious):

(3.30) mẍ(t) = −γẋ(t) + Fext(x(t), t) + Fnoise(t),

where γ = 6πηR is the friction coefficient, η is the fluid viscosity and R is the radius of the
spherical particle we are considering 2. If we are interested at time scales t� m/γ (m/γ is the
time scale after which a particle of mass m relaxes to an almost uniform velocity, i.e. acceleration
becomes almost zero), the previous equation simplifies and can be re-written as:

(3.31) ẋ(t) =
1

γ
Fext(x(t), t) +

1

γ
Fnoise(t)

or in its differential form:

(3.32) dx(t) =
1

γ
Fext(x(t), t)dt+

1

γ
Fnoise(t)dt ,

or its corresponding discretized form:

(3.33) xi+1 = xi +
1

γ
Fext,i∆ti +

1

γ
Fnoise,i∆ti ,

where Fext,i ≡ Fext(xi, ti). When Fext = 0 we expect to recover the equations eqs.(3.20) and
(3.21). We thus ought to identify:

(3.34)
1

γ
Fnoise(t)dt =

√
2DdB(t) or equivalently

1

γ
Fnoise(t)∆t =

√
2D∆B(t)

Setting f = Fext/γ we get the Langevin equation, known as over-damped Langevin equation:

(3.35) dx(t) = f(x(t), t)dt+
√

2DdB(t) f(x(t), t) ≡ Fext(x(t), t)/γ ,

or the corresponding quasi equation expression:

(3.36) ẋ(t) = f(x(t), t) +
√

2Dξ(t) ,

which generalizes eq.(3.23). The discretized form of eq.(3.35) takes the form (remember that B
is not differentiable):

(3.37) xi+1 = xi + f(xi, ti)∆ti +
√

2D∆Bi .

1In this case eq.(3.22) becomes simply

dPt1,...,tN (B1, . . . ,BN |B0, t0) = e
−

∑N
i=1

∑d
µ=1

(B
µ
i
−Bµ

i−1
)2

2∆ti

N∏
i=1

ddBi

(2π∆ti)d/2
(3.28)

2In the textbook γ has been denoted η, not typically done in the physics literature.
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3.3. Stochastic Calculus

3.3.1. Introduction. In the previous section we have introduced the quantity ∆Bi and its
infinitesimal version dB(t). Thus ones faces the problem to define a new kind of integrals such
as:

(3.38) S =

∫ t

t0

G(s)dB(s)

for some class of function G. Since B(t) is never differentiable we cannot use directly Riemann
or Stieltjes-Riemann integral3. This integral must be understood in a mean squared sense:

(3.39) S = ms lim
max{∆ti:i=1,2,...,n}→0

n∑
i=1

G(τi)(B(ti)−B(ti−1))

where τi is a point lying in the interval [ti−1, ti]: τi = λti + (1− λ)ti−1 for 0 ≤ λ ≤ 1 and tn = t.
The mean squared limit means, calling Sn =

∑n
i=1G(τi) (B(ti)−B(ti−1)):

(3.40) lim
n→∞

〈(S − Sn)2〉 = 0 ,

where the simplified notation

(3.41) lim
n→∞

means ms lim
max{∆ti:i=1,2,...,n}→0

and

(3.42) Sn ≡
n∑
i=1

G(τi)∆Bi with ∆Bi ≡ B(ti)−B(ti−1) .

In the following we will use the simplified notation

(3.43)
n

max
1
{∆ti} ≡ max{∆ti : i = 1, 2, . . . , n} .

Since |〈S〉− 〈Sn〉| ≤ 〈
(
S−Sn

)2〉1/2 (why?) we have that eq.(3.40), i.e. ms -convergence, implies
also that

(3.44) lim
n→∞

〈Sn〉 = 〈S〉 .

λ = 0 is known as the Ito prescription and corresponds to the choice τi = ti−1 (it preserves
causality: the noise acts before the jump occurs) whereas λ = 1/2 is known as the Stratonovich
or mid-point prescription and corresponds to τi = (ti + ti−1)/2 (it is symmetric with respect to
the two interval extrema and has the advantage to be invariant with respect to time inversion).
When one of these two prescriptions is used the integral eq.(3.38) is denoted as

SIto =

∫ t

t0

G(s)dB(s) λ = 0 Ito(3.45)

SStrat =

∫ t

t0

G(s) ◦ dB(s) λ = 1/2 Stratonovich(3.46)

As a warm up, let’s calculate the expected value of Sn when G = B in eq.(3.38). In this case:

(3.47) Sn ≡
n∑
i=1

B(τi)∆Bi with ∆Bi ≡ B(ti)−B(ti−1) .

We now use the properties of the Brownian trajectories and in particular eq.(2.48) (where we were
using x(t) instead of B(t) with D = 1/2 since in the above equations we are taking into account

3The rest of this chapter is adapted from the textbook by Gardiner, Crispin W. Handbook of stochastic methods, III
ed., Springer, 2004, sec. 4.1- 4.3
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D explicitly) with the initial condition B(t = t0) = 0. Thus 〈B(t)B(t′)〉 = min{t − t0, t′ − t0}.
We thus obtain

(3.48) 〈Sn〉 =
n∑
i=1

[τi − t0 − ti−1 + t0] = (t− t0)λ .

Thus stochastic integrals will depend on the discretization, i.e. on the free parameter λ): by
fixing it we choose a particular set of rules for stochastic integrals containing Brownian trajec-
tories. We now continue our calculation with G(s) = B(s) and use Ito prescription (for generic
λ see exercises). From eq.(3.47) we have now:

(3.49) Sn =
n∑
i=1

Bi−1 (Bi −Bi−1) =
1

2

n∑
i=1

[
(Bi−1 + ∆Bi)

2 −B2
i−1 − (∆Bi)

2
]
.

The first part is:
n∑
i=1

[
(Bi−1 + ∆Bi)

2 −B2
i−1

]
=

n∑
i=1

(B2
i −B2

i−1) = B2
n −B2

0 ,(3.50)

which leads to:

(3.51) Sn =
B2
n −B2

0

2
− 1

2

n∑
i=1

(∆Bi)
2

For the second term we have to make a guess. Since 〈(∆Bi)2〉 = ∆ti, due to eq.(3.22), it follows
that 〈

∑n
i=1(∆Bi)

2〉 = t − t0. Thus our guess is that the ms-limit of
∑n

i=1(∆Bi)
2 is t − t0. We

want to show that indeed

lim
n→∞

〈( n∑
i=1

(∆Bi)
2 − (t− t0)

)2 〉
= 0(3.52)

Notice that the previous equation is equivalent to

lim
n→∞

〈( n∑
i=1

[
(∆Bi)

2 −∆ti
])2 〉

= 0(3.53)

since the ∆Bi’s are independent gaussian random variable with zero mean and variance ∆ti =
ti − ti−1. Thus 〈

∑
i(∆Bi)

2〉 =
∑

i ∆ti = t − t0. The average appearing in eq.(3.53) can be
re-written as 〈( n∑

i=1

[(∆Bi)
2 −∆ti]

)2 〉
= 〈

n∑
i=1

[(∆Bi)
2 −∆ti]

2〉+

+ 〈
∑
i 6=j

[(∆Bi)
2 −∆ti][(∆Bj)

2 −∆tj ]〉 = 2
n∑
i=1

(∆ti)
2(3.54)

(see exercise). Notice that
∑n

i=1(∆ti)
2 ≤ maxn1{∆ti}

∑n
i=1 ∆ti = (t− t0) maxn1{∆ti}. Thus

lim
n→∞

〈

(
n∑
i=1

(∆Bi)
2 − (t− t0)

)2

〉 ≤ lim
n→∞

2(t− t0)
n

max
1
{∆ti} = 0 .(3.55)

This conclude the proof that:

(3.56) SIto =

∫ t

0
B(τ)dB(τ) =

B2(t)−B2(0)

2
− t− t0

2
(λ = 0).

This is the result using the Ito prescription, the one we will be using through the notes. The
Stratonovich prescription consists in finding the mean square limit of:

(3.57) Sn =
n∑
i=1

B

(
ti + ti−1

2

)
(B(ti)−B(ti−1))
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i.e. taking τi = (ti + ti−1)/2, i.e. the midpoint of [ti−1, ti]. The full calculation gives:

(3.58) SStrat =

∫ t

0
B(τ) ◦ dB(τ) =

B2(t)−B2(0)

2
(λ = 1/2).

An heuristic proof of this result is easily obtained by substituting B
(
(ti + ti−1)/2

)
in eq.(3.58)

with (B(ti) + B(ti−1))/2. One gets Sn =
(
B2(t) − B2(0)

)
/2 independently of n and so the

ms-convergence to eq.(3.58) is trivial. See exercise for a rigorous proof of the more general
result

(3.59)

∫ t

0
B(τ)dB(τ)|λ =

(
B2(t)−B2(0)

)
/2 + (t− t0)(2λ− 1)/2

where |λ means using λ-prescription. The result (3.59) contains both eq.(3.56) and eq.(3.58) as
particular cases.

3.3.2. Ito Integrals. In general a stochastic integral
∫ t
t0
G(τ)dB(τ), understood according

to Ito prescription, is well defined if the integrand is a non anticipating function, i.e. G(t)
independent of B(s) − B(t) for ∀s > t. In other words G(t) does not depend on te Wiener
process B in the future of t (causality). We will be interested in the general Langevin eq.(3.35)

(3.60) dx(t) = f(x(t), t)dt+
√

2D(x(t), t)dB(t) ,

whose integral form is

(3.61) x(t) = x(t0) +

∫ t

t0

f(x(τ), τ)dτ +

∫ t

t0

√
2D(x(τ), τ)dB(τ) ,

and so D should be non-anticipating (so not necessarily constant like in eq.(3.35)). Examples
of non anticipating functions are:

(1) B(t)

(2) G(t) =
∫ t
t0
dτg(τ)dB(τ) for g non anticipating

(3) G(t) =
∫ t
t0
g(τ)dτ for g non anticipating

(4) G(t) =
∫ t
t0
F (B(τ))dB(τ)

In the case 4 we have

(3.62) G(t) = lim
n→∞

n∑
i=1

F (B(ti−1)) (B(ti)−B(ti−1) ,

with tn = t, which obviously does not depend on B(s)−B(t), ∀s > t (see the joint B- distribution
eq.(3.22) where N > n and s = tk, n < k ≤ N). As a consequence we have that

(3.63)
〈∫ t

t0

F (B(τ))dB(τ)
〉

=

∫ t

t0

〈
F (B(τ))

〉〈
dB(τ)

〉
= 0

since F (B(τ)) is independent of dB(τ) (see the discretized form eq.(3.61)) and
〈
dB(τ)

〉
= 0.

Now we want to prove a very powerful differential relation:

(3.64) (dB(τ))2 = dτ .

Indeed given a non-anticipating function G we want prove that:

(3.65)

∫ t

t0

G(τ)(dB(τ))2 =

∫ t

t0

G(τ)dτ .

Since we have to prove the ms-convergence, the previous equation is equivalent to prove:

lim
n→∞

In = 0 where(3.66)

In ≡
〈( n∑

i=1

Gi−1(∆B2
i −∆ti)

)2 〉
(3.67)
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(remember the notation in eq.(3.41)) where we have used the fact that

(3.68)

∫ t

t0

G(τ)dτ = lim
maxn1 {∆ti}→0

n∑
i=1

Gi−1∆ti

In order to prove eq.(3.66) we re-write eq.(3.67) as follows

In =
∑
i,j

〈Gi−1Gj−1(∆B2
i −∆ti)(∆B

2
j −∆tj)〉 =(3.69)

=
n∑
i=1

〈G2
i−1

(
(∆Bi)

2 −∆ti
)2〉+ 2

∑
i>j

〈Gi−1Gj−1(∆Bi −∆ti)(∆Bj −∆tj)〉(3.70)

Consider the first term in the previous expression; since Gi−1 is non anticipating it is independent
of ∆Bi:

〈G2
i−1

(
(∆Bi)

2 −∆ti
)2〉 = 〈G2

i−1〉(〈∆B4
i 〉︸ ︷︷ ︸

3∆t2i

−2∆ti 〈∆B2
i 〉︸ ︷︷ ︸

∆ti

+(∆ti)
2) =(3.71)

= 2(∆ti)
2〈G2

i−1〉(3.72)

where we have used eq.(3.22) to calculate the averages terms involving B. Consider now a
generic addendum in the second term in eq.(3.69):

(3.73) 〈Gi−1Gj−1(∆B2
i −∆ti)(∆B

2
j −∆tj)〉

where i > j. The fact that i > j implies that (Gi−1Gj−1)(∆B2
j − ∆tj) is independent of

∆B2
i −∆ti and the previous equation factorizes and becomes:

(3.74) 〈Gi−1Gj−1(∆B2
j −∆tj)〉 〈(∆B2

i −∆ti)〉︸ ︷︷ ︸
=0

(the second factor is zero since 〈∆B2
i 〉 = ∆ti). Thus eq.(3.69) simplifies and becomes:

(3.75) In = 2

n∑
i=1

(∆ti)
2〈G2

i−1〉 ≤ 2
n

max
1
{∆ti}

n∑
i=1

∆ti〈G2
i−1〉.

If
∑

i〈G2
i−1〉∆ti <∞ or supt0<τ<t〈G

2(τ)〉 <∞:

(3.76) lim
n→∞

In ≤ const lim
n→∞

n
max

1
{∆ti} → 0

We have proved eq.(3.64), that is (dB(τ))2 = dτ . Along the same arguments the following
generalization can be proved (see exercise):

(3.77) (dB(τ))k+2 = 0 ∀k > 0 and dB(τ)dt = 0

The idea behind the above rules is simply due to the distribution eq.(3.22) according to which
∆B(τ) ∼ ∆τ and thus the only non-trivial integrals are

∫
dB(τ)· and

∫
(dB(τ)2· all the other∫

(dB(τ))2+k· being of order (maxn1{∆ti})k+1, at least (see exercise).

3.3.3. Differentiation rules. Consider now a function h(x(t), t) which is differentiable as
many times we need. We have the following Taylor expansion (up to second order):

∆h(x, t) ≡ h(x+ ∆x, t+ ∆t)− h(x, t) = ∂th(x, t)∆t+ ∂xf(x, t)∆x+

+
1

2
∂2
t h(x, t)(∆t)2 +

1

2
∂2
xh(x, t)(∆x)2 + · · ·

If x(t) was B(t), i.e. a pure Brownian motion, we would have:

(3.78) ∆h = ∂th(B, t)∆t+ ∂Bh(B, t)∆B +
1

2
∂2
t h(B, t)(∆t)2 +

1

2
∂2
Bh(B, t)(∆B)2 + · · ·
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Considering the differentials (one formally makes the substitution ∆t→ dt and terms of higher
order than dt are ignored) and remembering that (dB(t))2 = dt (see eq.(3.64)) we get the so
called Ito formula:

(3.79) dh(B, t) =
[
∂th(B, t) +

1

2
∂2
Bh(B, t)

]
dt+ ∂Bh(B, t)dB(t)

i.e. the terms of order dt are coming from the first derivative w.r.t. time and the second
derivative w.r.t Brownian motion.
Example Compute the differential of Bn(t), i.e. h(B, t) = Bn in the above equations:

d(Bn(t)) ≡ (B(t) + dB(t))n −Bn(t) =

(
n∑
k=0

(
n

k

)
Bn−k(t)(dB)k(t)

)
−Bn(t)

Ignoring all terms (dB(τ))m+2 for m > 0 (they are zero!):

d(Bn(t)) =

(
n

0

)
Bn(t) +

(
n

1

)
Bn−1(t)dB(t) +

(
n

2

)
Bn−2(t)(dB(t))2(t)−Bn(t)

(3.80) d(Bn(t)) = nBn−1(t)dB(t) +
n(n− 1)

2
Bn−2(t)dt

The differential is made up of the regular part (nxn−1) coming from standard calculus and the

Ito part related to second derivative! (n(n−1)
2 xn−2). Now take n = m+ 1:

d(Bm+1(t)) = (m+ 1)BmdB(t) +
m(m+ 1)

2
Bm−1dt

Divide by m+ 1, integrate ad rearrange:

(3.81)

∫ t

t0

Bm(τ)dB(τ) =
Bm+1(t)−Bm+1(t0)

m+ 1
− m

2

∫ t

t0

Bm−1(τ)dτ.

Notice that for m = 1 we get again the result eq.(3.56) (remember that we are always using
Ito-prescription).

3.3.4. Correlations. Let G and H non anticipating functions. We want to prove that:

(3.82) 〈
∫ t

t0

G(τ1)dB(τ1)

∫ t

t0

H(τ2)dB(τ2)〉 =

∫ t

t0

〈G(τ)H(τ)〉dτ

As usual we proceed with the discretization with the Ito-prescription:

〈
n∑
i=1

n∑
j=1

Gi−1Hj−1∆Bi∆Bj〉 =

=
n∑
i=1

〈Gi−1Hi−1(∆Bi)
2〉+

∑
i>j

〈(Gi−1Hj−1 +Gj−1Hi−1)∆Bj∆Bi〉(3.83)

Since ∆Bi is independent of (Gi−1Hj−1 +Gj−1Hi−1)∆Bj , the second term factorizes leading to:

(3.84)
∑
i>j

〈(Gi−1Hj−1 +Gj−1Hi−1)∆Bj∆Bi〉 =
∑
i>j

〈(Gi−1Hj−1 +Gj−1Hi−1)∆Bj〉 〈∆Bi〉︸ ︷︷ ︸
=0

The remaining term, the first one in eq.(3.83), is (again due to independence):

(3.85)

n∑
i=1

〈Gi−1Hi−1〉 〈(∆Bi)2〉︸ ︷︷ ︸
=∆ti

→
∫ t

t0

〈G(τ)H(τ)〉dτ.

In the last eq. we are dealing with standard numerical series and not with random variables.
Thus the limit is the standard one (no ms-convergence is involved!).
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3.3.5. Change of Variables. Here we want to generalize the Ito formula eq.(3.79) for the
general Langevin equation (3.60).

(3.86) dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) with g(x, t) ≡
√

2D(x, t).

We want to determine the change of a function h(x), dh(x) = h(x+dx)−h(x), due to eq. (3.86):

dh(x(t)) = dx(t)
∂h

∂x
+

(dx(t))2

2

∂2h

∂x2
+ . . .

= h′(x(t)) [f(x(t), t)dt+ g(x(t), t)dB(t)] +

+
h′′(x(t))

2
[f(x(t), t)dt+ g(x(t), t)dB(t)]2 + . . . .(3.87)

Using the results eqs.(3.64) and (3.77) we get (omitting the arguments for simplicity):

(3.88) dh =

[
h′f +

h′′

2
g2

]
dt+ h′gdB

where the neglected terms are of higher order in dt. Ito formula eq.(3.79) is recovered when
D = 1/2, i.e. g(x, t) = 1. From the previous equation we obtain the very important integration
formula for the Ito stochastic integrals in terms of ordinary integrals∫ t

t0

h′(x(τ))g(x(τ), τ)dB(τ) = h(x(t))− h(x(t0))+

−
∫ t

t0

[
h′(x(τ))f(x(τ), τ) +

h′′(x(τ))

2
g2(x(τ), τ)

]
dτ.(3.89)

In the case of a non-anticipating G(x(τ)) the stochastic integral
∫ t
t0
G(x(τ))dB(τ) can be calcu-

lated using eq.(3.89) by defining h(x) =
∫ x
x0
G(x′)/g(x′)dx′ (see exercise 3.11)

3.3.6. Derivation of the Fokker-Planck from Langevin equation. Our goal is to determine
the probability distribution of x(t) for trajectories satisfying the Langevin equation (3.86) or
(3.60). This is given by w(x, t) = 〈δ(x−x(t))〉B (the average is done over a Brownian motion as
explained in chapter 2). Take an arbitrary function h ∈ C2

c (R) (set of functions with continuous
second derivative with compact support, i.e. the function is zero outside a closed and bounded
subset of R). From the change of variable formula (3.88) we have (now we make the slight
generalization with h having also an explicit time dependence):

〈dh(x(t)))〉B = dt
〈
h′(x(t))f(x(t), t) +

h′′(x(t))g2(x(t), t)

2

〉
B

+

+
〈
h′(x(t))g(x(t), t)dB(t)

〉
B︸ ︷︷ ︸

=0

.(3.90)

The last term is zero due to the non-anticipating character of both h and g (i.e. D) so that
h′(x(t))g(x(t), t) is independent of dB(t) ≡ B(t+dt)−B(t) (see definition just before eq.(3.60))
and the fact that 〈dB(t)〉 = 0 (see eq.(3.22)). Going from differentials to derivatives the previous
equation becomes:

(3.91) 〈dh
dt
〉B =

〈
h′(x(t))f(x(t), t) +

h′′(x(t))g2(x(t), t)

2

〉
B
.

As we have learnt for a generic function a(x) we have the following identity:

〈a(x(t))〉B =
〈∫

R
dxδ(x− x(t))a(x)

〉
B

=∫
R
dx
〈
δ(x− x(t))

〉
B
a(x) =

∫
R
dxw(x, t)a(x).(3.92)

In terms of w eq.(3.91) becomes:

d

dt

∫
R
dxw(x, t)h(x)dx =

∫
R
dxw(x, t)

[
h′(x)f(x, t) +

h′′(x)g2(x, t)

2

]
.
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Since h and its derivatives are zero at infinity (remember that h ∈ C2
c (R)) we can integrate by

parts the r.h.s. of the previous equation (why?) and get:

(3.93)

∫
R
dx
∂w

∂t
(x, t)h(x)dx =

∫
R
dxh(x)∂x

[
−f(x, t)w(x, t) +

1

2
∂x
(
g2(x, t)w(x, t)

)]
.

Since h is arbitrary we can choose its support smaller and smaller around a generic point x and
in the limit we get

(3.94) ∂tw(x, t) = ∂x

[
−f(x, t)w(x, t) +

1

2
∂x
(
g2(x, t)w(x, t)

)]
i.e. the Fokker Planck (FP) equation eq.(3.15) (since g =

√
2D).

Remark: Notice that the FP equation (3.94) is concerned only with the time evolution of the
probability distribution of the final point of the stochastic trajectories x(t) obeying the Langevin
eq.(3.60).

Problems

Exercise 3.1. Show that the master equations Eqs. (3.1) and (3.2) in the lecture notes preserve
the normalization, i.e. if

∑
iwi(tn) = 1 when n = 0 then it holds for all n > 0. Idem for∫

dxw(x, tn).

Exercise 3.2. Show that eqs. (3.9) and (3.10) in the Lecture notes imply the normalization
condition eq.(3.4).

Exercise 3.3. Show that the ansatz eq. (3.9) together with eqs. (3.10) and (3.11) in the

Lecture notes imply
∫
dz zW (z|x, t) = εf(x, t),

∫
dz z2W (z|x, t) = εD̂(x, t)

∫
dyy2F (y) +O(ε2)

and
∫
dz zkW (z|x, t) = O(εk/2) for k ≥ 3.

Exercise 3.4. Consider a spherical particle of radius r subjected to the collisions of an ideal
gas of N particles in a volume V at equilibrium at temperature T . If the number of collisions
during a time interval ∆t satisfies the central limit theorem, determine the average number of
collisions and its variance in a time interval ∆t.

Exercise 3.5. Show that the statistical properties of the Brownian motion, B(t), implies that
〈ξ(t)〉 = 0 and 〈ξ(t1)ξ(t2)〉 = δ(t2 − t1). We have defined in a purely formal way ξ(t) =
dB(t)/dt in eq. (3.23) (remember that the Brownian trajectories are not differentiable) (Hint:
〈∆Bi〉 = 0 and 〈∆Bi∆Bj〉 = δi,j .). This result is also consistent with the following formal

expression for the ξ trajectories dP({ξ(τ}) ∝
∏
τ dξ(τ)e−

1
2

∫
dτξ2(τ), which can be deduced from

the analogous expression for the dP({B(τ}) (see eqs.(2.38), (2.87) and (3.22)).

Exercise 3.6. Use the probability distribution for a Brownian trajectory,

dPt1,...,tn(B1, . . . , Bn|B0, t0) = e
−
∑n
i=1

(Bi−Bi−1)2

2∆ti

n∏
i=1

dBi√
2π∆ti

,

to show that

〈(∆Bi)2(∆Bj)
2〉 = 3δi,j∆t

2
i + (1− δij)∆t2i∆t2j

.

Exercise 3.7. Show that
〈[∑n

i=1

(
(∆Bi)

2 −∆ti

)]2〉
= 2

∑n
i=1(∆ti)

2, as in eq. (3.52) in the

lecture notes.

Exercise 3.8. Show that for the generic λ-prescription∫ t

0
B(τ)dB(τ) =

B2(t)−B2(t0)

2
+

2λ− 1

2
(t− t0),

where we have considered a generic initial condition, B(t0), at τ = t0.
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Exercise 3.9. Show that
∫ t

0 B(τ)dB(τ)|λ =
(
B2(t) − B2(0)

)
/2 + (t − t0)(2λ − 1)/2 (using

the λ prescription). (Hint: Consider the time mesh ti, i = 0, . . . , 2n with t2n = t, t2i−1 =

λt2i + (1− λ)t2i−2 and Sn =
∑2n

i=1B2i−1(B2i −B2i−2).

Exercise 3.10. Show that (dB(τ))k+2 = 0 ∀k > 0. This is done in a similar way as in the proof

of (dB(τ))2 = dτ . You have to show that
∫ t
t0
G(τ)(dB(τ))2+k = 0 using ms-convergence. Assume

for simplicity that G is bounded. On the same token derive also that
∫ t
t0
G(τ)dB(τ)dτ = 0.

Exercise 3.11. . Use the following Ito formula (see eq.(3.90)),∫ t

t0

h′(x(τ))g(x(τ), τ)dB(τ) = h(x(t))− h(x(t0))+

−
[
h′(x(τ))f(x(τ), τ) +

h′′(x(τ))

2
g2(x(τ), τ)

]
dτ.(3.95)

to give an expression in terms of ordinary integrals of
∫ t
t0
G(x(τ))dB(τ) where G in a non-

anticipating function. The trajectory x(τ) satisfies the Langevin eq. dx(t) = f(x(t), t)dt +
g(x(t), t)dB(t). Explain the meaning of the obtained result... has it to be considered an equality
valid for any trajectory x(τ)?

Exercise 3.12. Generalize the results for the change of variable of section 3.3.5 to the case of
a generic λ-prescription and re-derive the result of problem 3.9.



Chapter 4

Particle in a Thermal
Bath

The goal of the present chapter is to apply the theory developed in chapter 3 to the paradigmatic
case of the harmonic oscillator, a particle in a thermal bath at temperature T and subjected to an
harmonic external force. This example will also allow to identify the noise amplitude D in the
Langevin equation so that the particle reaches equilibrium at large times. The result is known as
Einstein relation. A generalization of the approach to the case of an arbitrary external potential
will be presented. Then we will consider the further generalization to the case when, besides to
the spatial coordinates, we want to keep track also of the particle velocity/momentum. This will
lead to the underdamped Langevin equation and to the corresponding Fokker-Planck equation
that, for this case, is known as Kramers’ equation. We will also deal with the formal solution of
the Fokker-Planck equation that will alow to derive the backward Fokker-Planck equation.

4.1. Over-damped Langevin equation

We will consider the motion of a particle in a fluid at temperature T and subjected to an external
force Fext(x, t) as described by eq.(3.30). For large enough time scale this, as explained in sec.3.2
lead to the over-damped Langevin equation:

(4.1) dx(t) = f(x(t), t)dt+
√

2DdB(t) f(x(t), t) ≡ Fext(x(t), t)/γ ,

where D is considered constant. If the external force is harmonic with elastic constant mω2, i.e.
Fext(x) = −mω2x, the previous equation becomes:

(4.2) dx(t) = kx(t)dt+
√

2DdB(t) k ≡ mω2/γ,

and its discretized version, as given by eq.(3.37), reads

(4.3) xi = xi−1 − kxi−1∆ti +
√

2D∆Bi k ≡ mω2/γ.

where ∆Bi ≡ Bi − Bi−1 and Bi ≡ B(ti) as usually done. The discretized Wiener measure for
Bi is given by eq.(3.22). The Jacobian matrix, J , for the change of variables from B to x, has
its (i, j) entry given by:

(4.4) Jij ≡
∂xi
∂Bj

=


0 j > i√

2D i = j
∂xi
∂Bj

otherwise

39
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Jij is a lower diagonal matrix so the Jacobian is |J | = (2D)N/2. From eq.(4.3) we obtain that

∆Bi = (∆xi + kxi−1∆ti)/
√

2D and thus the measure eq.(3.22) transforms as:

dP(x1, . . . , xN |x0, 0) = |J |−1dP(B1, . . . , BN |B0, 0) =(4.5)

=
N∏
i=1

dxi√
4πD∆ti

exp

(
−

N∑
i=1

(∆xi + kxi−1∆ti)
2

4D∆ti

)
=(4.6)

Expanding the square in the exponential argument we get:

(4.7)

N∏
i=1

dxi√
4πD∆ti

exp

(
−

N∑
i=1

∆x2
i

4D∆ti

)
exp

(
−

N∑
i=1

kxi−1∆xi
2D

−
N∑
i=1

∆ti
k2x2

i−1

4D

)
Taking the formal N →∞ limit (in the mean squared sense):

(4.8) dP({x(τ}|x0, 0) = N
t∏

τ=0+

dx(τ)e−
1

4D

∫ t
0 dτẋ

2(τ)

︸ ︷︷ ︸
dxw(τ) eq.(2.87)

e−
k

2D

∫ t
0 x(τ)dx(τ)− k2

4D

∫ t
0 x

2(τ)dτ

Some remarks follow:

(1) The normalization constant, N , is the same as in eq.(2.87) (see discussion there), i.e.

(4.9) N =

[∫ t∏
τ=0+

dx(τ)e−
1

4D

∫ t
0 ẋ(τ)2dτ

]−1

;

(2) The stochastic integral
∫ t

0 x(τ)dx(τ) is the ms-limit, as defined in chapter 3, of its discrete

version
∑N

i=1 kxi−1∆xi using the Ito-prescription.

Due to the Wiener measure factor, dwx(τ), in eq.(4.8), corresponding to the Langevin eq.

dx(τ) =
√

2DdB(τ), using the results of sec.3.3.5 and in particular eq.(3.89) with g =
√

2D, f =
0, h′(x) = x with dx =

√
gdB, we get the following result for the Ito stochastic integral:

(4.10)

∫ t

0
x(τ)dx(τ) =

x2(t)− x2(0)

2
−Dt,

(compare to eq.(3.56)) which inserted in eq.(4.8) leads to:

(4.11) dP({x(τ}|x0, 0) = N
t∏

τ=0+

dx(τ)e−
1

4D

∫ t
0 dτẋ

2(τ)e−k
x2(t)−x2(0)

4D
+ kt

2
− k2

4D

∫ t
0 x

2(τ)dτ

Now we are ready to compute the propagator, the analogous of eq.(2.34):

W (x, t|x0, 0) =
〈
δ(x(t)− x)

〉
=

∫
dP({x(τ)})δ(x(t)− x) =(4.12)

= exp

{
−kx

2 − x2
0

4D
+
kt

2

}〈
e−

k2

4D

∫ t
0 x

2(τ)dτδ(x(t)− x)
〉
w

(4.13)

where, we have used the usual notation for the Wiener average of a generic functional the
trajectory, F ({x(τ)}),

(4.14) 〈F ({x(τ)})〉w ≡
∫ ∏t

τ=0+ dx(τ)e−
1

4D

∫ t
0 dτẋ

2(τ)F ({x(τ)})∫ ∏t
τ=0+ dx(τ)e−

1
4D

∫ t
0 dτẋ

2(τ)

No need to do anything else, since we have already computed the last term for D = 1/4 in
sub-secctions 2.4.5 and 2.4.6; we just need to send t→ 4Dt and k → k/4D:

(4.15) 〈e−
k2

4D

∫ t
0 x

2(τ)dτδ(x(t)− x)〉w =

√
k

4πD sinh(kt)
e−

kx2

4D
coth(kt)
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Assembling everything together and, for simplicity setting x0 = 0:

W (x, t|0, 0) =

√
k

4πD sinh(kt)
e−k

x2

4D
+ kt

2
− kx

2

4D
coth(kt) =

=

√
k

2πD(1− e−2kt)
e
− k

2D
x2

1−e−2kt .(4.16)

Notice that in the limit k → 0+ we get the propagator of the Brownian particle eq.(2.34). In
the large time limit, t→∞ we get that the propagator relax to the stationary solution

(4.17) W ∗(x) =

√
k

2πD
e−

kx2

2D

Since the particle is immersed in a thermal bath at temperature T and it is subjected to an
harmonic potential V (x) = mω2x2/2, we must have that W ∗(x) = Z−1 exp{−V (x)/κBT},
the Boltzmann weight (Z being the partition function/normalization) corresponding to thermal
equilibrium. In order for the two distributions to coincide one must have that

k
D = mω2

kBT
(4.18)

D = kBT
γ = kBT

6πηR(4.19)

Eq.(4.19) is the famous Einstein relation relating the amplitude of the fluctuation,
√
D, to the

temperature and to the dissipation term γ (see eq.(3.30) and its over-damped version eq.(4.2)).
This is a particular case of the fluctuation dissipation theorems. Notice that in this relation there
is no trace of the external force, suggesting it is valid beyond the particular case considered here
(see next section).
An alternative way to derive the expression of the propagator is by using the Fokker-Planck
equation (3.94) associated to the Langevin equation (4.2):

(4.20) ∂tW (x, t|x0, 0) = ∂x [kxW (x, t|x0, 0) +D∂xW (x, t|x0, 0)]

The stationary state is easily obtained as solution of:

(4.21) 0 = ∂x [kxW ∗(x) +D∂xW
∗(x)]

and it coincides with eq.(4.17). To derive the full time dependent solution we lean on the Fourier
transform that poses the Fokker-Planck equation in ”momentum” space. In order to do this we
need to know how to transform a function like xf(x):

F (xf(x)) (p) =

∫
dxxf(x)e−ipx =

∫
dxf(x)(i∂pe

−ipx) = i∂pf̃(p)

The expression of the FP equation for the Fourier transform is:

(4.22) ∂tW̃ (p, t) = −kp∂pW̃ (p, t)−Dp2W̃ (p, t)

To solve this equation one uses the method of characteristics (see exercise 5.3) and derive result
(4.16).

4.2. Multidimensional Wiener Path Integral

The generalization of the Wiener path integral to more than one dimension is quite straightfor-
ward: each dimension is independent so we just consider a collection of d independent Brownian
motions Bα α = 1, . . . , d; i.e.:

(4.23) dPt1,...,tN (B1, . . . , BN |B0, t0) =
d∏

α=1

dPt1,...,tN (Bα
1 , . . . , B

α
N |Bα

0 , t0)

where B is a d-dimensional vector B = (B1, . . . , Bd)T and (see eq.(3.22):

(4.24) dPt1,...,tN (Bα
1 , . . . , B

α
N |Bα

0 , t0) = e
−
∑N
i=1

(Bαi −B
α
i−1)2

2∆ti

N∏
i=1

dBα
i√

2π∆ti
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The properties of the measure are easy to derive. For example:

〈dBα(τ)〉 = 0(4.25)

〈dBα(τ)dBβ(τ)〉 = δαβdτ,(4.26)

and the analogous of eqs.(3.64) and (3.77) for the ms-convergence:

dBα(τ)dBβ(τ) = δαβdτ(4.27)

dBα(τ)dτ = 0(4.28)

dBα1 . . . dBαk = 0 ∀k > 2.(4.29)

can be re-derived without much effort.
The multidimensional Langevin equation reads:

(4.30) dxα(t) = fα(x(t), t)dt+
√

2Dα(x(t), t)dBα(t)

along with the change of variables formula, analogous to (3.88):

dh(x(t), t) = dt∂th(x, t)

∣∣∣∣
x=x(t)

+

d∑
α=1

∂αh(x, t)dxα
∣∣∣∣
x=x(t)

+
1

2

d∑
α,β=

∂α∂βh(x, t)dxαdxβ
∣∣∣∣
x=x(t)

(4.31)

= dt

[
∂th+

d∑
α=1

(
∂αhf

α +Dα∂2
αh
)]

+
d∑

α=1

√
2Dα∂αhdB

α(t)

(4.32)

For h not explicitly dependent on time and Dα = D ∀α:

(4.33) dh(x(t)) = dt[f ·∇h+D∇2h] +
√

2D∇h · dB

The Fokker-Planck counterpart is (see exercise 5.4):

(4.34) ∂tw(x, t|x0, t0) =
d∑

α=1

∂α [−fαw + ∂α(Dαw)]

The last thing we need derive is the multidimensional Wiener measure for x(t). We start from
the discretized version of eq.(4.30)

(4.35) ∆xαi ≡ xα(ti)− xα(ti−1) = fαi−1∆ti +
√

2Dα
i−1∆Bα

i

with fαi ≡ fα(xi, ti), D
α
i ≡ Dα(xi, ti) ,∆B

α
i ≡ Bα

i −Bα
i−1. The Jacobian is:

(4.36) J =

∣∣∣∣ ∂(x1
1, . . . , x

d
N )

∂(B1
1 , . . . , B

d
N )

∣∣∣∣ =

N∏
i=1

d∏
α=1

(2Dα
i−1)

and the discretize measure:

dPt1,...,tN (x1, ...,xN |x0, t0) =

=

N∏
i=1

d∏
α=1

dxαi√
4πDα

i−1∆ti
exp

(
−

N∑
i=1

d∑
α=1

(∆xαi − fαi−1∆ti)
2

4Dα
i−1∆ti

)
(4.37)

which we can write in a formal form as N →∞:

dP({x(τ}|x0, 0) =

=
t∏

τ=0+

d∏
α=1

dxα(τ)√
4πDα(x(τ), τ)dτ

e−
1
4

∫ t
0 dτ

∑d
α=1[ẋα(τ)−fα(x(τ),τ)]2/Dα(x(τ),τ)(4.38)

which generalize eq.(4.8).
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4.2.1. Observation. A further generalization of the Langevin equation (4.30) is

(4.39) dxω(t) = fω(x, t) +
d∑

α=1

gωα(x, t)dBα(t) ω = 1, . . . , k

where B is the d-dimensional Brownian motion eqs.(4.23) and (4.24) and quite generally k 6= d.
The corresponding FP is (see exercise):

(4.40) ∂tw(x, t) =
k∑

ω=1

∂ω(−fω(x, t)w(x, t) +
k∑
ν=1

∂ν (Dων(x, t)w(x, t)) ,

where Dων =
∑d

α=1 g
ω
αg

ν
α is a semi-positive definite matrix (why?). The case considered above

corresponds to k = d and gνα(x, t) = δνα
√

2Dα(x, t). There exists also a path integral formulation
similar to the one given above for the case when k = d and g is invertible (see exercise).

4.3. The Fokker-Planck Equation with Velocity

As an application of multidimensional Wiener path integral of the previous section consider the
so called under-damped Langevin equation for a particle in a thermal bath (we have already
seen the corresponding 1-d case, eq.(3.30)):

(4.41) mv̇(t) = −γv + F(r) + γ
√

2Dξ

where we use the notation F instead of Fext, for simplicity. The previous second order differential
equation can be re-written in the form of two first order differential equations, as known from
the course of analytical mechanics:

(4.42)

{
dv(t) =

(
−γv
m + F(r)

m

)
dt+ γ

√
2D
m dB

dr(t) = vdt

This system is a six dimensional system of Brownian particles in the variables x = (vx, vy, vz, x, y, z)
T

and with diffusion constants:

(4.43) Dα =

{
γ2D
m2 α = 1, 2, 3

0 α = 4, 5, 6

Since the diffusion constants for the position variables (x, y, z) are (going to) zero the Gaussian-
like measures involving (x, y, z) collapse into delta functions (the zero variance limit of the
gaussian distirbution is a delta function). The formal Wiener measure in the continuum limit,
is:

dP({x(τ),v(τ)}|x0,v0, 0) =

t∏
τ=0+

(
d3v

(4πDdτ)3/2

δ3(ṙ(τ)− v(τ))

(dτ)3

)
exp

(
− 1

4D

∫ t

0
dτ

[
v̇ +

γv

m
− F(r)

m

]2
)
.(4.44)

The Fokker-Planck equation can be derived using eq.(4.34) and (4.43):

(4.45) ∂tw(v, r, t|v0,x0) =∇v ·
[(

γv

m
− F(r)

m

)
w +

γ2D

m2
∇vw

]
−∇r(vw)

The stationary version of this equation is called Kramers’ equation. If the force is conserva-
tive, i.e. F(r) = −∇V (r) with V being the potential, the stationary solution is the Maxwell-
Boltzmann distribution, as one would have expected:

(4.46) W ∗ =
1

Z∗
e
−β
(
mv2

2
+V (r)

)
, Z∗ =

∫
R
d3v

∫
V
d3re

−β
(
mv2

2
+V (r)

)

with V being the volume of the system and 1/β = κBT if D satisfies the Einstein relation
eq.(4.19) (see exercise).
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4.4. Stationary Solution of the Fokker-Planck Equation

1 The FP eq.(4.34) with the force derived from a potential V , i.e. fα(x) = ∂αV (x), and
Dα = D = constant becomes:

(4.47) ∂tW (x, t) =

d∑
α=1

[−∂αV W +D∂αW ] .

If we define Ŵ (x, t) = eV (x)/(2D)W (x, t) and using the rule

(4.48) e−f∂(efg) = (∂f + ∂)g

eq.(4.47) can be re-written as

(4.49) ∂tŴ = D
d∑

α=1

(∂α − ∂αV̂ )(∂α + ∂αV̂ )Ŵ = −D
d∑

α=1

A†αAα

where V̂ = V/(2D), Aα(x, ∂α) = ∂α+∂αV̂ is a differential operator and A†α(x, ∂α) = −∂α+∂αV̂
its adjoint. Notice that

(4.50)

∫
Rd
ddxφ(x)

d∑
α=1

A†αAαφ(x) =
∑
α=1

∫
Rd
ddxAαφ(x)Aαφ(x) =

∑
α=1

∫
Rd
ddx (Aαφ(x))2 ≥ 0,

where the equality holds if and only if 0 = Aαφ(x) ∀α, that is Ŵ = Ŵ ∗ ∝ e−V̂ . Thus Ŵ ∗

is the stationary solution of eq.(4.49) and W ∗ = exp{−V/D}/Z (Z =
∫
Rd d

dx exp{−V/D})
is the stationary solution of eq.(4.47). The operator D

∑d
α=1A

†
αAα is self-adjoint and due

to eq.(4.50) it has positive eigenvalues except for the zero eigenvalue associated to the eigen-

function Ŵ ∗. Let us call ψi the eigenfunctions and Ei the corresponding eigenvalues with
ψ0 = exp{−V/(2D)}/

√
Z ∝ Ŵ ∗2, E0 = 0 and Ei > 0. The general solution of (4.49) satisfying

the initial condition Ŵ0 = exp{V/(2D)}W0 is

(4.51) Ŵ (x, t) =
∑
i≥0

ciψi(x)e−DEit

where ci =
∫
Rd d

dx ψ∗i Ŵ0, ψ∗i being the complex conjugate of ψi and
∫
Rd d

dxψ∗i ψj = δij . Thus
in the t→∞ limit we get

(4.52) W ∗ = e−V/(2D) lim
t→∞

Ŵ (x, t) = c0ψ0e
−V/(2D) = e−V/D

c0√
Z

=
1

Z
e−V/D,

where we have used that

(4.53) c0 =

∫
Rd
ddx ψ0 Ŵ0 =

∫
Rd
ddx Ŵ0 exp{−V/(2D)}/

√
Z = 1/

√
Z.

since the initial condition W0 is normalized, i.e. 1=
∫
Rd d

dxW0 =
∫
Rd d

dx Ŵ0e
− V

2D . In conclu-
sion, we have proved that a FP equation with potential force have the time dependent solution
that, independently of the initial condition, for large times tend to the Boltzmann distribu-
tion. Remember that f = Fext/γ ∈ Rd. Then if we insist to denote with V the potential, i.e.
Fext = −∇V , then the V we have used in the above derivations should have been divided by γ.
In this way the stationary distribution would be exp{−V/(γD}, which is indeed the Boltzmann
distribution due to the Einstein relation (4.19).

1This section is optional
2Since we want that the eigenfunctions constitute an hortonormal basis we must have that 1 =

∫
Rd d

dxψ2
0 = 1, which

holds with Z =
∫
Rd d

dx exp{−V/D}.
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4.5. Formal Solution of the FP Equation and the Backward FP Equation

We begin writing the FP eq.(4.34) as follows

(4.54) ∂tw(t) = Ltw(t)

where L is a matrix-like operator such that operating on a generic function h gives (from now
on x, y etc. will denote d-dimensional vectors)

(4.55) (Lth)(x) =

∫
Rd
ddyLt(x, y)h(y) =

d∑
α=1

∂α [−fα(x, t) + ∂α(Dα(x, t))]h(x),

that is

(4.56) Lt(x, y) =
d∑

α=1

∂

∂xα

[
−fα(x, t) +

∂

∂xα
Dα(x, t)

]
︸ ︷︷ ︸

L(x,∇x,t)

δd(x− y) ≡ L(x,∇x, t)δd(x− y)

where the derivatives are intended to operate on everything on their right. Integrating eq.(4.54)
with the initial condition w(t0) = w0, we have

(4.57) w(t) = w0 +

∫ t

t0

Lt1w(t1)dt1

and iterating

w(t) = w0 +

∫ t

t0

Lt1

(
w0 +

∫ t1

t0

Lt2w(t2)dt2

)
dt1 =

= · · · = w0 +

∫ t

t0

Lt1w0 +

∫ t

t0

dt1

∫ t1

t0

dt2Lt1Lt2w0+

+

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3Lt1Lt2Lt3w0 + · · · ,(4.58)

which is the formal solution of (4.54). Indeed if we take the time derivative of the previous
equation we have (of course ∂tw0 = 0)

∂tw(t) = ∂t

∫ t

t0

Lt1w0+

+ ∂t

∫ t

t0

dt1

∫ t1

t0

dt2Lt1Lt2w0+

+ ∂t

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3Lt1Lt2Lt3w0 + · · ·

= Ltw0 + Lt

∫ t

t0

dt2Lt2w0 + Lt

∫ t

t0

dt2

∫ t2

t0

dt3Lt2Lt3w0 + · · ·

= Lt

(
w0 +

∫ t

t0

dt2Lt2w0 +

∫ t

t0

dt2

∫ t2

t0

dt3Lt2Lt3w0 + · · ·
)

= Ltw(t).(4.59)

An equivalent way to write the solution eq.(4.58) is:

w(t) = w0 +

∫ t

t0

Lt1w0 +

∫ t

t0

dt2

∫ t

t2

dt1Lt1Lt2w0+

+

∫ t

t0

dt3

∫ t

t3

dt2

∫ t

t2

dt1Lt1Lt2Lt3w0 + · · · .(4.60)
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A much nicer and synthetic way to write the above solution is by introducing the time ordering
product operator, T. Given t1, t2, . . . , tn and the n operators Lti i = 1, . . . , n we define

(4.61) T (Lt1 · · ·Ltn) =

{
Lti1 · · ·Ltin if ti1 > ti2 > · · · > tin ,

0 otherwise.

In terms of T eq. (4.58), or its equivalent (4.60), can be written as:

w(t) = w0 +

∫ t

t0

Lt1w0 +
1

2

∫ t

t0

dt1

∫ t

t0

dt2T (Lt1Lt2)w0+

+
1

3!

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3T (Lt1Lt2Lt3)w0 + · · · =

=
∑
n≥0

1

n!
T

(
n∏
i=1

∫ t

t0

Ltidti

)
w0 = Te

∫ t
t0
Lτdτw0(4.62)

where, by definition, T operates through the integrals ordering the matrix operators L’s. Using
the last expression and taking into account the time ordering product

(4.63) ∂tTe
∫ t
t0
Lτdτw0 = T

(
Lte

∫ t
t0
Lτdτ

)
w0 = LtTe

∫ t
t0
Lτdτw0,

which, again, prove that eq.(4.62) is the formal solution of (4.54). If we now derive (4.62) or
(4.60) with respect to t0 we obtain

(4.64) ∂t0w(t) = ∂t0Te
∫ t
t0
Lτdτw0 = −T

(
e
∫ t
t0
LτdτLt0

)
w0.

In the relevant case w0(x) = δd(x − x0), the initial condition corresponding to the propagator
w(x, t) = W (x, t|x0, t0) we have

w(x, t) = W (x, t|x0, t0) =
(
Te
∫ t
t0
Lτdτw0

)
(x) =

=

∫
ddy

(
T
(
e
∫ t
t0
Lτdτ

))
(x, y)w0(y) =

(
T
(
e
∫ t
t0
Lτdτ

))
(x, x0).(4.65)

that is the propagator is equal to the matrix element of Te
∫ t
t0
Lτdτ .

∂t0W (x, t|x0, t0) = ∂t0w(x, t) = −
∫
ddy

(
T
(
e
∫ t
t0
LτdτLt0

))
(x, y)w0(y)

= −
(
T
(
e
∫ t
t0
LτdτLt0

))
(x, x0) =

∫
ddy

(
T
(
e
∫ t
t0
Lτdτ

))
(x, y)︸ ︷︷ ︸

=W (x,t|y,t0) by (4.65)

Lt0(y, x0) =

= −
∫
ddyW (x, t|y, t0)Lt0(y, x0) = −

∫
ddyW (x, t|y, t0)L(y,∇y, t0)δd(y − x0) =

= −L†(x0,∇x0 , t0)W (x, t|x0, t0)(4.66)

where

(4.67) L†(x,∇x, t) =

d∑
α=1

[
fα(x, t)

∂

∂xα
+Dα(x, t)

∂2

∂x2
α

]
,

Eq.(4.66) is the backward FP equation for the propagator, which, written explicitly, reads

∂t0W (x, t|x0, t0) =

= −
d∑

α=1

[
fα(x0, t0)

∂

∂x0,α
W (x, t|x0, t0) +Dα(x0, t0)

(
∂

∂x0,α

)2

W (x, t|x0, t0)

]
,(4.68)
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If both f and Dα do not depend on time, that is the stochastic process is homogeneous, then
there is time translational invariance and W (x, t|x0, t0) = W (x, t − t0|x0, 0) implying that
∂t0W (x, t|x0, t0) = −∂tW (x, t|x0, t0) and eq.(4.68) have also the alternative expression

∂tW (x, t|x0, t0) =

=

d∑
α=1

[
fα(x0, t0)

∂

∂x0,α
W (x, t|x0, t0) +Dα(x0, t0)

(
∂

∂x0,α

)2

W (x, t|x0, t0)

]
.(4.69)

Similar derivations can be carried out also for master equation as shown in exercise 5.7.

Problems

Exercise 4.1. The propagator for a stochastic harmonic oscillator was derived in sec. 4.1. We

found W (x, t|0, 0) =
√

k
2πD(1−e−2kt)

e
− k

2D
x2

1−e−2kt . Derive the analogous result for W (x, t|x0, t0).

Exercise 4.2. Derive the stationary solution of the FP equation for the harmonic oscillator,
W ∗(x), which obeys to the following eq. 0 = ∂x [kxW ∗(x) +D∂xW

∗(x)], explain the hypothesis
underlying the derivation and its validity for the derived solution.

Exercise 4.3. Use Fourier transform to derive the full time dependent propagator W (x, t|x0, t0)
of the FP equation of the harmonic oscillator

∂tW (x, t|x0, t0) = ∂x [kxW (x, t|x0, t0) +D∂xW (x, t|x0, t0)] .

Exercise 4.4. Derive the multidimensional FP equation associated to the Langevin eq. dxα(t) =

fα(x(t), t)dt+
√

2Dα(x(t), t)dBα(t).

Exercise 4.5. Derive the discretized Wiener measure for the the under-damped Langevin equa-
tion mdv(t) = (−γv+F(r))dt+γ

√
2DdB (see sec. 4.3) and discuss the formal continuum limit

eq. (4.42).

Exercise 4.6. Verify that the Maxwell-Boltzmann distribution eq. (4.44) satisfies the Kramers
equation (4.43) if the noise amplitude D is given by the Einstein relation.

Exercise 4.7. Let Pi(t) the probability that a system is found in the (discrete) state i at time
t. If dtWij(t) represents the transition probability time to go from state j to state i during the
time interval (t, t + dt), then prove that the master equation governing the time evolution of
the system is:

(4.70) Ṗi(t) =
∑
j

(Wij(t)Pj(t)−Wji(t)Pi(t)) ≡ (H(t)P (t))i

where Hij(t) = Wij(t)− δij
∑

kWki(t).

(1) If ai is an observable quantity (not explicitly dependent on time) of the system when it is
in state i, show that

(4.71)
d〈a〉t
dt

= 〈HTa〉t,

where 〈a〉t =
∑

i Pi(t)ai.

(2) If the initial condition is Pi(t0) = δii0 , the corresponding solution of the master equation
is called propagator and it will be denoted Pi,i0(t|t0). Thus P (t|t0) is a matrix satisfying
∂P (t|t0)/∂t = H(t)P (t|t0). Show that ∂P (t|t0)/∂t0 = −P (t|t0)H(t0).

(3) Assume now that the transition rates do not depend on time and that an equilibrium
stationary state exists. A stationary state P ∗ satisfies the stationary condition HP ∗ = 0.
An equilibrium stationary state, P eq, besides to the stationary condition, satisfies also the
so called detailed balance (DB) condition WijP

eq
j = WjiP

eq
i (explain what this means). If

S is the diagonal matrix Sij = δij
√
P eqi , show that, as a consequence of the DB condition,

the matrix Ĥ = S−1HS is symmetric and semi-negative definite. Under the hypothesis
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that each state i can be reached through a path of non-zero transition rates from any state
j show that the equilibrium state is unique.

Exercise 4.8. Show that the matrix Dων =
∑d

α=1 g
ω
αg

ν
α is semi-positive definite (ω, ν = 1, . . . , k)

with k and d are arbitrary.

Exercise 4.9. Consider the Langevin eq.(4.39) and, for k = d and an invertible matrix g(x, t),
determine the discretized measure dPt1,...,tN (x1, ...,xN |x0, t0) and its formal continuum limit.

Exercise 4.10. Derive the FP equation (4.40) from the Langevin equation (4.39).



Chapter 5

The Bloch Equation and
the Feynman-Kac
formula

In the previous chapter we have seen that in the calculation of the propagator for the harmonic

oscillator we end up with the evaluation of an average of the kind 〈exp{−
∫ t

0 V (x(τ)dτ}δ(x −
x(t))〉w with the Wiener measure. We show that similar averages are rather common and that
they satisfy the Bloch equation, leading to the well known and widely used Feynman-Kac formula.
In other words the formula expresses the solution of a differential equation involving a function

V , the Bloch equation, in terms of average of exp{−
∫ t

0 V (x(τ)dτ} over Brownian trajectories.

5.1. Path Integral for Over-damped Langevin Equation with Conservative Force

Consider the overdamped stochastic dynamics of a particle under an external potential U(r);

setting f = −∇U(r)
γ the Langevin equation reads:

(5.1) dr(t) = f(r)dt+
√

2DdB

whose associated Fokker-Planck equation for the propagator is:

(5.2) ∂tw(r, t|r0) =∇ [−f(r)w(r, t|r0) +D∇w(r, t|r0)]

The solution of this equation is given by a Wiener path integral (see sec.4.2):

(5.3) w(r, t|r0, 0) =

∫ t∏
τ=0+

ddr(τ)

(4πDdτ)d/2
e−

1
4D

∫ t
0 dτ(ṙ(τ)−f(r(τ))2

δd(r(t)− r)

or in terms of its discretized form W (N) ( w(r, t|r0, 0) = limN→∞W
(N) with tN = t indepen-

dently of N):

(5.4) W (N) =

∫ N∏
i=1

ddri

(4πD∆ti)d/2
e
−
∑N
i=1

(∆ri)
2

4D∆ti e
1

2D

∑N
i=1 ∆rifi−1− 1

4D

∑N
i=1 f2

i−1∆tiδd(rN − r)

where we have used the general eq.(4.37) with Dα = D = constant. W (N) can also be seen as
an expected value over the discrete Wiener measure:

(5.5) W (N) = 〈e
1

2D

∑N
i=1 ∆rifi−1− 1

4D

∑N
i=1 f2

i−1∆tiδd(rN − r)〉N w

49
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where, by definition,

(5.6) 〈O({xi})〉N w ≡
∫ N∏

i=1

ddri

(4πD∆ti)d/2
e
−
∑N
i=1

(∆ri)
2

4D∆tiO({xi}).

The second term in the exponential’s argument in the N →∞ limit leads to a standard integral,∫ t
0 f2(r(τ))dτ . To deal the remaining term we use the finite difference analogous of eq.(4.33) 1

for a generic function h(r)

∆h(r) ≡ h(r + ∆r)− h(r) =

= ∆r ·∇h(r) +
∑
α,β

∆rα(t)∆rβ(t)∂α∂βh(r) +O(∆r3) =

= ∆r ·∇h(r) +D∆t∇2h(r)(5.7)

Consider the increment between rN and r0 and apply the previous formula, using the usual
convention ∆ri ≡ ri − ri−1:

(5.8) h(rN )− h(r0) =
N∑
i=1

∆h(ri)︸ ︷︷ ︸
=h(ri)−h(ri−1)

=
N∑
i=1

∆ri ·∇h(ri−1) +D∆t
N∑
i=1

∇2h(ri−1)

In the continuum limit the previous equation leads to the following expression for the Ito sto-
chastic integral:

(5.9)

∫ t

0
dr(τ) ·∇h(r(τ)) = h(r(t))− h(r(t0))−D

∫ t

0
dτ∇2h(r(τ)),

a version of the fundamental theorem of stochastic Ito calculus. Taking the continuum limit,

N →∞, in eq.(5.5), where eq.(5.9) is used with h = −U(r)
γ , we get:

(5.10) w(r, t|r0, 0) = 〈e−
U(r)−U(r0)

2Dγ
+ 1

2γ

∫ t
0 dτ∇

2U− 1
4Dγ2

∫ t
0 dτ(∇U)2

δd(r(t)− r)〉W
If we define

(5.11) V (r) = − 1

2γ
∇2U(r) +

1

4Dγ2
(∇U(r))2

and recall that κBT = β−1 = γD we arrive at:

(5.12) w(r, t|r0, 0) = e−
β
2

(U(r)−U(r0))〈e−
∫ t
0 V (r(τ))dτδd(r(t)− r)〉w

where we have taken into account that all Brownian trajectories start at r0 at time t = 0 and,
due to the presence of δd(r(t) − r) in the average, end at r at time t. This is a version for the

propagator obeying eq.(5.2), as an average over Brownian trajectories of exp{−
∫ t

0 V (r(τ))dτ}.
Notice that the Brownian trajectories entering in the average in eq.(5.12) are the ones obeying

the Langevin equation dr(t) =
√

2DdB whereas the propagator is the one corresponding to the
Langevin eq.(5.1), which contains also the force f . The above derivation is valid without changes
if the force f depends on time as far as it is given by f(r, t) = −∇U(r, t)/γ. Eq.(5.11) remains
the same with the substitution of U(r) with U(r, t) leading to a V (r, t) in eq.(5.12).

5.2. Feynman-Kac Formula for the Bloch equation

As one may notice, we happened to have to compute more than once eqs. (2.69) (4.12) (5.12)
expectation values such as:

(5.13) WB(x, t|x0, t0) = 〈e−
∫ t
0 V (x(τ),τ)dτδ(x(t)− x)〉w

1The rule is simply due to the discrete Wiener weight (5.6): one has that the following substitutions are ∆rα(t)∆rβ(t) =
2Dδαβdt and ∆rα(t)∆rβ(t)∆rγ(t) = 0, etc. are valid as far as the continuum limit, N →∞, is concerned
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where we now allow V to have also an explicit time dependence (see observation at the end of
previous section). We want to prove, in two different ways, that 5.13 obeys to the so called
Bloch equation, i.e.:

(5.14) ∂tWB(x, t|x0, t0) = D∂2
xWB(x, t|x0, t0)− V (x, t)WB(x, t|x0, t0)

with initial condition WB(x, t0|x0, t0) = δ(x − x0). Notice that for V = 0 this is what we have
proved already in chapter 2 with the diffusion equation. Eq.(5.13) represent the Feynman-Kac
formula for the fundamental solution of the Bloch equation (5.14).

5.2.1. Proof 1. The first proof starts from eq.(5.13) and derives the Bloch equation (5.14).

Start by discretizing WB, as we usually do, and introduce W
(ε)
B defined as (for simplicity we

choose all ∆ti = ε = (t− t0)/N , so that ti = t0 + iε and Vi ≡ V (xi, ti))
2:

(5.15) W
(ε)
B (x, tN+1|x0, t0) =

∫ N+1∏
i=1

dxi√
4πDε

e−
∑N+1
i=1

∆x2
i

4Dε
−ε
∑N+1
i=1 Viδ(xN+1 − x),

so that limε→0+ W
(ε)
B (x, t|x0, t0) = WB(x, t|x0, t0). Integration over xN+1 is immediate, due to

the presence of the δ of Dirac, and we get:

W
(ε)
B (x, tN+1|x0, t0) =

∫ N∏
i=1

dxi√
4πDε

e−
∑N
i=1

∆x2
i

4Dε
−ε
∑N
i=1 Vie−

(xN−x)2

4Dε
−εV (x,tN+1) =

=

∫
dx′√
4πDε

(∫ N∏
i=1

dxi√
4πDε

e−
∑N
i=1

∆x2
i

4Dε
−ε
∑N
i=1 Viδ(xN − x′)

)
e−

(x′−x)2

4Dε
−εV (x,tN+1)

=

∫
dx′√
4πDε

W
(ε)
B (x′, tN |x0, t0)e−

(x′−x)2

4Dε
−εV (x,tN+1)(5.16)

Set z ≡ x′−x√
2Dε

:

(5.17) W
(ε)
B (x, tN+1|x0, t0) =

∫
dz√
2π
e−z

2/2W
(ε)
B (x+ z

√
2Dε, tN |x0, t0)e−εV (x,tN+1)

and expand W
(ε)
B (x + z

√
2Dε, tN |x0, t0) around x (small z

√
2Dε: since the main contributions

to the integral come from values of |z| . 1, due to the presence of the Gaussian term in z, then
the expansion is allowed). In order to simplify the notation in the following equation we set

ψ ≡W (ε)
B (x, tN |x0, t0), ψ′ ≡ ∂xW (ε)

B (x, tN |x0, t0), etc.

W
(ε)
B (x, tN+1|x0, t0) = e−εV (x,tN+1)

∫
dz√
2π
e−z

2/2·

·
[
ψ + ψ′z

√
2Dε+ ψ′′z2Dε+ ...

]
=

= (1− εV (x, tN+1) +O(ε2))
[
ψ +Dεψ′′ +O(ε2)

]
=

= ψ + ε
[
Dψ′′ − V (x, tN )ψ

]
+O(ε2),(5.18)

where we have taken into account that V (x, tN+1) = V (x, tN + ε) = V (x, tN ) +O(ε) from which
(tN = t and xN+1 = t+ ε):

(5.19)
W

(ε)
B (x, t+ ε|x0, t0)−W (ε)

B (x, t|x0, t0)

ε
=
(
D∂2

x − V (x)
)
W

(ε)
B (x, t|x0, t0) +O(ε)

For N →∞, i.e. ε→ 0+, we get the Bloch equation (5.14):

(5.20) ∂tWB(x, t0|x0, t0) =
(
D∂2

x − V (x, t)
)
WB(x, t0|x0, t0)

2Remember that with the notation ∆x2
i we mean (∆xi)

2 and not ∆(x2
i ).
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5.2.2. Proof 2. The second proof is based on two observations.
Observation 1 WB, as defined by eq.(5.13), follows ESCK relation (see chapter 2). Indeed if
we divide the time interval (t0, t), in N + N ′ steps. The discrete propagator from t0 up to the
instant t′ = tN ′ is given by:

(5.21) W
(ε)
B (x′, t′|x0, t0) ≡

∫ N ′∏
i=1

dxi√
4πD∆ti

e
−
∑N′
i=1

(∆xi)
2

4D∆ti
−ε
∑N′
i=1 V (xi,ti)δ(x′ − xN ′)

The one from t′ = tN ′ to t = tN is:

(5.22) W
(ε)
B (x, t|x′, t′) ≡

∫ N+N ′∏
i=N ′+1

dxi√
4πD∆ti

e
−
∑N+N′
i=N′+1

(∆xi)
2

4D∆ti
−ε
∑N+N′
i=N′+1

V (xi,ti)δ(x− xN+N ′)

Multiplying eqs.(5.21) and (5.22) and integrating over x′ we get:∫
dx′ W

(ε)
B (x, t|x′, t′)W (ε)

B (x′, t′|x0, t0) =(5.23)

=

∫ N+N ′∏
i=1

dxi√
4πD∆ti

e
−
∑N+N′
i=1

(∆xi)
2

4D∆ti
−ε
∑N+N′
i=1 V (xi,ti)δ(x− xN+N ′) = W

(ε)
B (x, t|x0, t0).(5.24)

In the limit ε→ 0+ we obtain ESCK relation:

(5.25) WB(x, t|x0, t0) =

∫
dx′WB(x, t|x′, t′)WB(x′, t′|x0, t0).

Observation 2 If we take h ∈ C(R) and set u(t) = exp
(
−
∫ t
t0
h(s)ds

)
we obtain trivially that:

du

dt
= −h(t)u(t) with u(t0) = 1

Integrating the differential equation and using the previous solution for u(t):

(5.26) u(t) = 1−
∫ t

t0

h(τ)u(τ)dτ = 1−
∫ t

t0

h(τ) exp

(
−
∫ τ

t0

h(s)ds

)
Given these two observations, set in the previous equation h(τ) = V (x(τ), τ) and introduce a
delta function δ(x− x(t)):

(5.27) δ(x− x(t))e
−
∫ t
t0
dτV (x(τ)),τ)

= δ(x− x(t))− δ(x− x(t))

∫ t

t0

dτV (x(τ), τ))e
−
∫ τ
t0
dsV (x(s),s)

By taking the averages over Wiener path integral eq.(4.14) on the l.h.s. of the previous equation
we get WB as defined in (5.13):

(5.28) WB(x, t|x0, t0) = 〈δ(x− x(t))e
−
∫ t
t0
dτV (x(τ),τ)〉w =

= 〈δ(x− x(t))〉w −
∫ t

t0

dτ
〈
V (x(τ), τ)e

−
∫ τ
t0
dsV (x(s),s)

δ(x− x(t))
〉
w

In the first term, 〈δ(x − x(t))〉W , we recognize W (x, t|x0, t0) i.e. the solution of the diffusion
equation with W (x, t0|x0, t0) = δ(x − x0) (see eqs.(2.43) and (2.34)). The second term can be
cast to:

(5.29)

∫ t

t0

dτ〈V (x(τ), τ)e
−
∫ τ
t0
dsV (x(s),s)〉W =

∫ t

t0

dτ

∫
dx′WB(x′, τ |x0, t0)V (x′, τ)W (x, t|x′, τ),

where in the last step we have split the Wiener measure in two pieces, from t0 to t′ and from t′

to t (see exercise) To summarize we arrive at:

(5.30) WB(x, t|x0, t0) = W (x, t|x0, t0)−
∫ t

t0

dt′
∫
dx′W (x, t|x′, t′)V (x′, t′)WB(x′, t′|x0, t0)
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Taking the time derivative of both sides:

(5.31) ∂tWB(x, t|x0, t0) = ∂tW (x, t|x0, t0)−
∫
dx′W (x, t|x′, t)V (x′, t′)WB(x′, t|x0, t0)

−
∫ t

t0

dt′
∫
dx′∂tW (x, t|x′, t′)V (x′, t′)WB(x′, t′|x0, t0)

(5.32) ∂tWB(x, t|x0, t0) = D∂2
xW (x, t|x0, t0)−

∫
dx′δ(x− x′)V (x′)WB(x′, t|x0, t0)

−
∫ t

t0

dt′
∫
dx′D∂2

xW (x, t|x′, t′)V (x′, t′)WB(x′, t′|x0, t0)

∂tWB(x, t|x0, t0) =

= D∂2
x

(
W (x, t|x0, t0)−

∫ t

t0

dt′
∫
dx′W (x, t|x′, t′)V (x′, t′)WB(x′, t′|x0, t0)

)
︸ ︷︷ ︸

WB(x,t|x0,t0) from (5.30)

+

− V (x)WB(x, t|x0, t0),(5.33)

we finally obtain the Bloch equation (5.14):

(5.34) ∂tWB(x, t|x0, t0) = (D∂2
x − V (x, t))WB(x, t|x0, t0).

Using the method of section 4.5 or the method of ”proof 1” above, one can also derive:

(5.35) ∂t0WB(x, t|x0, t0) = −(D∂2
x0
− V (x0, t0))WB(x, t|x0, t0),

(see exercise), which might be called backward Bloch equation.

5.2.3. Generalization of the Feynman-Kac Formula. A more general Bloch equation is

∂tWB(x, t|x0, t0) =[
k∑

ω=1

∂

∂xω

(
−f(x, t) +

k∑
ν=1

∂

∂xν
Dων(x, t)

)
− V (x, t)

]
WB(x, t|x0, t0),(5.36)

where x, x0 ∈ Rk and, as usual, the differential operators act on everything on their right. The
corresponding backward Bloch equation is

∂t0WB(x, t|x0, t0) =

−

[
k∑

ω=1

(
f(x0, t)

∂

∂x0ω
+

k∑
ν=1

Dων(x0, t)
∂2

∂x0ω∂x0ν

)
− V (x0, t)

]
WB(x, t|x0, t0).(5.37)

One can show that

(5.38) WB(x, t|x0, t0) =
〈

exp
{
−
∫ t

t0

V (x(s), s)ds
}
δk(x(t)− x)

〉
where the average is taken over the stochastic trajectories obeying the Langevin equation (4.39):

(5.39) dxω(t) = fω(x, t) +

d∑
α=1

gωα(x, t)dBα(t) ω = 1, . . . , k

where Dων =
∑d

α=1 g
ω
αg

ν
α and with B being a d-dimensional Brownian motion (see sec. 4.2).
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Problems

Exercise 5.1. Write down the details leading to eq.(5.29).

Exercise 5.2. Prove the backward Bloch eq. (5.35) in two ways: 1) using eq.(5.34) and the
method developed in sec. 4.5; 2) Using the path integral formulation similarly to ”proof 1” of
eq. (5.34) in sub-sec. 5.2.1.

Exercise 5.3. Prove that eq. (5.38) satisfies the backward Bloch eq.(5.37) for the simplest
case k = d = 1 and D(x, t) > 0 generic. (Hint: use the discrete measure eq.(4.37) for d = 1.
Notice that it is easier to prove the backward Bloch eq.(5.37) rather than (5.36) since a change
of variable involved in the derivation does not need complicated derivations).

Exercise 5.4. 3 Prove the results of sec. 5.2.3 in full generality as explained there.

Exercise 5.5. Derive the analogous of the Bloch equation and of the backward Bloch equation
for the Master equation of exercise 4.7, eq.(4.70). (Hint: Trajectory i(t) stays constant and

suddenly jump at random time. Thus
∫ t
t0
Vi(s)ds is well defined. When evaluating the average

(5.40) WB(i, t|i0, t0) =
〈
e
−
∫ t
t0

Vi(s)dsδi(t),i

〉
,

where WB(i, t0|i0, t0) = δi,i0 and δi,i0 is the Kronecker delta, at time t+ dt one has to consider
two contributions: one from no change of state and the other from the change of state.)

3Optional



Chapter 6

Interesting Stochastic
Phenomena

6.1. Subdiffusion and superdiffusion

Usual diffusion is one out of many different ways to explore space and time that are found in
Nature, as well as in social phenomena and in technological applications. The purpose of this
section is to expand the view to anomalous diffusion.

The part on Levy flights and anomalous diffusion is reviewed in more details in the file
“s03 Levy.pdf” in moodle.

To start, remember the properties of the fundamental solution P (x, t) of the diffusion equa-
tion for x0 = 0 and t0 = 0:

(6.1) P (x, t) =
1√

4πDt
e−

x2

4Dt

It is obvious, being P (x, t) a Gaussian distribution, that

(6.2) 〈x2(t)〉 = 2Dt

Let us try to generalize and consider a number ζ 6= 1. We introduce a particle undergoing
a diffusion process which is different from the standard Brownian motion. For some Dζ and
exponent ζ,

(6.3) 〈x2(t)〉 = 2Dζt
ζ

If 0 < ζ < 1 we talk about subdiffusion, which is typical of transport of charge carriers in
semiconductors and chemicals and monomers of polymer diffusion (at short timescales). Subd-
iffusion may take place if a particle tends to persist in the same state. For example, the waiting
time distribution between particle’s jumps may be proportional to t−1−α for 0 < α < 1. This
distribution has no finite first moment and, as a result, it is not rare in practice to observe
trajectories during which the particle remains for an anomalous long time in the same position.
The result of this persistence is measured by the anomalous diffusion (6.3) with ζ < 1.

If ζ > 1 we talk about superdiffusion. Levy flights are a phenomenon typically linked with
superdiffusion. They are realized by a sequence of jumps whose length could be also large with
non-negligible frequency (Figure 1). More precisely, one finds that the distribution of jump

displacements x is proportional to |x|−1−µ for large x, with exponent 0 < µ < 2. The name
“flight” is used to denote quick (instantaneous) jumps. In case the trajectory is performed with
finite constant velocity one instead talks of Levy walks.

55
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Figure 1. Visual comparison between normal diffusion and a Levy flight.

In general, one may observe a combination of non-Poissonian waiting times and power-law
jump statistics, or other complex features including memory in the process and long range
correlations.

To Levy flights we can associate a generalized diffusion equation,

(6.4)

{
∂tP (x, t) = Dµ

∂
∂|x|µP (x, t)

P (x, 0) = ρ(x)

which is understood in the Fourier space,

(6.5) ∂tP̃ (k, t) = −Dµ|k|µP̃ (k, t)

To solve this equation, we note that it is equivalent to

∂t

[
eDµ|k|

µtP̃ (k, t)
]

= 0

This implies that the function
f̃(k) = eDµ|k|

µtP̃ (k, t)

is independent of time. By reversing the identity the solution becomes

(6.6) P̃ (k, t) = f̃(k)e−Dµ|k|
µt

Here f̃(k) is the characteristic function of the initial ρ(x), which is obvious by setting t = 0.
This is consistent with having the probability density P (x, t) as a convolution of ρ(x0) and a

“propagator” W (x|x0) whose characteristic function is e−Dµ|k|
µt.

For k = 2 we retreive the usual diffusion. The solution involves a Gaussian e−Dk
2t and

P (x, t) =

∫
dx0ρ(x0)

1

4Dt
e−(x−x0)2/(4Dt)

Note again the convolution structure of this formula. It could be interpreted also as a weighted
average for events characterized by different initial positions, where the weight is ρ(x0) and the
displacement probability density, or propagator, is

W (x|x0) =
1

4Dt
e−(x−x0)2/(4Dt)

In general, however, the solution in real space for a generic µ is difficult to write explicitly. A
few examples below make exception.

6.1.1. Cauchy random flights. The Cauchy random flight is a Levy flight with µ = 1, with

(6.7) P̃C(k, t) = f̃(k)e−D1|k|t

Choosing the initial conditions ρ(x) = δ(x) and setting a typical length scale x∗(t) = D1t,

PC(x, t) =
1

2π

∫ ∞
−∞

dke−x
∗(t)|k|+ikx =(6.8)

=
1

π

∫ ∞
0

dke−x
∗(t)k cos kx =

1

πx∗(t)

1

1 +
(

x
x∗(t)

)2(6.9)
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Figure 2. Levy-Smirnov distribution and the distribution of the sum of two variables x, x′

(each following the Levy-Smirnov), rescaled by 1/22, i.e. P (Y ) with Y = (x+ x′)/4.

The Cauchy distribution shows explicitly that its variance is not defined,
∫
PC(x, t)x2dx = ∞.

Indeed, it is a fat-tailed distribution, σ is not finite and the standard central limit theorem
cannot be applied (i.e. an average of a lot of samples from a Cauchy flight do not converge to a
Gaussian distribution). However, it makes sense to speak of typical scale x∗ even if the variance
is infinite.

6.1.2. Levy stable distributions. The behavior described above is true in general for a
class of distributions called Levy stable distributions, of which the Cauchy is an example. In
analogy with the Central Limit Theorem, where the statistics converges to a normal one, one
has that each Levy stable distribution is an attractor for a class of single variable distributions,
each one characterized by its power-law decay. For example, one might check that the sum of
i.i.d. variables with

p(x) =
1

2x2
for |x| > 1 and 0 otherwise

converges to the Cauchy distribution after a suitable rescaling.

In general the Levy stable distributions, which we are briefly mentioning without a detailed
mathematical introduction, can be asymmetric. An example of fully asymmetric distribution is
the Levy-Smirnov distribution

PLS(x) =
1√

2πx3
e−1/(2x)

for x > 0, and zero otherwise. By summing variables distributed according to PLS one obtains a
result that, after rescaling, is still distributed according to the PLS . For instance, P (Y = x+x′

4 ),
obtained from the convolution of PLS(x) and PLS(x′), matches PLS(Y = x) (see Figure 2).
Note that the rescaling factor 1/22 in Y is not as in the central limit theorem, where it would

be 1/21/2 for n = 2.

The Levy-Smirnov distribution scales as PLS(x) ∼ x−3/2 for large x. By summing variables

x > 0 with a p(x) ∼ x−3/2 for large x, one should recover the “attractor” PLS for the rescaled
sum. More details can be found in the related literature.



58 6. Interesting Stochastic Phenomena

Figure 3. Snapshots of the potential V (x) = x4

4
− x2

2
+ 1

10
sin(2πt/ts), with minima in x ≈

−c = −1 (state “1”) and x ≈ c = 1 (state “2”) separated by a barrier ∆V ' 1/4. Panels
represent four moments of its period following time in clockwise direction.

6.2. Stochastic Resonance

Noise, as implied by the word itself, often acts as a perturbation that randomizes the behavior of
a system. In this section we discuss a counterexample in which the right amount of noise makes
the system more regular in its periodic oscillations. The example concerns the phenomenon
of Stochastic Resonance (SR), which was introduced in the 80’s to explain how the climatic
oscillations on Earth could be significantly wider than expected by measuring the amplitude of
its oscillatory drive, given by the Sun activity over a period of ≈ 105 years.

Nowadays SR is even used in image reconstruction, and is recognized in many different
systems in biology, electronics, and physics. These include lasers, magnetic resonance, and
quantum systems. One finds that the transitions between oscillatory energetic levels do follow
their periods better when temperature is neither too high nor too low. We illustrate this behavior
with a simple two-states model and we show how to quantify the regularity of the periodicity
in the system stochastic dynamics. We are going to map a continuous stochastic dynamics
(diffusion) to a Markov jumps dynamics (Master equations) between states.

Consider a particle subject to a Mexican hat-like potential with two minima at x = c and
x = −c as that shown in Figure 3. Suppose that there exists an external driving force that,
in a period ts, cyclically highers and lowers the relative strength of the potential at x = ±c:
at time t = 0 V (c) = V (−c), t = ts/4 V (c) > V (−c), t = ts/2 V (c) = V (−c) and t = 3ts/4
V (c) < V (−c). Since the shape of the potential varies with time, so does the propensity of the
particle to jump either around −c (state “1”) or +c (state “2”). Around x = 0 the potential
has a local maximum which is unstable and only visited in transients.
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In the cycle shown in Figure 3, the particle jumps at about stages t = ts/4 and t = 3ts/4.
This behavior is expected to be enhanced by some noise. Without such noise, the system would
be too “cold” and unable to jump the barrier. On the other hand, a too “hot” system would
jump the barrier regardless of the modulation. Let us see how to find the right balance so that
the jumps are better synchronized with the phases of the cycle.

We first model the particle dynamics for a time-independent potential V = V0, with a
Langevin equation

(6.10) ẋ = −V ′0(x) + ξ(t) with
〈
ξ(t)ξ(t′)

〉
= κδ(t− t′)

where κ is the strength of the white noise ξ. In case of a pure thermodynamic interpretation we
would set κ = 2kBT .

It is possible to prove that the typical jump time scales as

(6.11) 〈τ〉0 =
2

κ

∫ c

−c
dy exp

(
2V0(y)

κ

)∫ y

−∞
dz exp

(
−2V0(z)

κ

)
In the Kramers approximation, the jumping rate W0 becomes

(6.12) W0 = 〈τ〉−1
0 ≈ 1

2π

√
|V ′′(0)|V ′′(c) exp

(
−2∆V

κ

)
where ∆V = V (0) − V (c). Due to the symmetry of the system, this rate is the same for
transitions 1→ 2 and 2→ 1. In Kramers’ formula, there is a strong exponential dependence on
the ratio between the barrier height and the noise amplitude. This is modulated by a prefactor
taking into account the curvature of the potential in the minimum and at the saddle point.
Jumps in this case occur as uncorrelated events, separated by exponentially distributed waiting
times with average value 〈τ〉0. The system is thus not dysplaying any regulatity in time.

By adding a modulation to the potential, with period ts = 2π/ωs

(6.13) V (x, t) = V0(x) + V1
x

c
sinωst

the jumping rates become asymmetrical at a generic time t. The exponential dependence on
this V will lead to the sensibility on the phase of the drive. The intuition is that κ should be as
large as to barely allow a jump of the potential when the maximum asymmetry is reached.

If ∆V � V1 and the modulation frequency ωs is much smaller than the rates of intrawell
relaxation, the jumping rates can be written as

(6.14) W1,2 =
1

2π

√
|V ′′(0)|V ′′(c) exp

(
−2

κ
(∆V ± V1 sinωst)

)
where W1 is the rate for the jump 1→ 2 and viceversa for W2.

6.2.1. Reduced description. To achieve some quantitative estimate of the system’s regu-
larity, we move to a reduced description with two discrete states and evolution via a master
equation:

(6.15)

{
ṗ1 = −W1(t)p1 +W2(t)p2

ṗ2 = −W2(t)p2 +W1(t)p1

where p1(t) and p2(t) are the probabilities to be in the two states. Since p2(t) = 1− p1(t),

(6.16) ṗ1 = −(W1(t) +W2(t)︸ ︷︷ ︸
≡W (t)

)p1(t) +W2(t)

We introduce the sum W (t) = W1(t)+W2(t) and by 〈W 〉 we denote its average over one period.
Equation (6.16) approaches a periodic solution,

(6.17) p1(t)osc =
1

1− e−〈W 〉ts

∫ ts

0
dt′W2(t− t′) exp

(
−
∫ t

t−t′
dt′′W (t′′)

)
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Consider weakly modulated rates:

(6.18)

{
W1(t) = W

2 − ε sinωst

W2(t) = W
2 + ε sinωst

Calling p1 = p:

(6.19) ṗ(t) = −Wp(t) +
W

2
+ ε sinωst

If we just consider the deviations of p from 1/2, i.e. ∆p = p− 1
2 :

(6.20) ∆̇p = −W∆p+ ε sinωst

This has solution ∆p(t) = ∆p(0)e−Wt.

For ε = 0, one can show (see exercises) that the correlation function C(t) = 〈x(t)x(0)〉 =

c2e−W |t|. Moreover, by means of the Wiener-Kintchine Theorem

P (ω) = 4

∫ ∞
0

C(t) cos(ωt)dt

which relates power spectrum P (ω) to C(t), one can show that in this case the power spectrum
is a Lorentzian

P (0)(ω) = 4c2 W

W 2 + ω2

with cutoff angular frequency ωcut = W , as shown in Figure 4, left panel.

6.2.2. Reduced description, for modulated systems. For ε 6= 0 we change the equation in
this way:

(6.21) ∆̇p = −W∆p+ εeiωst

Its Fourier transform in time is

iω∆p̃ = −W∆p̃+ 2πεδ(ω − ωs)

∆p̃ =
2πε

iω +W
δ(ω − ωs)

To compute the power spectrum, we note that the signal in x is determined by the signal in the
occupation ∆p, times a constant amplitude c, x̃(ω) = c∆p̃(ω). Then,

P (ω) = |x̃(ω)|2 = Sε(ω)δ(ω − ωs)

where

(6.22) Sε(ω) ≡ 4π2c2ε2

ω2 +W 2

The signal-to-noise ratio (SNR) in an interval ∆ω including ω = ωs is

SNRωs =
Sε(ωs) + P (0)(ωs)∆ω

P (0)(ωs)∆ω
= 1 +

Sε(ωs)

P (0)(ωs)∆ω

Let us analyze the second term,

Sε(ωs)

P (0)(ωs)
=

4π2c2ε2

W 2 + ω2
s

W 2 + ω2
s

4c2W
=
π2ε2

W

and then find where ε appears in the rates. By setting for simplicity the prefactor
1

2π

√
|V ′′(0)|V ′′(c) = 1, we find that the rates for small V1/∆V can be expanded as

W1,2(t) = e−
2
κ

(∆V±V1 sinωst) =
W

2
e∓

2V1
κ

sinωst ≈

≈ W

2

(
1∓ 2V1

κ
sinωst

)
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Figure 4. Log-log plot of the power spectrum of the system (c = 1,W = 1) without modulation
(left) and without modulation (right, with ωs = 3, Sε/ω = 100).

Figure 5. SNR as a function of κ for
∆V = 1/4. The vertical dashed line
is at κ∗ = ∆V .

Figure 6. lnSε (plus a constant) as a
function of κ for ∆V = 1/4 and W =

Ae−2∆V/κ (here A = 1). Curves are
for four values of ωs: 10−4 (black) and
it first three multiples of 2.

By comparing this equation with (6.18) we identify ε with

(6.23) ε =
WV1

κ

Since W ∼ e−
2
κ

∆V and ε ∼ W
κ , we have

SNRωs ≈
Sε(ωs)

P (0)(ωs)
=
π2ε2

W
∼ 1

κ2
e−

2
κ

∆V

The maximum is at κ∗ such that
∂SNRωs

∂κ

∣∣∣∣
κ=κ∗

= 0

which gives (exercise) κ∗ = ∆V . This holds regardless of the amplitude V1, as long as V1 � κ.

In Figure 6 we show an example of the signal (in log scale)

lnSε = ln
W 2/κ2

W 2 + ω2
s

+ const

as a function of κ. Curves are for different ωs � A, where A is the prefactor of the rate
W = Ae−2∆V/κ. The maximum of the signal is at an intermediate value of κ, which is not
coincident with ∆V but just at an intermediate value not very sensible to ωs. The relevant
aspect is that the curve is sharply peaked and that there is a range of κ where the system is
very sensible to the drive.
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Another feature of SR is the peculiar distribution of waiting times between jumps. Without
the periodic signal, the system stays in ±c for a time τ which is a random quantity exponen-
tially distributed (as in Markov jump systems). The periodic signal deforms the exponential
distribution by adding peaks around multiples of a typical time. The first peak at half of the
signal period ts is enhanced by SR due to the phase synchronization with the drive of the jumps
between the two states.
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6.3. Instantons

Instantons are rare trajectories connecting two states that are not usually found in a typical
path. In classical dynamics (instantons exist also in quantum mechanics) the rarity comes from
the low noise limit, which limits the ability of the dynamics to visit all states. The typical shape
of an atypical trajectory usually contains a sudden transition, hence the name “instanton”. For
instance, in the time-scales of the planetary atmospheric evolution, the appearance of a stable
giant vortex on the surface of Jupiter (sketched in Figure 7) takes place (rarely) by following an
instanton.

We consider a Langevin equation in the low noise limit,

(6.24) ẋε(t) = F (xε) +
√
εξ(t)

where ξ(t) is a standard white noise. In this note we deal with one-dimensional systems while
keeping in mind that the approach can be generalized to d dimensions with some complications
(see exercises). A trajectory from this dynamics is denoted by [x] = {x(t)|ti ≤ t ≤ tf}, where
ti is the initial time and tf is the final time. The terminology we borrow from thermodynamic
systems is that F is a “force” and “x” a position. However, let us consider a dimensionless x
and F with dimensions of an inverse time.

The infinitesimal propagator is:

(6.25) W (x′, t+ ∆t|x, t) =
1√

2πε∆t
e
−∆t

2ε

(
x′−x
∆t
−F (x)

)2

Performing the limit of infinitely many subsequent propagations, the full propagator of a path

(6.26) W (xf , tf |xi, ti) =

∫
D[x]e−

S[x]
ε

can be expressed via an action

(6.27) S[x] =

∫ tf

ti

L(x, ẋ)dt

with

L(x, ẋ) =
1

2
(ẋ− F (x))2(6.28)

There is an approximation in the form of the function L because we are neglecting a term ∼ ε
that is irrelevant for small noise. In the limit ε → 0, the weight of most of the trajectories
becomes tiny. We use the saddle point approximation and we look for trajectories x∗ that
minimize S[x]. Note that the optimal minimum of S[x] is where it is zero. Given x∗(t) with
fixed x∗(ti) = xi and x∗(tf ) = xf , we get

W (xf , tf |xi, ti) ≈ e−S[x∗]/ε(6.29)

S[x∗] = min
x(ti)=xi
x(tf )=xf

S[x](6.30)

where the solution x∗ is the instanton.

Figure 7. Sketch of instantons at atmospheric scale.
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The trajectories extremizing S[x] solve the Euler-Lagrange equation

d

dt

∂L

∂ẋ
=
∂L

∂x
(6.31)

ẍ− ẋdF (x)

dx
= − (ẋ− F (x))

dF (x)

dx
(6.32)

ẍ =
d

dx

F (x)2

2
(6.33)

Thus, the equation to solve is a second order one, yielding smooth solutions. This might sound
strange, given that Browninan trajectories are not differentiable. Yet, this makes sense: the in-
stanton x∗ represents the trajectory followed on average by a real, noisy path during a transition
from xi to xf . A “real” instanton is thus a zigzag around the solution x∗.

The instanton equation (6.33) may be cast in terms of an effective potential

(6.34) Veff(x) = −1

2
F 2(x)

in this way

(6.35) ẍ = − d

dx
Veff(x)

The effective potential is proportional to the negative square of the force. Hence, where forces
are changing rapidly with x, we should expect more acceleration in the solution for x∗. On the
contrary, where forces are not so sensible on x, the instanton gets less accelerated.

For instance, if F = −dV/dx is a conservative force, the effective potential is zero (hence
maximum) at all stationary points of the potential V , being them minima, maxima, or saddles!
This leads to some counterintuitive behavior of instantons. To gain more insight into this, below
we discuss two examples.

Finally, we note that (6.35) is an equation conserving a total “energy” E,

(6.36) E =
1

2
ẋ2 + Veff(x)

This may offer a route for finding an analytical solution for x∗ that is alternative to the solution
of (6.35).

6.3.1. Instanton, example 1. We consider a one-dimensional system where the force F
derives from a potential V (x) = κ

2x
2, namely F (x) = −κx. The stochastic process related to

this linear force is called the Ornstein-Uhlenbeck process

(6.37) ẋ = −κx+
√
εξ(t)

The effective potential in this case is Veff(x) = −1
2κ

2x2, which is a reversed parabola (see
Figure 8). We ask which trajectory is typically followed from xi = 0 at ti = −∞ to a final x0 at
tf = 0. The instanton solution is given by

(6.38) ẍ =
d

dx

(
κ2x2

2

)
= κ2x

The instanton thus is x∗(t) = x0e
κt. Most of the time it sits close to the minimum of the well.

Only at the very last moment it raises to reach the point x0. We stress that x0 could be even
a very unusual point given a low noise strength ε. By raising the value of x0, the shape of the
instanton is only amplified and the time spent far from the minimum of V is not becoming
extensive with respect to the time close to it.

Noting that the initial velocity in the x∗ is ẋi = 0, it is possible to find the same instanton
solution by the conservation of energy (exercise).
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Figure 8. Harmonic potential and its effective potential for V (x) = κ
2
x2 (left) and V (x) =

κ(1− cosx) (right). In these examples, κ = 1/2.

6.3.2. Instanton, example 2. We consider another one-dimensional system with potential
V (x) = κ(1 − cosx), giving F (x) = −κ sinx and effective potential Veff(x) = −1

2κ
2 sin2 x. For

x ≈ 0 this potential overlaps with the V in the previous example (see Figure 8).

In this case we ask which trajectory is typically followed from xi, ẋi = 0 at ti = −∞ to a
final xf = π at tf , given that the trajectory is midway (x(0) = π/2) at t = 0.

To find the instanton solution this time we use energy conservation. We start from a finite ti
(to be sent to −∞) and small yet finite xi, ẋi = δ & 0, for reasons emerging during the following
calculation. Due to these assumptions, at most the initial energy E ∼ δ2 & 0 (it will turn
out to be zero exactly). For analytical purposes, we adopt E = 0 from the beginning. Thus,
1
2 ẋ

2 = −Veff(x) yields

(6.39) ẋ =

√
−2

(
−1

2
κ2 sin2 x

)
= κ sinx for 0 ≤ x ≤ π

Separating variables,

κdt =
dx

sinx
(6.40)

and integrating up to time t,

κ(t− ti) =

∫ x

xi

dx′

sinx′

= log tan
x

2

∣∣∣x
xi

= log
tanx/2

tanxi/2
(6.41)

which can be inverted to find

(6.42) x(t) = 2 arctan
[
tan

xi
2
eκ(t−ti)

]
The condition x(0) = π/2 requires

arctan
[
tan

xi
2
e−κti

]
=
π

4

→ tan
xi
2
e−κti = 1(6.43)

which simplifies the equation for the instanton to

(6.44) x∗(t) = 2 arctan
[
eκt
]
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Figure 9. Example of instanton for the dynamics with V (x) = κ(1− cosx) (with κ = 1/2) for
ti = −∞, xi = 0 and tf =∞, xf = π, passing from x = π/2 at t = 0.

This solution is compatible with the initial requirements but would not have made sense without
a finite xi because of the division by tanxi/2. The condition (6.43) indeed allows a simultaneous
limit ti → −∞, xi → 0.

The instanton (6.44) has a shape shown in Figure 9. Note that it spends as much time close
to the bottom of the well as it spends close to the saddle x ≈ π. This can be also understood by
the shape of the effective potential (Figure 8). An initial slow roll down Veff(x) from x = 0 is then
maximally accelerated around x = π/2 and returns to zero velocity at large times around x . π
due to the negative acceleration from the increase of Veff(x) in x ∈ [π/2, π]. As anticipated, the
instanton is not accelerating around saddle points of the potential V .

In practice the same shape of the instanton can be reversed on the side x > π of the saddle.
A realistic transition from the first well x = 0 to the second well x = 2π would look like a noisy
instanton around a curve as (6.44) but eventually translated in time, followed by a similar curve
down the hill at x > π. However, the time spent on top of the saddle would be not negligible,
as indicated by the shape of the ideal solution x∗.

The proof that E = 0 for the solution x∗ in (6.44) is left as an exercise.

6.3.3. Other applications of instantons. The low noise limit has a statistics characterized
the dominant paths. In this sense, calculations along the lines of those above show that:

• a stationary distribution emerges as

(6.45) P (x) ≈ e−Vinst(x)/ε

where

Vinst(xf , tf |xi, ti) = S[x∗](6.46)

Vinst(x) = lim
ti→−∞
xi→xm
tf→0
xf→x

Vinst(xf , tf |xi, ti)(6.47)

is a potential corresponding to the action from an instanton path starting at a reference
xm (e.g. a stationary point visited normally by the low noise dynamics).

• Given xm within a domain D with boundary ∂D, the exit time from xm to any point x on
the boundary is

(6.48) τε ≈ eV
∗
inst/ε
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with

V ∗inst = min
x∈∂D

min
t≥0

Vinst(x, t|xm, 0)(6.49)

The exit point x is where there is a minimum in the action S joining it to the initial xm,
and the exit time is the duration of the corresponding instanton, which would thus be the
exit path from D. Note that the optimal time τε gets longer in a modified system in which
the optimal path needs to reach a point with higher V ∗inst.

Problems

Problems on Levy flights.

Exercise 6.1. Expand the details of these passages

P (x, t) =
1

2π

∫ ∞
−∞

dke−x
∗|k|+ikx =

1

π

∫ ∞
0

dke−x
∗k cos kx =

1

πx∗
1

1 +
(
x
x∗

)2(6.50)

used to find the one-dimensional Cauchy distribution. Finding the last term by skipping entirely
the cos kx step is also an option. Here x = 0 at t = 0 and x∗ = D1t.

Exercise 6.2. With the Cauchy jump distribution with typical displacement x∗ = D1t at time
t (see previous exercise, setting x = displacement), compute the probability P (x, t) to find the
particle at position x at time t for such a Levy process, when the initial distribution is uniform
and bound as P (x, 0) = ρ(x) = 1/(2a) for x ∈ [−a, a] and ρ(x) = 0 otherwise.

Exercise 6.3. (optional) Check numerically that the sum Sn = x1 + . . .+xn of n i.i.d. variables
x ∈ R, each one distributed according to

p(x) =
1

4x2
for |x| > 1, p(x) = 1/4 for |x| ≤ 1

converges to a Cauchy distribution

PCauchy(Y ) =
1

π(1 + Y 2)

after a suitable rescaling Yn = γSn/n
β. What are γ and β?

Problems on stochastic resonance. Consider the two-state model with states at position
x1 = −c and x2 = +c and probability p to be in state −c, which evolves according to

ṗ = −Wp+
W

2
+ ε sin(ωst)

(see the notes of the lecture for more details)

Exercise 6.4. For ε = 0, show that the correlation function C(t) = 〈x(t)x(0)〉 = c2e−W |t|.

Exercise 6.5. For ε = 0, use the Wiener-Kintchine Theorem

P (ω) = 4

∫ ∞
0

C(t) cos(ωt)dt

to show that the power spectrum in this case is

P (0)(ω) = 4c2 W

W 2 + ω2

Exercise 6.6. For ε 6= 0, show that the signal-to-noise ratio is maximum at κ∗ = ∆V if the
rates follow the Kramers formula

W1,2 = exp

[
−2∆V

κ
∓ 2V1

κ
sin(ωst)

]
=
W

2
exp

[
∓2V1

κ
sin(ωst)

]
with V1 � ∆V and using the correct identification for ε in this case.
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Problems on instantons. For the one-dimensional stochastic motion

ẋ = F (x) +
√
ε ξ

with white noise ξ and drift F , the instantons (ε→ 0 limit) follow the equation

ẍ = −dVeff

dx
with Veff(x) = −F 2(x)/2

which implies a conservation of the “energy”

E =
1

2
ẋ2 + Veff(x)

Exercise 6.7. Find the instanton for F = −κx by using the conservation of energy, for initial
condition ti = 0, xi = 0, ẋi = 0 and final condition x0 at t = 0.

Exercise 6.8. For F = −κ sinx (see lecture notes) show that the instanton

x∗(t) = 2 arctan
[
eκt
]

has ”energy” E = 0 at every instant t.

Figure 10. For κ = 1/2, graphical examples of the conservation of “energy” (both terms in E
are equal) and of the solution of the instanton equation.

Consider a N -dimensional system with i ≤ N components. Each component of ~x = (xi)
follows a stochastic motion

ẋi = Fi(~x) +
√
ε ξi

with independent white noises 〈ξi(t)ξj(t′)〉 = δijδ(t− t′).

Exercise 6.9. By starting from the Euler-Lagrange equation per component, show that the
instanton equations become

(6.51) ẍi =
∂

∂xi

|F |2

2
+

N∑
j=1

(
∂Fi
∂xj
− ∂Fj
∂xi

)
ẋj

where |F |2 =
∑N

j=1 F
2
i .

Exercise 6.10. Show that

E =
1

2
|ẋ|2 + Veff(x)

with Veff(x) = −1
2 |F |

2, is constant for the solution of the instanton equations (6.51).



Chapter 7

Disordered systems

For systems in equilibrium at a temperature T (and β = 1/T , with Boltzmann constant kB = 1),
average quantities in the canonical ensemble are obtained by running weighted sums over all
possible configurations S,

〈X〉 =

∑
S X[S]e−βH[S]∑

S e
−βH[S]

(7.1)

The denominator is the partition function

Z =
∑
S

e−βH[S](7.2)

and H[S] is the Hamiltonian, or energy function of the system. The free energy is F = −T logZ.
If we have X coupled to a parameter α in H ′ = H + αX, we see from the structure of (7.1)
that 〈X〉 = 1

β∂F/∂α|α=0 derives from a suitable derivative of the free energy, which acts as

a generating function. Hence, the knowledge of F allows to predict the mean behavior of the
system.

One of the standard theoretical models of condensed matter is the Ising model for ferromag-
nets, which is the paradigm of a system displaying a phase transition by varying the temperature.
In the following we use this model to show how the free energy should be evaluated in systems
with some quenched disorder. To emphasize the similarities and the differences from the non-
disordered system, we start by recalling the solution of the mean field Ising model.

7.1. A simple non-disordered system: the mean field Ising Model

A standard Ising model, with spins Si ∈ {−1, 1} for i = 1...N and Hamiltonian

(7.3) H = − J
N

∑
i 6=j

SiSj − h
∑
i

Si

is in a “mean-field” version if the sum runs over all possible pairs of 1 ≤ i ≤ N and 1 ≤ j ≤ N
with i 6= j (in the next section also the (i, i) pair will be included for simplifying the calculations;
such constant energy shift is irrelevant thermodynamically). The system is ferromagnetic if J > 0
and hence −J < 0 favors the alignment of the spins. The external field h is the same for all
spins.

We are interested in the thermodynamic limit N → ∞. From the point of view of a given
spin j, a myriad of other spins should contribute with an average effect due to the central limit
theorem. The average magnetization

(7.4) m =
1

N

∑
i

〈Si〉

69
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Figure 1. The graphical solution of (7.12) is obtained by finding the intersections of the
tanh(2βJm) function with the function m. The three curves are for low, critical, and large
β.

should thus play a relevant role. Indeed, it enters in the calculation of the typical energetic
contribution from j,

Hj = Sj

[
−2J

N

∑
i

Si − h

]
(7.5)

' Sj

[
−2J

N

∑
i

〈Si〉 − h

]
(for large N)(7.6)

≡ −hmSj with average field hm = 2Jm+ h(7.7)

(we would have had J and not 2J if pairs i < j were considered).

The mean field approximation yields a non-interacting system of a single spin Sj in a field
hm. Its two possible states at inverse temperature β = 1/T thus appear with probability given
by Boltzmann weights normalized by the partition function Z,

(7.8) P (Sj) =
e−βHj

Z
=

eβhmSj

eβhm + e−βhm

There is still a self-consistency condition to impose on hm and thus on the magnetization m:

m =
∑
Sj=±1

P (Sj)Sj(7.9)

=
eβhm − eβhm
eβhm + e−βhm

(7.10)

= tanh(βhm)(7.11)

and by recalling what is hm, the self-consistent equation becomes

(7.12) m = tanh(β2Jm+ βh)

Even for the simplest case h = 0 without external field, one should find the solution graphically
as shown in Figure 1. At low β (high temperature) the function tanh(β2Jm) is quite flat and
stays below the function m, hence there is only one solution at m = 0. At a critical βc, three
solutions merge at m = 0 and they split above βc into m = −m∗, 0,+m∗ because tanh(βJm) is
steep enough to cross the diagonal m three times. The critical βc is found by requiring that the
tangent of tanh(β2Jm) is equal to 1 at m = 0, which yields βc = 1/(2J).

7.2. Random Field Ising Model (RFIM)

We aim at understanding what changes from the standard Ising model if the field hi is now
randomly assigned to each site i. To stress that this random field is a fixed feature of each
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Figure 2. Phase diagram of the RFIM.

system, we call it quenched disorder. We may expect that this disorder added to the thermal
randomness is a crucial factor when much stronger than the total ferromagnetic coupling with
the other spins. In this sense, we could have a paramagnetic phase also if the temperature is
very low because the spins prefer to follow their own local hi rather than the global trend given
by the magnetization.

We thus study a Random Field Ising Model (RFIM): the ferromagnetic coupling between
spins Si ∈ {−1, 1} (in a configuration denoted by S = (S1, . . . , SN )) is as in the standard Ising
model and the interaction is again not limited to nearest neighbor but runs over all pairs i, j,

(7.13) Hh[S] = − J
N

∑
i,j

SiSj −
∑
i

hiSi

including the i, i interaction, for later convenience. Here, as a novelty, the disorder is realized
by picking each local field hi from the same Gaussian distribution with variance δ2,

(7.14) p(hi) =
1√

2πδ2
e−h

2
i /2δ

2 ∀i ≤ N

and fixing it. Thus, every system is characterized by a given quenched disorder h = {hi|i =
1, . . . , N} (of i.i.d. random variables) with full probability

(7.15) p(h) =

N∏
i=1

p(hi)

We would like to prove that the phase diagram of the RFIM is as that shown in Figure 2, where
two phases (ferromagnetic with a macroscopic magnetization, and paramagnetic) appear. The
diagram is as a function of the ratios T/δ and J/δ. The value T/δ quantifies how thermal
energy is relevant with respect to the disorder. The value J/δ quantifies the relevance of the fer-
romagnetic coupling with respect to the disorder, and obviously the ferromagnetic phase appears
where J/δ is sufficiently large, where “sufficiently” is quantified by the dense line separating the
phases (note its monotonic increase with T : why?). The phase diagram also shows that, for
given values of J and T , there is always a value of δ that can randomize the system enough to
make it paramagnetic. Even for T = 0 we may see a para-ferromagnetic phase transition by
varying δ.

The new issue is to find the typical behavior of a system by averaging its behavior over the
realizations of the disorder. As discussed later, this centers around averaging the free energy

(7.16) Fh = −T logZh
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over the disorder, rather than averaging the partition function

(7.17) Zh =
∑
S

e−βHh[s]

An average over the disorder is denoted by an overline in the following. For example,

(7.18) F = −T logZh = −T
∫ ∏

i

dhi p(h) logZh

The average of a nonlinear function as the log is problematic and it turns out to be simpler
to average the n-th power (Zh)n. Because of this, it is useful to follow the replica trick. In its
various forms, it reads

logZh = lim
n→0

Zn − 1

n
,(7.19)

logZh = lim
n→0

1

n
logZn ,(7.20)

logZh =
∂

∂n
Zn
∣∣∣∣
n=0

(7.21)

This is a useful mathematical step that, however, comes at the price of performing a weird limit
of n→ 0 replicas. Each replica is one out of n copies of the system, all sharing the same disorder
h.

We label each replica by an index a = 1, . . . , n let it understood that Z = Zh and Hh[S] =
H[S] both depend on a quenched disorder h. The n-th power of the partition function is then

Zn =
∑
{Sa}

exp

βJ
N

∑
a

∑
ij

Sai S
a
j

 exp

(
β
∑
i

∑
a

Sai hi

)

=
∑
{Sa}

exp

βJ
N

∑
a

∑
ij

Sai S
a
j

 exp

(
β
∑
i

∑
a

Sai hi

)
︸ ︷︷ ︸

≡e
∑
i λihi

(7.22)

where
∑
{Sa} means sum over all possible configurations of all replicas and

(7.23) λi = β
∑
a

Sai

Since the average over disorder is limited to the last term with hi’s, and since each term yields
its own average via a Gauss integral,

(7.24) eλihi =

∫
dhip(hi)e

λihi = eδ
2λ2
i /2,

we may rewrite

Zn =
∑
{Sa}

exp

βJ
N

∑
a

∑
ij

Sai S
a
j +

β2δ2

2

∑
i

(∑
a

Sai

)2
(7.25)

=
∑
{Sa}

exp

βJ
N

∑
a

(∑
i

Sai

)2

+
β2δ2

2

∑
i

(∑
a

Sai

)2
(7.26)

where we noted that the first term in the exponential is just the square of
∑

i S
a
i . This is possible

thanks to the choice of running the interactions also over the (i, i) pairs.

By inspecting the structure of (7.26) we note that we arrived at a system with interacting
replicas! At the same time, the disorder has disappeared from the formulas. This trade of
complications will finally lead to a solution of the RFIM.
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Next we use the Hubbard-Stratonovich (HS) transformation,

e
b
2
z2

=
1√
2πb

∫
dx e−

x2

2b
±zx(7.27)

(for negative exponent it becomes e−
b
2
z2

= 1√
2πb

∫
dxe−

x2

2b
±izx) which is useful for transforming

squares in exponentials. In physical terms, this is translated to a replacement of interactions
between degrees of freedom (z2) by interactions with a mediating field x (the term zx) which
follows a Gaussian statistics (x2). The left-hand side of the HS formula can be seen in (7.26) if
we identify

za =
√

2Jβ
∑
i

Sai(7.28)

b =
1

N
(7.29)

e
b
2
z2
a =

1√
2πb

∫
dxae

−x
2
a

2b
+zaxa(7.30)

By performing the HS transformation we get a version of Zn in which spins Si appear
decoupled from the others,

Zn =

(
N

2π

)n/2 ∑
{Sa}

∫ ∏
a

dxa exp

[
− N

2

∑
a

x2
a(7.31)

+
√

2Jβ
∑
i

∑
a

Sai xa +
β2δ2

2

∑
i

(∑
a

Sai

)2

︸ ︷︷ ︸∑
i... gives N times the same object logZ1

]

=

(
N

2π

)n/2 ∫ ∏
a

dxa exp

[
N

(
−1

2

∑
a

x2
a + logZ1(xa)

)]
(7.32)

with

(7.33) Z1(xa) =
∑

{Sa=±1}

exp

√2βJ
∑
a

xaS
a +

β2δ2

2

(∑
a

Sa

)2


where we set Sai → Sa due to the independence of Z1 on the index i.

The exponent ∼ N in (7.32) shows that we can now use the saddle point approximation for
large N . In doing this, we also assume that all replicas share the same xa = x (like in a replica
symmetric solution), hence

∑
a xa = nx, and

∑
a x

2
a = nx2. The saddle point, denoted by xm,

solves the equation

(7.34)
∂

∂x

[
−1

2
nx2 + logZ1(x)

]
= 0 → nx =

∂

∂x
logZ1(x)

hence

nxm =
√

2βJ

∑
{Sa=±1} (

∑
a S

a) eA[S,xm]∑
{Sa=±1} e

A[S,xm]
(7.35)

where

(7.36) A[S, x] =
√

2βJx
∑
a

Sa +
β2δ2

2

(∑
a

Sa

)2

The structure of (7.35) reveals that xm is proportional to the average over the replicas of the
spins, i.e. the magnetization m, in an ensemble where the Boltzmann weight eA determines
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averages 〈. . .〉,

xm√
2βJ

=

〈
1

n

∑
a

Sa

〉
≡ m(7.37)

We can thus rewrite everything by using m = xm/
√

2βJ :

Zn ∝ eN[−nβJm2+logZ1(m)](7.38)

Z1(m) =
∑

{Sa=±1}

eA[S,m](7.39)

A[S,m] = 2βJm
∑
a

Sa +
β2δ2

2

(∑
a

Sa

)2

(7.40)

m =
1

Z1(m)

∑
{Sa=±1}

(
1

n

∑
a

Sa

)
eA[S,m](7.41)

where A[S,m] still couples the statistics of the replicas.

We recall that we are looking for a self-consistent equation for the magnetization, in analogy
to the solution of the standard mean field Ising model. The square (

∑
a S

a)2 that resisted so far
in the exponent is removed by means of another HS transformation,

(7.42) eA[S,m] =

∫
dν√
2π
e−

1
2
ν2+(2βJm+βδν)

∑
a S

a

This brings the advantage of finally decoupling the replicas. With this HS transformation, Z1(m)
becomes

Z1(m) =
∑

{Sa=±1}

eA[S,m]

=

∫
dν√
2π
e−

1
2
ν2
∏
a

∑
Sa=±1

e(2βJm+βδν)Sa (n decoupled replicas)

=

∫
dν√
2π
e−

1
2
ν2

[2 cosh(2βJm+ βδν)]n

=

∫
dν√
2π
e−

1
2
ν2+n log[2 cosh(2βJm+βδν)](7.43)

We are finally able to perform the limit n→ 0 dictated by the replica trick, for which Z1 → 1.

In analogy, we can prove that also the formula for m can be rewritten without any explicit
reference to each replica but with just the number n of replicas appearing (exercise). It turns
out that

m =
1

Z1(m)

∫
dν√
2π
e−

1
2
ν2+n log[2 cosh(2βJm+βδν)] tanh(2βJm+ βδν)(7.44)

which, for n→ 0, gives

(7.45) m =

∫
dν√
2π
e−

1
2
ν2

tanh (2βJm+ βδν)

This further appearence of a Gaussian distribution for ν (unit variance) is welcome as one can
convert it to a Gaussian distribution for h = δν and translate the formula to an average over
disorder [see (7.15)],

m =

∫
dh√
2πδ2

e−
h2

2δ2 tanh (2βJm+ βh)

= tanh (β (2Jm+ h))(7.46)

This self-consistent equation for m = msc(m) with msc(m) given by the right-hand side of (7.46)
is solved graphically, as shown for the Ising model. The critical line in the phase diagram of
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Figure 3. Plot of the self-consistent magnetization (7.46) vs m, for β = J = 1. The three
curves are for different noise strengths: δ = 0 (standard Ising), δ = 1 and δ = 2. Note that
the system without disorder is ferromagnetic for these parameters but becomes paramagnetic
at sufficiently high δ.

Figure 2 corresponds to the points where ∂msc/∂m = 1, that the values of (T, δ, J) for which
the curve is tangent to the diagonal line m = m. One can prove (exercise) that this condition
turns into the equation

(7.47) 2βJ

∫
dh p(h)

1

[cosh(βh)]2
= 1

which can be recast in several forms; for example, by using reduced variables J ′ = J/δ, β′ = βδ,

h̃ = βh related to those in the axis of the phase diagram of Figure 2, we get

(7.48) 2β′J ′
∫

dh̃√
2π
e
− h̃2

2β′2
1[

cosh h̃
]2 = 1

Using this condition, one can show that even for zero temperature one has a para-ferromagnetic
transition by varying the ratio 2J/δ = 2J ′. The transition takes place (exercise) at 2J/δ =√
π/2. Note that the self-consistent equation of the mean field Ising model is recovered from

(7.46) for δ → 0. In Figure 3 there is an example of ferromagnetic phase disappearing by
increasing δ.

The free energy averaged over the disorder in the end is

F = −T logZ

= −T ∂

∂n
Zn
∣∣∣∣
n=0

' −T ∂

∂n

[
eN(−nβJm2+logZ1)

]
n=0

= −TN
[
−βJm2 +

∂

∂n
logZ1

]
n=0

= N

[
Jm2 − T

Z1

∂

∂n
Z1

]
n=0

= N

[
Jm2 − T

∫
dν√
2π
e−

1
2
ν2

log[2 cosh(2βJm+ βδν)]

]
= N

[
Jm2 − T

∫
dh√
2πδ2

e−
h2

2δ2 log[2 cosh(β(2Jm+ h))]

]
(7.49)

To wrap up, after deciding that the correct quantity to average is the free energy, one uses
the replica trick to convert the computation to that of a system of interacting replicas without
disorder. By some massage including two Hubbard-Stratonovich steps (to get rid of quadratic
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forms in the exponent till we get to the right quadratic form, i.e. the disorder average) and
by the identification of some quantities with others having physical meaning (magnetization,
average over disorder), one finds a self-consistent equation for the magnetization that represents
the generalization to a system with quenched disorder of its version for the Ising model. This
magnetization enters in the solution for the free energy. The phase diagram of the RFIM follows
from these equations, with boundary between phases given by the points where the self-consistent
function of the magnetization has derivative 1.

As a final point, let us hightlight that the limits limN→∞ limn→0 have been inverted in the
above calculations, becoming limn→0 limN→∞. Performing the thermodynamic limit before the
limit to zero replicas is fine for the RFIM.

7.3. Neural networks and Hopfield model

The RFIM does not have a very interesting low temperature phase. In the ferromagnetic state
it displays the two possible magnetizations and even in the paramagnetic case it stays around a
single characteristic state which converges, for T → 0, to a single state with spins fully aligned
with local fields. This is not the case, in general, for disordered systems, which usually display
a complex low temperature phase, or phases, with many basins of the free energy.

Our first example of disordered spin system with many nontrivial minima is a neural net-
work where patterns are intentionally generated by an external agent, by encoding them in
the coupling Jij between neurons, which are biologically realized by axons. In this case each
Jij represents a synaptic efficiency, i.e. the kind of transmission of the axon from neuron j to
neuron i. We will map neurons to spins and Jij to their coupling, thus translating patterns into
energeric minima.

Biologically, a neuron is activated when the incoming electrical signal overcomes a threshold.
We define neuron states as

(7.50) Si = +1 (excited), and Si = −1 (at rest)

and a local field collecting all other impulses as

(7.51) hi =

N∑
j=1

Jij(Sj + 1)

where also J ’s take ±1 values,

Jij = +1 (excitatory synapse)

Jij = −1 (inhibitory synapse)(7.52)

These J ’s are quenched. The dynamical variables are the Si, evolving by defining a new value
of each Si given the local excitation hi determined by all values of other Sj ’s.

The dynamical rule, defined in discrete time t = 1, 2, 3, . . ., is the following:

(7.53) Si(t+ 1) = sgn(hi(t)− θ∗i ) with hi(t) =

N∑
j=1

Jij(Sj(t) + 1)

and local threshold θ∗i . A simplifying hypothesis

(7.54) θ∗i =
N∑
j=1

Jij

leads to

(7.55) Si(t+ 1) = sgn

hi(t)− N∑
j=1

Jij

 = sgn

 N∑
j=1

JijSj(t)


We have all Jij 6= 0 and thus the system is densely connected. However, we impose the Jii = 0
(Hebb rule).
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The purpose of this neural network is to store P patterns. By indexing the patterns with
µ = 1, . . . , P , we have that each pattern

(7.56) ~ξµ = {ξµ1 , . . . , ξ
µ
N} with ξµi = {+1,−1}

is essentially a spin configuration. We choose

Jii = 0 (Hebb rule)

Jij =
1

N

P∑
µ=1

ξµi ξ
µ
j(7.57)

The second requirement defines the Hopfield model and introduces memory in the neural net-
work: each pattern turns out to be a fixed point of the activation dynamics,

(7.58) Si(t) = ξµi → Si(t+ 1) = ξµi

This means that patterns are solutions of the equation

(7.59) ξµi = sgn

 N∑
j=1

Jijξ
µ
j


This can be seen by first noting that the scalar product between two patterns,

(7.60)
1

N

N∑
j=1

ξµj ξ
ν
j ' δµν +O(N−1/2)

yields essentially zero for µ 6= ν if the number of pattern is small compared to the system size,
P/N → 0 for N → ∞ even if P � 1. This limitation for P is assumed hereafter. The second
term in the previous equation takes into account the random overlap of patterns. Hence,

sgn

 N∑
j=1

Jijξ
µ
j

 = (with the definition of Jij , (7.57) )

sgn

 N∑
j=1

(
1

N

P∑
ν=1

ξνi ξ
ν
j

)
ξµj

 = (rearranging)

sgn

 P∑
ν=1

ξνi

 1

N

N∑
j=1

ξνj ξ
µ
j

 = (using (7.60) )

sgn

[
P∑
ν=1

ξνi δµν

]
=

sgn [ξµi ] = ξµi(7.61)

which proves (7.59).

What happens if we start from a configuration slightly different from a pattern? The dy-
namics is mapped to that of a disordered Ising model with energy

E[~S] = −1

2

N∑
i,j=1

JijSiSj

= −1

2

N∑
i

Sihi(7.62)

that is minimized by a configuration ~S aligned with its local field ~h. At finite temperature

T = 1/β the probability of a configuration ~S = {S1, . . . , SN} is

(7.63) p(~S) =
1

Z
exp{−βE[~S]}
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where as usual Z stands for the partition function

(7.64) Z =
∑
~S

exp{−βE[~S]}

A zero temperature dynamics, when updating ~S(t), leads always to a new ~S(t+ 1) with energy

E[~S(t+ 1)] ≤ E[~S(t)]. When starting from an initial ~S(0) not too different from a given pattern
~ξµ, the energy minimization brings to S(t) = ~ξµ at some finite time t. The configurations ~S(0)
falling back to such pattern are in its basin of attraction, or free energy local minimum.

As an application in computer science, one may think of the neural network as a storage of

P images, and of ~S(0) as an image copied from a ~ξµ but with corrupted pixels. The original
image may be recognized among the others by energy minimization.

Next we show that the number of energy minima of an Hopfield model is essentially the
number P of patterns. The free energy per spin is

(7.65) f = − 1

Nβ
logZ

The P patterns are stationary points of the landscape of the energy function E.

By using the approximation

Jij = (1− δij)
1

N

P∑
µ=1

ξµi ξ
µ
j(7.66)

' 1

N

P∑
µ=1

ξµi ξ
µ
j(7.67)

which is a modification forgetting about Hebb’s rule encoded in (7.66) and with little relevance
∼ N in a sum ∼ N2, we rewrite Jij via (7.57) in the partition function,

Z =
∑
~S

exp

 β

2N

∑
ij

SiSj

P∑
µ=1

ξµi ξ
µ
j

(7.68)

=
∑
~S

exp

 β

2N

P∑
µ=1

(∑
i

Siξ
µ
i

)2
(7.69)

=
∑
~S

∫ ∏
µ

dqµ exp

−1

2
Nβ

P∑
µ=1

q2
µ + β

P∑
µ=1

qµ

(∑
i

Siξ
µ
i

)(7.70)

where in the last step we removed the square by a HS transformation, for which we are forgetting
the prefactors (they would be irrelevant for our purposes). Now each of the terms with 1 ≤ i ≤ N
is independent on the others. The last term in the previous exponential becomes

∑
Si=±1

exp

β
 P∑
µ=1

qµξ
µ
i

Si

 = (defining ~q · ~ξi =
P∑
µ=1

qµξ
µ
i )(7.71)

2 cosh
(
β~q · ~ξi

)
=(7.72)

exp{log[2 cosh
(
β~q · ~ξi

)
]}(7.73)

and the partition function turns into

Z =

∫ ∏
µ

dqµ exp {−Nβu(~q)}(7.74)
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with

(7.75) u(~q) =
1

2

P∑
µ=1

q2
µ −

1

βN

N∑
i=1

log[2 cosh
(
β~q · ~ξi

)
]

to be expanded around its stationary point ~q∗ (minimizing u(q)) for performing a saddle point
approximation. In fact, the free energy coincides with the u function at the saddle point,

(7.76) f = − 1

Nβ
logZ = u(~q∗)

The stationary point is found by requiring

(7.77)

{
∂u

∂q1
= 0, . . . ,

∂u

∂qP
= 0

} ∣∣∣∣
~q=~q∗

For any component this means

(7.78)
∂u

∂qµ
= qµ −

1

Nβ

N∑
i=1

1

cosh
(
β~q · ~ξi

) sinh
(
β~q · ~ξi

)
βξµi = 0

leading to

(7.79) q∗µ = qµ =
1

N

N∑
i=1

tanh
(
β~q · ~ξi

)
ξµi ∀µ = 1, . . . , P

(we are dropping the star from the notation). The sum over all neurons i = 1, . . . , N for N →∞
becomes an average over the possible values of ξ,

(7.80)
1

N

∑
i

f(ξi) ≡ 〈f〉 =

∫
dξP (ξ)f(ξ)

P (ξ), the probability density of ξ, is found by noting that ξi = ±1 with equal chance:

(7.81)

∫
dξP (ξ) . . . =

1

2
δ(ξ − 1) . . .+

1

2
δ(ξ + 1) . . . ≡ E(. . .)

The solution (7.79) is thus rewritten without the index i in the notation,

(7.82) qµ = E
[
tanh

(
β~q · ~ξ

)
ξµ
]

∀µ

To find a solution, we assume that ~q = (q, 0, . . . , 0) with P−1 null values and only one nontrivial
q value, and later check if it works.

The physical meaning of q is better understood by stepping back to the sum over discrete
variables (7.70) but with function u replaced by ũ

(7.83) ũ(~q, S1, . . . , SN ) =
1

2

P∑
µ=1

q2
µ −

1

βN

P∑
µ=1

qµ

(
N∑
i=1

ξµi Si

)

In this case, the saddle point solution ~q where ∂u/∂qµ = 0 for all µ’s yields

(7.84) qµ =
1

N

N∑
i=1

ξµi Si

which reveals that qµ is the overlap of the spins with the µ-th pattern of the neural network.
This explains that ~q = (q1, 0, . . . , 0) for µ = 1 makes sense, and similarly for all other patterns
ν 6= 1 we should set ~q = (0, . . . , 0, qν , 0, . . . , 0).
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Focusing on the first pattern, from the above structure for q we get P equations,

q1 = E
[
tanh

(
βq1ξ

1
)
ξ1
]

(1 equation)(7.85)

qν = E

tanh
(
βq1ξ

1
)︸ ︷︷ ︸

odd

ξν︸︷︷︸
odd

 (P − 1 equations for ν > 1)(7.86)

Each of the P − 1 equations (7.86) is an expectation of independent odd terms with an even
probability distribution for ξ’s, hence for parity it gives qν = 0, consistently with the hypothesis
that ~q contains only one nonzero element. This is given by (7.85), which explicitly is

q1 =
1

2
tanh(βq1)− 1

2
tanh(βq1)× (−1)

= tanh(βq1)(7.87)

Since this is true for all patterns, in summary the only relevant saddle point equation for the
Hopfield model is

q = tanh(βq)(7.88)

which resembles that of the mean field Ising model, with the overlap q replacing the magnetiza-
tion m. In a sense, the overlap is a generalization of the concept of magnetization, to systems
where a global magnetization does not appear, but where the overlap still quantifies some local
order emerging within the state space.

Similarly to what seen for the Ising model, from the saddle point equation (7.88) we learn
that there is a (second order) phase transition, here at βc = 1 where tanh(q) is tangent to the
q = q line. Of the two nonzero solutions ±q̂ appearing at β > βc, the one at −q̂ does not tells us
anything more than that at +q̂ because fully anticorrelated and fully correlated have the same
information content. By going to T → 0 we are left with P ground states, one for every pattern.

7.4. Sherrington-Kirkpatrick (SK) model

Here we discuss the Sherrington-Kirkpatrick (SK) model, a central model in the field of dis-
ordered systems (perhaps the “Ising model of disordered systems”), allowing us to introduce
some ideas and techniques central in this field. In particular we will explain the reason why
it is possible to compute exactly the free-energy of this model and how to cast this calculation
into a variational problem. By doing this we will introduce the characteristic order parameter

of disordered systems: the overlap matrix qαβ = 1
N

∑N
i=1 S

α
i S

β
i . While a complete account of

the (quite technical) intermediate steps of the free-energy calculation can be found in [“Spin
Glass Theory and Beyond”, Marc Mézard, Giorgio Parisi and Miguel A. Virasoro, Wiley] and
[“Statistical Physics of Spin Glasses and Information Processing”, Hidetoshi Nishimori, Oxford
University Press], the present lesson will be concluded by an informal physical explanation of
how the hierarchical ansatz for the matrix qαβ captures the hierarchical nature of the free-energy
landscape (minima nested into minima) typical of the spin-glass low-temperature phase. The
presence of a multi-valley free-energy landscape is indeed the characteristic feature of systems
with quenched disorder as the SK model. While the hierarchical structure of the landscape of
the SK model is represented by the highly non trivial full replica-symmetry-breaking ansatz
(full-RSB), the more simple one-step replica-symmetry-breaking ansatz will be discussed in the
next lecture on the p-spin model.

7.4.1. Details on the SK model. We consider a magnetic system where each spin can take
the values Si = {+1,−1}, as for the Ising and Hopfield model. Again, the Hamiltonian

(7.89) H[~S] = −
∑
i<j

JijSiSj

contains all possible interactions between spins and is thus of fully long-range kind.
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Now the couplings are quenched but not to store patterns, they are chosen at random from
a Gaussian distribution

(7.90) P (Jij) =

√
N

2πδ2
exp

{
− N

2δ2
(Jij)

2

}
with zero mean (thus, no ferromagnetism is present) and variance

〈
J2
〉

= δ2/N with constant
δ. This choice leads to a free energy

(7.91) FJ = − 1

β
logZJ ∼ N

that is extensive for every realization of the disorder J . We can fix δ = 1 and check this with a
high-temperature expansion (small β expansion) of ZJ :

ZJ =
∑
~S

exp

β∑
i<j

JijSiSj


'
∑
~S

1 + β
∑
i<j

JijSiSj

+
∑
~S×~S

β2

2

∑
i<j

∑
k<l

JijJklSiSjSkSl(7.92)

where the sum
∑

~S 1 = 2N because it runs over all possible 2N spin states. The sums with spins
are zero whenever a spin, say Si, appears an odd number of times in the summand because
every contribution with Si = +1 is canceled by another one with Si = −1. This is the case for
the sum

∑
i<j JijSiSj . For the same reason, in the β2 sum there survives a nonzero term when

i = k and j = l, so that

ZJ ' 2N

1 +
β2

2

∑
i<j

J2
ij

(7.93)

whose logarithm is

logZJ ' N log 2 + log

1 +
β2

2

∑
i<j

J2
ij


' N log 2 +

β2

2

∑
i<j

J2
ij︸ ︷︷ ︸

must be of order N

(7.94)

In the last term there appear the variance of the disorder, ∼ N2 times. Imposing extensivity,
N2
〈
J2
〉
∼ N , we see that it must be

〈
J2
〉
∼ N−1. This is common to many disordered systems

with long-range couplings.

The goal of our calculation is to compute the free energy in the thermodynamic limit

FJ = lim
N→∞

− 1

β
logZJ .(7.95)

This task might look at a first glance as a hopeless one since the partition function ZJ depends
on quenched random variables. How is it possible to compute FJ while keeping the random
couplings Jij fixed in the Hamiltonian? And even if it was possible, how general will be the
result? I.e., will it depend on the specific disorder instance, namely the choice of the coefficients
{Jij}i<j , or will be universal with respect to any choice of the coefficients? The solution to
all this problems/questions comes in the form of the self-averaging property of the free energy
with respect to the disorder instance. The question on how relevant is the dependence of FJ on
{Jij}i<j is indeed a well posed one: considered as a function of random couplings, FJ is itself a
fluctuating random variable. Two different choices of the random coupling sets, which in practice
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correspond to experiments on two different samples, let us label them as J (0) = {J (0)
ij }i<j and

J (1) = {J (1)
ij }i<j , yields in general two different values of the free-energy, i.e.,

FJ(0) 6= FJ(1) .(7.96)

The self-averaging property of the free energy tells us precisely that the difference between
these two values is irrelevant in the thermodynamic limit, i.e., the standard deviation of FJ is
negligible with respect to its average value. By denoting the average of FJ with respect to the
probability distribution of random couplings as

FJ =

∫ ∞
−∞

∏
i<j

dJij P (Jij) FJ ,(7.97)

and the standard deviation as

σ(FJ) =

√
(F 2

J )− (FJ)2(7.98)

we have that the self-averaging property reads in formula as

(7.99) lim
N→∞

σ(FJ)

FJ
∼ 1√

N

The self-averaging property of the free energy is thus crucial: in practice it tells us that in
the thermodynamic limit, up to negligibly small fluctuations, any choice of the disordered cou-
plings yields the same result. From the point of view of our calculation it means that in the
thermodynamic limit we can average over the disorder instances:

(7.100) lim
N→∞

− 1

Nβ
logZJ = lim

N→∞
− 1

Nβ
logZJ ≡ f,

where fJ = FJ/N is the free energy per spin.

As for the RFIM, here it is useful to use the replica trick, here in the version based on the
math identity log x = limn→0(xn − 1)/n. Hence, we focus on ZnJ rather than logZJ . For n
replicas indexed by α or β (with n remaining integer till the very last step of the calculation),
we have

ZnJ =

∫ ∞
−∞

∏
i<j

dJijP (Jij)(ZJ)n

=

∫ ∞
−∞

∏
i<j

dJijP (Jij)
∑

{Sα1 ,...,SαN |α=1,...,n}

exp

β
n∑

α=1

∑
i<j

JijS
α
i S

α
j

(7.101)

This formula contains a nice linear contribution of random Jij ’s. In (7.101) replicas share the
same disorder but are uncoupled (no α and β together) and spins are coupled.

For a single Jij with an explicit version of P (J), the resulting Gaussian integral yields

∫ ∞
−∞

dJij exp

{
− N

2δ2
(Jij)

2 + βJij

n∑
α=1

Sαi S
α
j

}
= exp

β2δ2

2N

n∑
α,β=1

Sαi S
β
i S

α
j S

β
j

(7.102)

(β as an index of a replica should be not confused with the inverse temperature). Note that
this average over disorder is coupling replicas. Moreover, it is decoupling spins because

∑
i<j ≈
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1
2

∑
i,j and back to the full (7.101) this gives

ZnJ =
∑

{Sα1 ,...,SαN |α=1,...,n}

exp

β2δ2

2N

n∑
α,β=1

N∑
i<j

Sαi S
β
i S

α
j S

β
j


= exp

{
nNβ2δ2

4

} ∑
{Sα1 ,...,SαN |α=1,...,n}

exp

β2δ2

2N

n∑
α<β

(
N∑
i=1

Sαi S
β
i

)2
 ,

(7.103)

which contains no J ’s and displays only single site spins Si. In order to obtain the second line
from the first one of Eq. (7.103) we played a little bit with the summation indices and made an
approximation which is valid only in the large N limit. For the double summation over (latin)
spin indices we used

N∑
i<j

Sαi S
β
i S

α
j S

β
j =

1

2

 N∑
i,j=1

Sαi S
β
i S

α
j S

β
j −N


∼=

1

2

(
N∑
i=1

Sαi S
β
i

) N∑
j=1

Sαj S
β
j

 =
1

2

(
N∑
i=1

Sαi S
β
i

)2

,

(7.104)

where we have dropped the term N because it is subleading with respect to the double sum,
which contains O(N2) terms. We can thus write:

n∑
α,β=1

N∑
i<j

Sαi S
β
i S

α
j S

β
j
∼=

n∑
α,β=1

1

2

(
N∑
i=1

Sαi S
β
i

)2

=
n∑

α=1

1

2

(
N∑
i=1

Sαi S
α
i

)2

+
1

2

n∑
α 6=β

(
N∑
i=1

Sαi S
β
i

)2

=
nN

2
+

n∑
α<β

(
N∑
i=1

Sαi S
β
i

)2

,(7.105)

which is what needed to go from the first to the second line of Eq. (7.103). Note that the
argument used to neglect the diagonal elements of the double summation

∑
ij , i.e. that they

are N terms with respect to an overall amount of O(N2) terms, cannot be applied to the double
summation over replica indices

∑
αβ, where the diagonal elements are n and the off-diagonal

ones are n(n− 1), for the simple reason that we are going to take the limit n→ 0 and not the
limit n → ∞, as we did for number of spins in the systems: in the case of replica indices the
diagonal elements do not represent a subleading contribution.

Let us spend few words of comment on the last two equations: it is only thanks to the fact
that in the original Hamiltonian the summation

∑
i<j goes over all independent pairs of indices,

i.e., over O(N2) terms, that we could write the double summation typical of any model with a
two-body interaction as a single summation squared. Models where this kind of simplification
is possible are usually known as mean-field models, i.e., models where, due to the large number
of mutual interactions between the degrees of freedom, one is able, after a certain number of
manipulations, to write the free-energy of the systems in terms of an order parameter which
carries no spatial index (the latin index i in the present case). This means that in mean-field
models any information and/or dependence on spatial dimensions is lost. Such models yield
thus only an approximate description of real physical model—try to figure out for a moment
the difference between our SK model and a disordered Ising model on a 2D or a 3D lattice—but
enjoy a very nice feature: they can be solved exactly. The possibility to unfold the double
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summation as shown above is thus crucial because this allows us to introduce a global order
parameter of the kind

qαβ =
1

N

N∑
i=1

Sαi S
β
i .(7.106)

We will comment further on the meaning of qαβ in what follows, here let us just note that if

we plug the definition
∑N

i=1 S
α
i S

β
i = Nqαβ into (7.103) we get for the exponential term of the

partition function

exp

Nβ2δ2

2

n∑
α<β

qαβ

 ,(7.107)

which puts in evidence that the argument of the exponential is an extensive function, i.e., it is
proportional to the number of spin N in the system, and that it depends only on a global order

parameter, qαβ. Nevertheless, this naive replacement of
∑N

i=1 S
α
i S

β
i with qαβ is mathematically

wrong, because the spins Sαi are summation variables inside the partition function and we must
do a proper change of variables, like in an integral. The correct way to introduce the order
parameter qαβ is by means of the Hubbard-Stratonovich transformation that we have already
met discussing the Random-Field Ising Model and the Hopfield model. By doing this, the

quantity qαβ appears simply as an auxiliary variable to linearize the squared sum (
∑N

i=1 S
α
i S

β
i )2;

we will demonstrate later that, in the large-N limit, the definition of qαβ is really the one given
in (7.106).

In the following we adopt the shorthand notation

(7.108)
∑

{Sα1 ,...,SαN |α=1,...,n}

→
∑
§
.

AS we have said, the square in (7.103) is thus unfolded by a HS transformation,

ZnJ ≈
∑
§

∫ ∞
−∞

∏
α<β

dqαβ exp

−Nβ2δ2

2

∑
α<β

q2
αβ

︸ ︷︷ ︸
[1]

exp

β2δ2
∑
α<β

qαβ

N∑
i=1

Sαi S
β
i

︸ ︷︷ ︸
[2]

(7.109)

At this step, It is worth noting that in the first line of (7.103) we had a double summation over
replica indices of the kind

∑n
α,β=1 which we replaced with 2

∑n
α<β, to that only independent

couple of indices where effectively considered. Although we still have to prove the identity
in (7.106), from it we can argue quite naturally that the matrix qαβ is symmetric, i.e. qαβ =
qβα, so that only half of its off-diagonal elements are independent integration variables. The
appearance of terms linear in the index i allows to factorize the trace operator. Focusing on the
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second term [2],

∑
§

exp

{
β2δ2

∑
α<β

qαβ

N∑
i=1

(
Sαi S

β
i

)
︸ ︷︷ ︸

identical for all i

}

=
N∏
i=1

∑
§

exp

β2δ2
∑
α<β

qαβ

(
Sαi S

β
i

)


=

∑
§

exp

β2δ2
∑
α<β

qαβS
αSβ


N

≡

∑
§

exp {L(qαβ)}

N

=
[
Tr eL(qαβ)

]N
= exp

{
N log

[
Tr eL(qαβ)

]}
(7.110)

with operator L(qαβ) = β2δ2
∑

α<β qαβS
αSβ. The form of (7.110) is ready for the not-so-

unexpected saddle point approximation, as is the full formula for the partition function,

ZnJ = exp
{
nNβ2δ2/4

}∫ ∞
−∞

∏
α<β

dqαβ

exp

−Nβ2δ2

2

∑
α<β

q2
αβ +N log

[
Tr eL(qαβ)

]
=

∫ ∞
−∞

∏
α<β

dqαβe
−nNA[qαβ ](7.111)

with the function A[qαβ] defined as

(7.112) A[qαβ] = −β
2σ2

4
+
β2δ2

2n

∑
α<β

q2
αβ︸ ︷︷ ︸

energetic

− 1

n
log
[
Tr eL(qαβ)

]
︸ ︷︷ ︸

entropic

,

where we have emphasized which are the energetic and the entropic contributions to A[qαβ].
Note the 1/n factor embedded in A.

At this point we are not at all done, but we can say that the remaining part of the calculation
is only technical: we must find the correct ansatz for the structure of the matrix qαβ and take
the limit n → 0 in the appropriate way. This last part of the work is usually the subject of
graduate courses and can be found in PhD summer schools lecture-notes like [“Replica Theory
and Spin Glasses”, F. Morone, F. Caltagirone, E. Harrison, G. Parisi, arXiv:1409.2722 ]. The
purpose of this lecture was just to show that the calculation of the SK free-energy can be cast
as a variational problem where the variational parameter, which is, not by chance, the order
parameter of the systems, is a matrix. Indeed what we are left with in (7.111) is just the
integration over the matrix elements qαβ, of which, due to the overall prefactor N , we can get
rid with a saddle-point approximation. That is, we write

ZnJ =

∫ ∞
−∞

∏
α<β

dqαβe
−nNA[qαβ ] ≈ exp

{
−nNA[q∗αβ]

}
,(7.113)
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where the matrix elements q∗αβ are the solution of the saddle-point equations

(7.114)
∂A

∂qαβ
= 0, ∀qαβ =⇒ q∗αβ

To check the correctness of the calculation when plugging an ansatz for q∗αβ in A, one must
always take care that in all terms of A which depend on qαβ a prefactor n can be singled out, so
that it simplifies with the 1/n outside brackets on the right-hand side of (7.112). The final step
to compute the free energy per spin amounts the to the switching of the two limits N →∞ and
n→ 0, which allows us to write:

f = lim
N→∞
n→0

− 1

Nβ

Zn − 1

n

= lim
n→0
N→∞

− 1

nNβ

(
Zn − 1

)
= lim

n→0
N→∞

− 1

nNβ

(
1− nNA[q∗αβ]− 1

)
f =

1

β
A[q∗αβ](7.115)

This swap of limits is a risky step that everybody is normally willing to take because mathe-
maticians then cover it rigorously. To recover the notion of overlap in qαβ, note that at some
point after the HS transformation we had (7.109), which we rewrite as

ZnJ = exp
{
nNβ2δ2/4

}∑
§

∫ ∞
−∞

∏
α<β

dqαβ

exp

−Nβ2δ2

2

∑
α<β

q2
αβ + β2δ2

∑
α<β

qαβ

N∑
i=1

Sαi S
β
i


= exp

{
nNβ2δ2/4

}∑
§

∫ ∞
−∞

∏
α<β

dqαβ exp {−Nu(qαβ, S
α
1 , . . . , S

α
N )}(7.116)

with u defined as

u(qαβ, S
α
1 , . . . , S

α
N ) = β2δ2

1

2

∑
α<β

q2
αβ −

∑
α<β

qαβ
1

N

N∑
i=1

Sαi S
β
i

(7.117)

The saddle point requires

(7.118)
∂u

∂qαβ
= 0, ∀qαβ =⇒ qαβ =

1

N

N∑
i=1

Sαi S
β
i

This qαβ is the overlap, i.e., again the scalar product between spins of two replicas (in the
Hopfield model it was between a replica and a pattern). Therefore, the physical meaning of qαβ
is the quantification of replicas similarity. Due to this, qαβ must be a real symmetric matrix.

We cannot give all the details of the calculation of the SK behavior. It turns out that
the model has a phase transition of the second order at a critical temperature Tc, between
and ergodic phase at high temperature and a non-ergodic phase at low T . In the latter case,
the phase space of all possible spin configurations splits into disjoint ergodic components. A
realization of the system sits in one of these isolated pieces of the phase space forever if the
temperature stays low.

There remains to choose the best ansatz for qαβ. A possibility is the replica symmetric
ansatz: qαα = 1 and qαβ = q0 for α 6= β. This ansatz means that a replica is maximally identical
to itself while equally dissimilar to all other ones. It works well for T > Tc, where all states are
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Figure 4. Sketch of the hierarchical overlap of replicas in the SK model at low temperature
in the non-ergodic phase. The matrix in the top-left corner is the overlap matrix qαβ . The
diagram should be continued iterating indefinitely the magnifications.

more or less equally probable, but in the non-ergodic phase it does not capture the complexity
of the phase space.

At low temperature the SK model displays a fascinating hierarchy of replica similarities,
which is summarized by a label: full replica symmetry breaking. It is better to think of n very
large, even if the n→ 0 is mandatory at the end. As we have said, according to a very reasonable
physical intuition, the matrix qαβ must be a symmetric one. Furthermore, let us notice that
each row of the matrix qαβ represents all the possible values of the overlap between a given
replica of the system, say α, with other replicas of the system, say β 6= α. Since we ask that no
replica is privileged with respect to the others, it is also reasonable to ask that all the elements
appearing in a row of the matrix qαβ also appear in all the others, up to a permutation. The only
degree of freedom we are left with is thus the rule to assign the matrix elements in a row. The
mesmerizing discovery of Parisi in the late ’70 was that the only symmetry which is broken at the
critical temperature Tc and represents the breaking of ergodicity is the permutation symmetry
of the matrix elements within a single row of the matrix qαβ, i.e., different replicas might have
different overlaps. In this perspective let us fix the row index of the matrix element qαβ in order
to parameterize the elements on a row with only one index: q1i = qi, where i runs from 1 to n
and we have dropped the row index. The way permutation symmetry is broken is decided by
the assignment rule:

i −→ qi(7.119)

Once this rule is fixed for one row of the matrix, the structure of the other rows follows, since
they are just a permutation of the first. This leads to the so-called Parisi’s matrix, which we
briefly discuss in what follows.

A large n allows to introduce a sequence of similarity levels. In the first stage of symmetry
breaking, the n× n matrix qαβ is represented as composed of m1 ×m1 submatrices M1 and Q0

(Figure 4). The matrix Q0 is fully composed of elements equal to q0, the typical lowest overlap
between replicas. The matrix M1 is found n/m1 times on the diagonal of qαβ.
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At a second stage, by inspecting the structure of M1, one finds that it resembles that of
qαβ in the first stage. It is composed of submatrices M2 and Q1 of size m2 × m2, where Q1

is filled by elements q1 > q0 while M2’s are sequenced on the diagonal of M1. The story
goes on like this, forming a sequence q0 < q1 < q2 < q3 < . . . < qk and correspondingly
n > m1 > m2 > m3 > . . . > mk. In order to reconnect with the discussion above on the
elements of a single row, let us notice that a k-steps breaking of the permutation symmetry
between replicas corresponds to the assignment of k different values to the n elements of a row
for the matrix qαβ. As long as k is finite the number of elements mi in the row (with 1 < i < n)
which take the value qi can be interpreted as being proportional to the probability that two
replicas have the overlap qi.

A question is then immediately in order: how to recognize which is the the correct level k of
breaking of the replica permutation symmetry? And why a breaking should be considered at all?

The first thing to say is that the replica-symmetric ansatz, i.e., the assumption that all the
off-diagonal elements of qαβ are identical (qαβ = q for all α and β such that α 6= β), leads to

a negative entropy at zero temperature: S(0) = − 1
2π ≈ −0.17. This is clearly a wrong result

because we have discrete variables and the entropy has a unique and unequivocal meaning: it
is the logarithm of the number N of microstates accessible at a given temperature and since
N ≥ 1 we have S = logN ≥ 0. If one then tries to compute the free-energy assuming one
level of breaking of the permutation symmetry between replicas, i.e., to subdivide the n × n
matrix in blocks of size m1 and with possible value of the overlap q1 and q0, obtaining the
correct value of q0, q1 and m1 from the extremization of the free-energy, one finds that at T = 0
the entropy is still negative but less negative, i.e. with the one-step-replica-symmetry-breaking
ansatz it takes the value S(T = 0) = −0.1. Although the result is still incorrect, this tells
us that we are moving in the right direction, because the negative entropy has become less
negative, hence less wrong. We will discuss in the next lecture a model where the assumption
of only one step of replica symmetry breaking is the correct one: the p-spin model, which has
two main differences with the SK model presented here, continuous variables and non-linear
interactions. By increasing further the number of levels k at which the symmetry between
replicas can be broken in the SK model, one obtains a zero-temperature entropy which is closer
and closer to zero. This suggested to consider the possibility of an infinite number of breakings
of the permutation symmetry between replicas, which, at least for the SK model, turns out to
be the correct assumption. Before commenting further on this, let us just quote the formal and
unequivocal criterion to discriminate whether the assumption of breaking at “k” levels is right
or wrong. The criterium to say whether a saddle-point solution is good is that it must be stable,
namely it must be a minimum of the free energy. The stability of the stationary point is decided
by the eigenvalues spectrum of the Hessian

M(αβ),(γδ) =
∂2A

∂qαβ∂qγδ
(7.120)

It is only when this Hessian matrix has all the eigenvalues positive that we have a stable solution.
If one computes the eigenvalues of M(αβ),(γδ) one finds that the smallest one, the replicon, is
negative for any finite number k of breakings. In the SK model any saddle-point solution with a
finite number of breakings is unstable. The name replicon comes from the famous paper of J.R.L
de Almeida and D.J. Thouless where the (un-)stability of the replica-symmetric solution of the
SK model was studied for the first time [“Stability of the Sherrington-Kirkpatrick solution of a
spin glass model”, J.R.L. de Almeida and D.J. Thouless, J. Phys. A 13 (1978)] (D.J Thouless was
precisely the same guy awarded with Nobel prize in 2016 for the Kosterliz-Thouless transition).
For the details of all this analysis we refer the curious student to the literature quoted at the
beginning of this lecture. The final outcome is, as anticipated, that the correct ansatz sends
k → ∞, which is called the full -replica-symmetry-breaking (full-RSB) ansatz. The infinite
number of elements in the sequence of overlaps q1 < . . . < qk suggested as well the title of the
paper where the full-RSB was proposed for the first time [“Infinite number of order parameters
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Figure 5. Sketch of the hierarchical energy landscape of the SK model at low temperature in
the non-ergodic phase: q0 < q1 < q2 < . . ..

for spin-glasses, Giorgio Parisi, Phys. Rev. Lett. 43, 1754 (1979)].
Such infinite number of order parameters reflects the hierarchical multi-valley structure of

the SK energy landscape at low T , as sketched in Figure 5, with an infinite sequence of minima
nested into others. Clearly, by zooming out the details of this fractal structure of nested minima,
we find that the typical overlap between configurations trapped within the same minimum is
larger the smaller is the scale at which we have zoomed the landscape, as shown in Fig. 5.

Our last comment is on the n → 0 limit, on which we did not spend (on purpose) a lot of
words so far. We warn the curious students that this is a highly a technical part, which might
be challenging for a naive intuition of what is going on. In any case, all details are given in the
references at the beginning of the lecture.

When k → ∞ and at the same time n → 0 one has to plug an infinite number of different
choices q1 < . . . < qk into a zero dimensional matrix. It turns out that the most convenient thing
to do ( ... and it works!) is to replace the numerable sequence q1 < . . . < qk with a continuous
function

q(x) : [0, 1]→ [0, 1],(7.121)

where the role played by the subscript index i in qi has been taken up by the real variable x, of
which the overlap q becomes a function. A function q(x) in the unit interval [0, 1] is an element
of an infinite-dimensional space, i.e., there is an infinite number of choices to define it: this is
OK, because it is in fair agreement with the infinite number of order parameters we where after.
Then, it can be shown (see the references) that the role played by the breaking parameter mk,
i.e., that of representing the probability to find the overlap qk between two replicas, is played
in this sort of continuum limit by the variable x in the domain of q(x). In particular it can be
shown that the function q(x) : x ∈ [0, 1]→ q ∈ [0, 1] has a well defined inverse

x[q] : q ∈ [0, 1]→ x ∈ [0, 1],(7.122)
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which can be identified as the cumulative distribution of the overlap, i.e., the probability density
distribution P (q) of the overlap turns out to be

P (q) =
dx

dq
(7.123)

To conclude, let us just quote the final result, i.e., the form of the free-energy per spin when
the two limits of an infinite number of breakings, k →∞, and of zero size of the overlap matrix,
n→ 0, are taken:

βf = −β
2σ2

4

[
1 +

∫ 1

0
dx q(x)2 − 2q(1)

]
−
∫ ∞
−∞

du√
2π

e−u
2/2 f0(0, u

√
q(0)),(7.124)

where the function f0 is the solution of the the so-called Parisi equation,

∂f0(x, h)

∂x
= −σ

2

2

dq

dx

[
∂2f0

∂h2
+ x

(
∂f0

∂h

)2
]
,(7.125)

where h is a magnetic field which has to be in general taken into account in the Hamiltonian,
i.e., H = −

∑
i<j JijSiSj − h

∑N
i=1 Si. In all the calculations presented in this lectures we set

h = 0 for simplicity, but the generalization to the case of h > 0 is straightforward.

To conclude, let us just try to recognize the origin of the terms of the full-RSB free energy
in (7.125). It is quite easy to recognize the contribution of the energetic term of (7.112):

−β
2σ2

4
+
β2δ2

2n

∑
α<β

q2
αβ =⇒ −β

2σ2

4

[
1 +

∫ 1

0
dx q(x)2 − 2q(1)

]
.(7.126)

Just recall that
∑

α<β = n(n− 1)/2 and that all the n rows of the matrix qαβ are identical up
to a permutation, so that it is not difficult to believe that in the limit n→ 0 one has∑

α<β

q2
αβ ≈ n(n− 1)

∫
dq q(x)2 → −n

∫
dq q(x)2(7.127)

Much less recognizable—indeed it requires several intermediate steps and tricks to be derived—
is the connection of the entropic contribution with its original form at finite n:

1

n
log
[
Tr eL(qαβ)

]
≈

∫ ∞
−∞

du√
2π

e−u
2/2 f0(0, u

√
q(0))(7.128)

7.5. Spherical p-spin model

In the previous lecture we have studied the Sherrington-Kirkpatrick (SK) model, which is the
mean-field version of the disordered Ising model. The most puzzling result is that the correct way
to represent the breaking of ergodicity in the SK model is by an infinite sequence of breakings
of the permutation symmetry between replicas, which, on physical grounds, corresponds to a
low temperature phase characterized by fractal free-energy landscape with an infinite hierarchy
of minima nested into each other.

The situation is in a sense much simpler in the so called spherical p-spin model, another
disordered model with quenched random couplings characterized by continuous spins and non-
linear couplings, i.e., in the Hamiltonian it is assumed p > 2 for the order of the nonlinear
p-body interaction:

H(σ) = −
∑

i1>...>ip=1

Ji1,...,ipσi1 ...σip(7.129)
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where the N continuous spin variables are subject to the global spherical constraint

N∑
i=1

σ2
i = N,(7.130)

Each of the quenched couplings Ji1,...,ip follows a Gaussian distribution

p(J) =
N

p−1
2

√
p!π

exp

{
−J

2Np−1

p!

}
,(7.131)

where, as we are going to show, the scaling of the variance with N is chosen precisely as to have
extensive free-energy.

The peculiarity of this model, attracting a lot of interest since the end of the the 80s, is its
low-temperature ergodicity-breaking transition characterized by a one-step replica-symmetry-
breaking ansatz at the critical temperature TK , which is known for this model as the Kauzmann
temperature. At TK phase space splits many disjoint ergodic components, each corresponding
to a minimum of the free energy. In the large N limit there are only two possibilities: two
configurations of the system sampled with the Boltzmann probability

PJ(σ) = e−βHJ [σ] δ

(
N −

N∑
i=1

σ2
i

)
(7.132)

can be either belonging to the same ergodic component, i.e., the basin of the same free-energy
minimum, hence their overlap is q1 > 0, or belonging to different minima, so that their overlap
is q0 = 0. As we are going to see the probability to have overlap q0 or q1 depends on the
breaking parameter m, which is of course a real number in the interval m ∈ [0, 1]. Within the
large-N saddle-point approximation there is no other option, not a possible continuum degree of
similarity q(x) like in the SK model, no structure of nested minima. Also, the different minima
of the free-energy are separated by extensive, i.e., ∼ N , free-energy barriers, at variance with
the SK model.

7.5.1. Free-energy calculation. Much in the same way as in the SK model, also in the
p-spin model the free-energy is self-averaging, so that it can be computed as the result of a
saddle-point calculation of the replicated partition function:

f = lim
N→∞

− 1

Nβ
logZ = lim

n→0
N→∞

− 1

nNβ
(Zn − 1)(7.133)

Let us now consider the case p = 3 till some point of the calculation because the formulae are
shorter, but please keep in mind that the steps are identical for any p and so do the result. We
thus assume the interaction

H = −
∑
i<j<k

Jijkσiσjσk,(7.134)

The partition function reads as

Zn =

∫ ∞
−∞

∏
i<j<k

dJijkP (Jijk)

[∫ ∞
−∞

N∏
i=1

dσi e
β
∑
i<j<k Jijkσiσjσk δ

(
N −

N∑
i=1

σ2
i

)]n

=

∫ ∞
−∞

∏
i<j<k

dJijkP (Jijk)

∫ ∞
−∞
Dσ eβ

∑
i<j<k Jijk

∑n
α=1 σ

α
i σ

α
j σ

α
k ,(7.135)

where we have used the symbol

Dσ =
N∏
i=1

n∏
α=1

dσαi

n∏
α=1

δ

(
N −

N∑
i=1

(σαi )2

)
,(7.136)
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to denote, with a compact notation, an integration over spin variables satisfying the spherical
constraint for each replica α. It is more convenient to leave the spherical constraint hidden in
the integration measure symbol.

In the Hamiltonian there is a number
∑

i<j<k = N(N −2)(N −3)/3! of independent triplets
of interacting spins, and we have a corresponding number of integrations over the disorder
coefficients Jijk to do. Each of them is a simple Gaussian integral, which, dropping prefactors,
is ∫ ∞

−∞
dJijk exp

{
−J2

ijk

Np−1

p!
+ Jijkβ

n∑
α=1

σαi σ
α
j σ

α
k

}
=

= exp

 β2p!

4Np−1

(
n∑

α=1

σαi σ
α
j σ

α
k

)2


= exp

 β2p!

4Np−1

n∑
α,β=1

σαi σ
β
i σ

α
j σ

β
j σ

α
k σ

β
k

 ,(7.137)

from which, by collecting all the O(N3) integrations and by recalling that

p!
N∑

i<j<k

≈
N∑
ijk

(7.138)

we get

Zn =

∫ ∞
−∞
Dσ exp

 β2p!

4Np−1

∑
i<j<k

n∑
α,β=1

σαi σ
β
i σ

α
j σ

β
j σ

α
k σ

β
k


=

∫ ∞
−∞
Dσ exp

 β2

4Np−1

n∑
α,β=1

(
N∑
i=1

σαi σ
β
i

)  N∑
j=1

σαj σ
β
j

 (
N∑
k=1

σαk σ
β
k

)
=

∫ ∞
−∞
Dσ exp

β2N

2

n∑
α<β

(
1

N

N∑
i=1

σαi σ
β
i

)p(7.139)

In the expression of the replicated partition in the last line of Eq. (7.139) it is easy to recognize
the expression of the matrix order parameter that we have already introduced in the discussion
of the SK model, the overlap:

Qαβ =
1

N

N∑
i=1

σαi σ
β
i ,(7.140)

As in the case of the SK, this expression shows that the overlap is a quantity (a) free from spin
indices, i.e., a global order parameter; and (b) of order O(1), so that we correctly have that the
argument of the exponential is an extensive function, i.e., β2N/2

∑n
α<β Q

p
αβ. The possibility to

write things in terms of a global order parameter comes once again due to the fact that the sum
in the Hamiltonian of Eq. (7.134) is over all the independent p-uplets of spins, whose number
is of order O(Np). Hence each spin participates to a number of interactions of order O(Np−1),
i.e., infinite in the thermodynamic limit N → ∞. Due to this property, we known that once
again we are dealing with a mean-field model, which has no space structure but can be solved
exactly.

Since p > 2, in the p-spin model we cannot introduce anymore the variables Qαβ by means
of a Hubbard-Stratonovich transformation, as we did for the RFIM, Hopfield model and the
SK model. The change of variables from spins to overlaps is pursued by exploiting the formal
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identity:

1 =

∫
dQαβδ

(
NQαβ −

N∑
i=1

σαi σ
β
i

)
,(7.141)

where we have assumed the following normalization for the Dirac-delta integral∫ ∞
−∞

dx δ(x− x0) = N,(7.142)

so that ∫ ∞
−∞

dx δ(Nx− x0) =
1

N

∫ ∞
−∞

dx δ
(
x− x0

N

)
= 1(7.143)

To carry on easily the integration over the spins, it is worth recalling the integral representation
of the Dirac delta,

δ(x) =

∫ ∞
−∞

dk

2π
eikx.(7.144)

For the purpose of the following calculation it is convenient to regard the integral on the right-
hand side of Eq. (7.144) as an integral over a contour in the complex k plane, but rotated of

π/2 radians (Wick rotation), which amounts to change variables from k to s = eiπ/2k, and then
shift the (now parallel to the Im(k) axis) contour to the point s0, which is assumed to be on
the right of any singularity in the complex k plane (any deformation of the integration contour
which does not pass through singular point is allowed by complex analysis). This means we can
rewrite

δ(x) =

∫ s0+i∞

s0−i∞

ds

2πi
esx.(7.145)

The need to account for a shift of the contour to a (still) unknown value of s0 is due to the
following reason. In general the Dirac delta is used within an expression of the kind,

I(β) =

∫
dxfβ(x)δ(x)

=

∫ s0+i∞

s0−i∞

ds

2πi

∫
dxfβ(x)esx

=

∫ s0+i∞

s0−i∞

ds

2πi
g(s),(7.146)

where g(s) is, in full generality, a function in the complex s plane which might have singularities.
In order for the Wick rotation to be done correctly the value s0 must lie on right of any singularity
of g(s). Since the analytic structure of g(s) depends on fβ(x), which is not yet intervening when
the integral definition of δ(x) is introduced first, one must leave the value s0 generic. By
repeating the above steps with the Dirac delta appearing in Eq. (7.141) and taking into account
that we need to introduce the integration over n(n− 1)/2 elements of matrix Qαβ, we get:

1 =

∫ ∞
−∞

∏
α<β

dQαβ
∏
α<β

δ

(
NQαβ −

N∑
i=1

σαi σ
β
i

)

=

∫ ∞
−∞

∏
α<β

dQαβ

∫ λ0
αβ+i∞

λ0
αβ−i∞

∏
α<β

dλαβ exp

N∑
α<β

λαβQαβ −
∑
α<β

λαβ

N∑
i=1

σαi σ
β
i

 ,

(7.147)
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where the meaning of the extremes of integration for λαβ variables should be clear from the
previous discussion. Summarizing, we get:

(7.148) Zn =

∫
DQDλDσ exp

β2N

2

∑
α<β

Qpαβ +N
∑
α<β

Qαβλαβ −
∑
α<β

λαβ

N∑
i=1

σαi σ
β
i

 ,

where we have used the abbreviation∫ ∞
−∞

∏
α<β

dQαβ

∫ λ0
αβ+i∞

λ0
αβ−i∞

∏
α<β

dλαβ =

∫
DQDΛ(7.149)

From the expression in Eq. (7.148) it is clear that the integration over the spin variables can be
easily carried on and amounts to N identical integrals. By recalling that

∑
α<β = 1

2

∑n
α,β=1 we

can write ∫ ∞
−∞

N∏
i=1

n∏
α=1

dσαi exp

−1

2

n∑
α,β=1

λαβ

N∑
i=1

σαi σ
β
i


=

N∏
i=1

∫ ∞
−∞

n∏
α=1

dσαi exp

−1

2

n∑
α,β=1

λαβσ
α
i σ

β
i




=

[∫ ∞
−∞

n∏
α=1

dσα exp

{
−1

2
σTΛ σ

}]N

=

(
1√

det Λ

)N
,(7.150)

where σ = (σ1, . . . , σn) indicates a vector in replica space and Λ is the n × n matrix with
elements λαβ. By finally exponentiating the determinant in Eq. (7.150) our replicated partition
function has become and integral where, due to the N factor appearing in front of every term in
the argument of the exponential, the possibility to complete the calculation with a saddle-point
approximation seems really at hand. Indeed we have the expression:

Zn =

∫
DQDΛ exp [−NS(Q,Λ)]

n∏
α=1

δ (1−Qαα) ,(7.151)

with

S(Q,Λ) = −β
2

4

n∑
αβ=1

Qpαβ −
1

2
Tr (QΛ) +

1

2
log det Λ,(7.152)

at which we arrive via the following identities, we have also used the symmetry property of the
matrix Λ (or Q, equivalently):∑

α<β

Qαβλαβ =
1

2

n∑
αβ=1

Qαβλαβ =
1

2

n∑
αβ=1

Qαβλβα =
1

2
Tr(QΛ)(7.153)

Since we are interested in the large-N limit we can evaluate the integration over the elements
of Λ by means of a saddle point approximation:∫

DΛ exp [−NS(Q,Λ)] ≈ exp [−NS(Q,Λ∗[Q])] ,(7.154)

where the symbol Λ∗[Q] indicates the dependence of Λ on Q single out by the saddle-point
equations:

∂S

∂λαβ
= 0 =⇒ Λ∗[Q].(7.155)
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By then recalling the identity

log det Λ = Tr log Λ,(7.156)

and letting the derivation operator ∂/∂λαβ pass through the “Tr” operator for both the two
terms Tr (QΛ) and Tr log Λ one can finally obtain the identity

Qαβ =
∂

∂λαβ
log Λ = (Λ−1)αβ.(7.157)

The reader has to recall at this point that the elements of the matrix Q are real numbers. This
means, as soon as we set λ∗αβ = (Q−1)αβ, that the saddle-point of the function exp{−NS(Q,Λ)}

with respect to each integration
∫ λ0

αβ+i∞
λ0
αβ−i∞

dλαβ lies precisely at the intersection between the

(vertical) integration contour and the real axis, i.e. a point which is shifted with respect to the
origin. Finally, according to a somehow a posteriori argument, we have an explanation of why
to choose λ0

αβ 6= 0 in the in the integration symbol of Eq. (7.147) and that this quantity turns
out to be precisely

λ0
αβ = λ∗αβ = (Q−1)αβ.(7.158)

As a conclusion we can simply replace Λ withQ−1 into the expression of S(Q,Λ) of Eq. (7.152),
getting (apart from terms constant with respect to Q and β)

Zn ≈
∫
DQ exp [−NS(Q)]

n∏
α=1

δ (1−Qαα) ≈ exp [−nNA(Q∗)] ,(7.159)

with

A(Q) = −β
2

4n

n∑
αβ=1

Qpαβ︸ ︷︷ ︸
energetic

− 1

2n
log detQ︸ ︷︷ ︸
entropic

,(7.160)

and where Q∗ in the last term of Eq. (7.159) is the solution of the saddle-point equations

∂A

∂Qαβ
= 0 =⇒ Q∗αβ.(7.161)

As we did in the SK model, also here in Eq. (7.160) we have emphasized which are the energetic
and the entropic contributions to the free energy. Let us also stress that the matrix Q∗ that
satisfies the saddle-point equations must also satisfy the spherical constraint conditions imple-
mented by the Dirac deltas in Eq. (7.159): whatever is the ansatz for the matrix Q∗, it must be
one with all elements equal to 1 on the diagonal.

The free-energy of the system is retrieved by taking the limit n→ 0 of the replicated partition
function:

βf = lim
n→0
N→∞

− 1

nN

(
Zn − 1

)
= lim

n→0
N→∞

− 1

nN

(
e−nNA(Q∗) − 1

)
=(7.162)

= lim
n→0
N→∞

− 1

nN
(1− nNA(Q∗)− 1) = A(Q∗)(7.163)

7.5.2. Replica Symmetric Solution. In order to write the free energy in Eq. (7.160) one
needs an assumption on the matrix Qαβ. The simplest is a replica-symmetric assumption, i.e.,
all elements outside the diagonal are identical to each other and equal to q0, whereas on the
diagonal they are equal to 1:

Qαβ = Diagn(1− q0, . . . , 1− q0) + q0 1n ⊗ 1n,(7.164)

where Diagn(1− q0, . . . , 1− q0) denotes a n×n diagonal matrix with all elements equal to 1− q0

on the diagonal, while 1n ⊗ 1n denotes an n× n matrix with all elements identical to 1.
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In order to compute the free-energy one takes advantage of the known formula for the
determinant of a matrix with elements identical outside the diagonal, i.e., a matrix A of the
kind

A = Diagn(a1 − b, . . . , an − b) + b 1n ⊗ 1n.(7.165)

There is a general formula for the determinant of the matrix A, which reads:

det(A) =
n∏
i=1

(ai − b) + b
n∑
i=1

∏
j=1
j 6=i

(aj − b)(7.166)

Adapting the result for the determinant of A to the replica symmetric matrix Q of Eq. (7.164)
one gets

det(Q) = (1− q0)n + nq0(1− q0)n−1 = (1− q0)n
(

1 + n
q0

1− q0

)
,(7.167)

so that

lim
n→0

1

n
log det(Q) = lim

n→0

1

n

[
n log(1− q0) + log

(
1 + n

q0

1− q0

)]
= log(1− q0) +

q0

1− q0
(7.168)

Much more easily we obtain the energetic contribution in the limit n→ 0:
n∑

αβ=1

Qpαβ = n+ n(n− 1)q2
0.(7.169)

Putting together the pieces we thus have:

f = lim
n→0

− 1

β

β2

4n

n∑
αβ=1

Qpαβ +
1

2n
log detQ


= − 1

2β

{
β2

2
[1− qp0 ] + log(1− q0) +

q0

1− q0

}
.(7.170)

The value of the free energy in the replica symmetric phase can be finally obtained by replacing
q0 in Eq. (7.170) with the value q∗0 which satisfies the saddle point equation ∂f/∂q0 = 0. A
peculiarity of the number of replicas n→ 0 is that the correct q∗0 in this limit maximizes rather
than minimizes the expression in Eq. (7.170). This can be intuitively understood in light of the
change of sign of the energetic contribution implied by the limit n→ 0. Very heuristically, one
has that the analytic continuation to values n < 1 implies

− 1

4β
Qpαβ =⇒ 1

4β
qp0 .(7.171)

Then, we must recall the general thermodynamic relation

F = U − TS(7.172)

where F is free energy, U the internal energy and TS the temperature times entropy. From
Eq. (7.172) it is clear that the convexity of free energy function must have the same sign as that
of the energy, thus a change of sign of the latter implies the same for the former.

7.5.3. Replica Symmetry Breaking. It is well known that the p-spin model has a critical
temperature TK at which ergodicity is broken: phase space splits in a multiplicity of disjoint
ergodic components corresponding to different free-energy minima. In particular, what hap-
pens at TK is that the free-energy obtained with a one-step replica symmetry breaking (1-RSB)
ansatz becomes lower than the replica-symmetric energy. Not only, but it can be checked that
the 1-RSB saddle point is a stable one, so that no further levels of breakings of the permutation
symmetry between replicas are needed to characterize the glassy phase at T < TK .
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The typical structure of the matrix order parameterQαβ under the 1-RSB hypothesis consists
of a square block circulant matrix made of n/m blocks which are themselves m×m matrices of
two kinds: Aij = δij + (1− δij) q1 and Bij = q0, where the block structure reads as

(7.173) Q =


A B · · · B

B
. . .

. . .
...

...
. . .

. . . B
B · · · B A


More in detail one has something of the kind

(7.174) Q =



1 q1 q1

q1 1 q1 q0

q1 q1 1
1 q1 q1

q1 1 q1

q1 q1 1
. . .

1 q1 q1

q0 q1 1 q1

q1 q1 1


,

where we have

(7.175)


Qαα = 1

Qαβ = q0 (different free-energy minima)

Qαβ = q1 (same free-energy minimum)

so that in each row one has (n−m) elements equal to q0 and (m− 1) elements equal to q1. In
the matrix in Eq.(7.174) the choice m = 3 is just for representation purposes.

The calculation of the energetic contribution to the free-energy from the 1-RSB ansatz is
quite easy. From the above considerations on the number of elements equal to q0 and the number
of elements equal to q1 in each row and taking into account that all the n rows provide the same
contribution we have

lim
n→0

−β
2

4n

∑
αβ

Qpαβ = lim
n→0

−β
2

4n
· n [1 + (m− 1)qp1 + (n−m)qp0 ]

= −β
2

4
[1−mqp0 − (1−m)qp1 ](7.176)

Then, in order to evaluate the entropic contribution log det(Q), one needs to compute the eigen-
values of Qαβ within the 1-RSB ansatz and their corresponding multiplicities. From the calcu-
lation shown in the appendix here below it turns out that Qαβ has three different eigenvalues,
with different multiplicities, which read:

λ1 = 1− q1 multiplicity = n− n

m

λ2 = m(q1 − q0) + (1− q1) multiplicity =
n

m
− 1

λ3 = nq0 +m(q1 − q0) + (1− q1) multiplicity = 1

so that

log det(Q) =n

(
1− 1

m

)
log(1− q1) +

( n
m
− 1
)

log [1−mq0 − (1−m)q1] +

+ log[nq0 + 1−mq0 − (1−m)q1].(7.177)
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Then in the limit n→ 0 we have, using the properties of the logarithm,

lim
n→0

log[1−mq0 − (1−m)q1 + n q0] =

lim
n→0

log[1−mq0 − (1−m)q1] + log

(
1 + n

q0

1−mq0 − (1−m)q1

)
=

= log[1−mq0 − (1−m)q1] + n
q0

1−mq0 − (1−m)q1
,(7.178)

The contribution log[1−mq0−(1−m)q1] not proportional to n coming from the last term added
on the right hand side of Eq. (7.177) cancels with the same term with opposite sign coming from
the second addendum on the right of Eq. (7.177). In conclusion, as expected within a 1-RSB
scheme, we have that the entropic term is proportional to n,

log det(Q) =n
[m− 1

m
log(1− q1) +

1

m
log

(
1 + n

q0

1−mq0 − (1−m)q1

)
+

+
q0

1−mq0 − (1−m)q1

]
(7.179)

Putting together the pieces, in the limit n→ 0 the free energy from the 1-RSB ansatz formally
reads as:

(7.180) − 2βF =
β2

2
[1−mqp0 − (1−m)qp1 ] +

m− 1

m
log(1− q1)+

+
1

m
log(1−mq0 − (1−m)q1) +

q0

1−mq0 − (1−m)q1
.

The expression in Eq. (7.180) is of course a formal one for the reason that we have not yet decided
which physical meaning to attach to the number m. Indeed, for integer n, the parameter m is
such that 1 < m ≤ n ... but what about the limit n→ 0?

7.5.4. The breaking parameter m. In order to provide a correct interpretation for m in the
limit n → 0 let us stick on its meaning when n is integer and large. Already in the case of the
SK model we have mentioned that “the number mk of times that the value qk appears in a row
of the matrix Qαβ is proportional to its probability”. Being q∗αβ a solution of the saddle-point
equations we have thus that a meaningful definition of the overlap probability reads as

PJ(q) =
2

n(n− 1)

∑
α<β

δ
(
q − q∗αβ

)
,(7.181)

where the average over the disorder for PJ(q) is mandatory for two reasons: 1) first, the prob-
ability of the overlap is not a self-averaging quantity (not proved here), which means that even
in the N → ∞ limit it depends on the instance of random couplings, hence the subscript J is
needed; 2) second, since the 1-RSB (or whatever k-RSB) ansatz for Qαβ is made inside formulas
coming when the free energy has been already averaged over the disorder, for consistency the
overlap matrix q∗αβ chosen for the saddle point must be related to the the disorder average of

the overlap probability distribution PJ(q). This said, let us show how PJ(q) reads explicitly
according to its definition in Eq. (7.181) in the case of a 1-RSB ansatz:

PJ(q) =
1

n(n− 1)

∑
α 6=β

δ
(
q − q∗αβ

)
=
m− 1

n− 1
δ(q − q1) +

n−m
n− 1

δ(q − q0).(7.182)

From the expression in Eq. (7.182) we have that the näıve way to take the limit n → 0, i.e.,
sending n to zero while leaving m untouched, which seems in contradiction with the inequality
m < n, leads to:

lim
n→0

PJ(q) = m δ(q − q0) + (1−m) δ(q − q1)(7.183)
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We are thus at the end. From the expression of PJ(q) in Eq. (7.183) it is clear that in order to
have it well defined as a normalized probability distribution there is only one possible interpre-
tation for the parameter m: it must be a number in the interval [0, 1].

We have thus learned that the limit n → 0 implies a kind of switch in the definition of m,
i.e., from a natural number in the interval 1 < m ≤ n to a real number in the interval m ∈ [0, 1].
At this stage, in order to completely solve the thermodynamics of the p-spin we just have to fix
q0, q1 and m at the different temperatures.

7.5.5. The critical temperatures TK and Td. Now that the nature of the variational pa-
rameter m has been established we have to look for solutions of the 1-RSB equations:

∂f

∂q0
= 0,

∂f

∂q1
= 0,

∂f

∂m
= 0.(7.184)

The usual strategy is to solve the first two equations at fixed m, and then plug m, q0(m) and
q1(m) into the free-energy, inspecting numerically for which value m = m∗ it has a maximum.
Clearly m, q0 and q1 are variational parameters that depend on the temperature. A peculiarity
of the p-spin model is that, at variance with the SK, the study of the mean-field equations for
m, q0 and q1 tells us that there are two critical temperatures, Td and TK with Td > TK , which
represent respectively the critical temperature for dynamical ergodicity breaking (Td) and the
critical temperature for thermodynamic ergodicity breaking (TK), also known as the ideal glass
transition temperature.

Before studying the saddle-point equations there is an aspect worth noticing, namely that
by plugging m = 1 into the 1-RSB free energy of Eq. (7.180) we get back exactly the RS free
energy of Eq. (7.170). It was therefore more economic to study directly the 1-RSB free energy,
keeping in mind that the RS free energy is its special case.

Summarizing, from the study of the 1-RSB saddle-point equations in (7.184) there are three
interesting regimes emerging:

• T > Td: The saddle-point equations admit only one trivial solution: q1 = q0 = 0 and
m = 1. This is the ergodic replica symmetric phase. There are no free energy minima in
the landscape.

• TK < T < Td: There is still the trivial solution that we have for T > Td but also a new
non-trivial one appears: q1 > q0 and m = 1. This solution, which has the same free-energy
of that at T > Td, is the signature that many free-energy minima separated by extensive
energetic barriers arise as soon as T < Td. For a detailed study of this regime, a more
advanced course is needed. Here we can only say (without proving it) that the number of
such minima at a given free energy, N (f), is found to be exponentially large in the size of
the system, i.e.

N ≈ exp [NΣ(f)] ,(7.185)

where Σ(f) is a quantity known in the jargon of glassy systems as configurational entropy.
One can attach to these minima the notion of states, much like the positive or negative
magnetization states of a ferromagnet at low temperature. The reason for this is that,
due to the infinite energy barrier separating them, any dynamics starting with an initial
condition in one of these states remains trapped there forever (no tunneling is allowed, at
least in a men-field model). They thus represent disjoint ergodic components of phase space,
a sort of prelude of the ergodicity breaking transition taking place at the lower temperature
TK < Td. Nevertheless, from a thermodynamic point of view, states are irrelevant above
TK since the probability that the system ends up into one of them is exponentially small,
precisely in force of of their exponential abundance, i.e.,

pstate ∼ exp [−NΣ(f)](7.186)
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This thermodynamic irrelevance of the states above TK is reflected precisely by the
fact that the solution with q1 > q0 and m = 1 has the same free-energy of the one with
q0 = q1 = 0 and that if we ask for the probability to find two configurations at overlap
q1 > 0 this is zero even according to the definition of P J(q) given in Eq. (7.183).

• T < Tk: In this regime we find both the solution with q0 = q1 = 0 and m = 1 and the
replica-symmetry-broken one with q1 > q0 and m < 1, corresponding to finding with finite
probability two configurations of the system at finite overlap, see Eq. (7.183). In particular,
if one compares the free energy of the RS solution and of the 1-RSB one, when T < TK
the 1-RSB solution has a smaller free energy,

T ≤ TK =⇒ f(q1 > q0,m < 1) < f(q1 = q0 = 0,m = 1).(7.187)

Hence, for temperatures below TK , thermodynamic equilibrium is determined by the glass
phase, where the systems remains trapped forever in one of the states. The ergodicity-
breaking transition taking place in the p-spin model at TK is usually known as the ideal glass
transition or, more precisely the Random First-Order Transition (RFOT). The RFOT name
comes from the fact that the ergodicity-breaking transition at TK has a mixed character
between a first and second order transition. This happens because the distribution PJ(q)
is bimodal already at the transition temperature T = TK , with a secondary peak at a finite
distance from the origin, corresponding to q1 > q0 already at T = TK [see Eq.(7.183)]—
a feature typical of a first-order transition—while at the same time for the transition at
TK there is no latent heat, much like a second-order or continuous transition. “Random
First-Order” was therefore introduced to refer to something which is a kind of “smoothed
first-order transition”.

7.5.6. Appendix. Consider an m×m matrix:
α β · · · β
β α · · · β
...

...
. . .

...
β β · · · α


Its generic element can be written as:

(7.188) cij = αδij + β (1− δij)

The eigenvalues equation reads:

n∑
j=1

cijvj =
n∑
j=1

αδijvj + β (1− δij) vj = λvi(7.189)

(α− β) vi + β
m∑
j=1

vj = λvi(7.190)

If
∑n

j=1 vj = 0 (can be done in m− 1 ways by choosing different values for vj):

λ = α− β

else sum over i (and
∑m

j=1 vj 6= 0):

(α− β)
m∑
i=1

vi + β
m∑
i=1

m∑
j=1

vj = λ

m∑
i=1

vi(7.191)

(α− β)

m∑
i=1

vi +mβ

m∑
i=1

vi = λ

m∑
i=1

vi(7.192)

divide by
∑m

j=1 vj :

λ = α+ (m− 1)β
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So we have λ1 = α− β with degλ1 = m− 1 and λ2 = α+ (m− 1)β with degλ2 = 1. The replica
symmetric matrix is a block circulant matrix where the first row block is:A B . . . B︸ ︷︷ ︸

f − 1 times


Aij = δij + q1 (1− δij)

Bij = q0

f = n/m

where n is the number of replicas. The eigenvalues of A are:

λ1A = 1− q1 deg1 = m− 1

λ2A = 1 + (m− 1)q1 deg2 = 1

The eigenvalue of B are:
λ1B = 0 deg1 = m− 1

λ2B = mq0 deg2 = 1

Now A and B commute and they are the same kind of circulant matrix of first row (α, β, . . . , β)
solved above. The block matrix is the block analogue of this kind of circular matrix and be-
cause A and B commute the eigenvalues of this matrix have the same form when we make the
substitution α → λA and β → λB; there is only one requirement: we can mix only eigenvalues
having the same set of eigenvectors. In the end we get

λA = 1− q1 λB = 0(7.193)

λ1 = λA − λB = 1− q1(7.194)

λ1 = λA + (f − 1)λB = 1− q1(7.195)

and

λA = 1 + (m− 1)q1 λB = mq0(7.196)

λ2 = λA − λB = 1 + (m− 1)q1 +mq0 = 1− q1 +m(q1 − q0)(7.197)

λ3 = λA + (f − 1)λB = 1− q1 +m(q1 − q0) + nq0(7.198)

The eigenvalue λ2 has degeneracy f−1 = n
m−1 and λ3 has 1; since it is assured that the matrix

is diagonalizable the degeneracy of λ1 is n− n
m .

Problems

Following the notation of the lecture notes:

Exercise 7.1. Consider the Random Field Ising Model (RFIM), in which the disorder has
variance δ2. Proceed to arrive at the formula where the number n of replicas appears explicitly
in the magnetization m,

m =
1

Z1(m)

∫
dν√
2π

exp

[
1

2
ν2 + n ln 2 cosh(2βJm+ βδν)

]
tanh(2βJm+ βδν)

Exercise 7.2. With the self-consistent solution mSC(m) = m of the RFIM, by using the condi-
tion ∂mSC/∂m = 1 for the critical point, show that the phase transition between paramagnetic
phase and ferromagnetic phase takes place where this condition is satisfied:

(7.199) 2βJ

∫
dh p(h)

1

[cosh(βh)]2
= 1

Exercise 7.3. Show that at zero temperature in the RFIM there is a disorder-driven para-
ferromagnetic transition where the random field standard deviation δ and the coupling J satisfy
2J/δ =

√
π/2. For simplicity one may take δ = 1.
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