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The concept of BEC

Under normal conditions the atoms of a gas are distributed on

very many quantum states so that every single state is only

occupied by relatively few atoms.

In BEC one quantum state is occupied by a macrosopic number of

atoms. (Einstein 1924, for an ideal gas.)

For BEC in dilute gases, where interactions can be ignored in first

approximation, extremely low temperatures, of the order 10−8 K,

are required. This was first achieved in 1995.

Even for dilute gases, interactions are important. A mathematical

proof of BEC for interacting bosons is a very hard problem! So far

it has essentially only been achieved for:

a) Trapped gases in dilute limits.

b) A lattice gas of bosons with a hard core at exactly half filling.
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Notations

H1 single particle Hilbert space, a†(ψ), a(φ) creation and annihilation

operators on the bosonic Fock space H =
⊕∞

n=0H
⊗n

s
1 .

〈 · 〉 a (pure or mixed) state on the algebra generated by the creation

and annihilation operators; 〈A〉 = TrAρ̂ with ρ̂ ≥ 0, Tr ρ̂ = 1.

If the many-particle system is in the state 〈 · 〉, the average number of

particles in a (normalized) single-particle state ψ ∈ H1 is

Nψ = 〈a†(ψ)a(ψ)〉.

The average total particle number is

N =
∑
i

〈a†(ψi)a(ψi)〉

with {ψi} an ON basis of H1.
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Precise definition of BEC

The precise definition of BEC refers to a sequence of many-body

states, 〈 · 〉(N), with increasing (average) particle numbers N →∞,

rather than one particular such state.

BEC means that for all large N the many-body state 〈· 〉(N) has a

macroscopically occupied single particle state in the sense that

sup
ψ∈H1

Nψ/N ≥ C

with C > 0 independent of N .
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One-particle density matrix

If H1 = L2(Rd) (or `2(Zd)), the one-particle density matrix γ(1)(x, y) of

a state 〈 · 〉 is defined by

γ(1)(x, y) = 〈a†(x)a(y)〉.

For 〈· 〉 = 〈· 〉(N) this is the integral kernel of a nonnegative operator

with trace N . Spectral decomposition:

γ(1)(x, y) =
∞∑
i=0

Ni ψi(x)ψi(y)∗

with {ψi} ON, N0 ≥ λ1 ≥ · · · ≥ 0,
∑

iNi = N .

BEC means that

N0 = O(N)

in the sense that lim supN→∞N0/N > 0.
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Off Diagonal Long Range Order

Often (but not always!) one deals with spatially homogeneous systems

confined in a box Λ with side length L and volume |Λ| = Ld.

The thermodynamic limit means in this case that L→∞ as N →∞
with ρ = N/|Λ| fixed.

Taking ψ = |Λ|−1/21Λ as a trial state for γ we get

N0 ≥
1

|Λ|

∫ ∫
Λ×Λ

γ(x, y)dxdy.

Thus a sufficient criterion for BEC in the thermodynamic limit is

Off Diagonal Long Range Order (ODLRO):

lim
|Λ|→∞

1

|Λ|2

∫ ∫
Λ×Λ

γ(x, y)dxdy > 0.

On the other hand, (exponential) decay of γ(x, y) as |x− y| → ∞
proves absence of BEC.
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States and Hamiltonians

In practice, the states 〈 · 〉(N) are canonical or grand canonical Gibbs

states (thermal equilibrium states) corresponding to some Hamiltonian:

〈A〉 =
1

Z
TrAe−H/T , 〈A〉 =

1

Ξ
TrAe−(H−µN̂)/T .

Ground states, corresponding to T = 0, are also important examples.

Typical N -particle Hamiltonians:

HN =

N∑
j=1

(
−∇2

j + V (xj)
)

+
∑
i<j

v(xi − xj).

operating on symmetric wave functions for spinless bosons.
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The ideal Bose gas

If there is no interaction, v = 0, there is trivially BEC at T = 0; at fixed

N the ground state of HN is ψ⊗n0 with ψ0 the ground state of −∆ + V .

The case T > 0 is often considered in a box: V (x) = 0 in a box Λ of

side length L and∞ outside the box.

The text-book grand-canonical treatment gives in the standard

thermodynamic limit, N →∞, ρ := N/L3 fixed:

No BEC in dimensions d = 1 or 2.

For d = 3 BEC if

ρ > ρc(T ) = C T 3/2

or equivalently,

T < Tc(ρ) = C ′ρ2/3

with C = 2.612(mkB/2π~2)3/2, C ′ = C−2/3.
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The ideal Bose gas (cont.)

REMARKS:

The condition for BEC can also be written

ρ−1/3 < 0, 7261 λth.

with λth = (2π~2/mkB)1/2 T−1/2.

In a modified thermodynamic limit, where N/(lnNLd) rather than

N/Ld is kept fixed, there is BEC also in d = 2.

In a harmonic trapping potential, V (x) ∼ ω2|x|2, one may consider

a natural limit where Nωd is kept fixed as N →∞.

In this limit there is BEC for d = 2 and 3, but not for d = 1. If

Nω/ lnN is kept fixed there is also BEC for d = 1.

This shows the importance of specifying precisely the conditions under

which the limit N →∞ is taken.
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Dilute, interacting gases

When we leave the realm of ideal gases and take the (unavoidable)
interactions between the particles into account the situation changes
drastically. The case T = 0, which is trivial for an ideal gas, already
poses difficult challenges!

The mathematical theory of interacting Bose gases essentially started
with the pioneering work of Bogoliubov in 1947. He wrote the
Hamiltonian in terms of creation and annihilation operators in
momentum space and introduced ingenious approximation methods.
Refining these methods and making them rigorous has been a major
theme in the mathematical physics work on the subject in the past few
years.

On the other hand, this recent work was preceded by, and has an
overlap with, some basic mathematical results that have been obtain
since 1998 by working mainly in position space. The focus has been
on gases which are dilute in a sense to be made precise soon.
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The first quantity of interest at T = 0 is the many-body ground state

energy in the standard thermodynamic limit.

Assume a spherically symmetric pair interaction potential v ≥ 0 of

short range. The scattering length of v, denoted by a, is defined by

considering the zero energy scattering equation

−∇2f + 1
2vf = 0

with f → 1 at infinity. We have 0 ≤ f ≤ 1, and for r = |x| larger than

the range of v the solution has the form

f(r) =
(

1− a

r

)
which defines a. Partial integration, and v ≥ 0, gives also

8πa =

∫ {
2|∇f |2 + |f |2v

}
=

∫
fv ≤

∫
v.
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Consider now for v ≥ 0 the Hamiltonian of N bosons in a box Λ of side

length L with appropriate boundary conditions:

HN = −
N∑
j=1

∇2
j +

∑
1≤i<j≤N

v(xi − xj)

Denote the ground state energy by EQM(N,L).

Energy per particle in the limit N →∞, L→∞, ρ = N/L3 fixed:

e0(ρ) = lim
N→∞

EQM(N,L)/N

Ask for the low density asymptotics of e0(ρ). Low density means, by

definition,

a� ρ−1/3

Equivalently, a3ρ� 1.
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The basic formula for the energy (leading order asymptotics for dilute

gases) is

Theorem (Ground state energy, leading term)

For a3ρ� 1
e0(ρ) = 4π aρ (1 + o(1)).

Heuristic argument for the formula:

“For a dilute gas only two body scattering matters”, so

EQM(N,L) ≈ N(N − 1)

2
EQM(2, L) ≈ N2

2

8πa

L3
= N 4πaρ.

This heuristic argument is, however, very far from a rigorous proof and

it gives a wrong answer in two dimensions!
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The formula has an interesting history and it took almost 70 years to

establish it rigorously. (Lenz (1929), Bogoliubov (1947), Huang, Yang,

. . ., Lieb (50’s and 60’s), Dyson 1957, Lieb, JY 1998.)

A rigorous upper bound was given by Dyson in 1957 (for hard

spheres), and also a lower bound, that was, however, a factor 1/14 off

the mark. An asymptotically correct lower bound was not obtained until

40 years later by Lieb and JY.

Perhaps more important than the result itself was the method of proof

in the LY paper. It implied a localization of the kinetic energy in the

ground state, namely the fact that the ground state wave function is

essentially flat except in the neighbourhood of configurations where

pairs of points come close to each other. This was in particular

employed for the proof of BEC in the so-called Gross-Pitaevskii (GP)

limit by Lieb and Seiringer in 2002.
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Improvements of the formula e0(ρ) = 4πaρ(1 + o(1))

In 1957 Lee, Huang and Yang used an ingenious, but non-rigorous,

pseudopotential method to derive the formula

e0(ρ) = 4π aρ

(
1 +

128

15
√
π

(a3ρ)1/2 + o(
√
a3ρ

)
.

Proving it as a mathematical theorem was an open problem for many

decades!

In certain special cases lower bounds of this type were obtained by

Guiliani, Seiringer (2009), Lieb, Solovej (2009); and an upper bound

for regular potentials by Yau, Yin (2009).
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Finally, in 2019 Søren Fournais and Jan Philip Solovej succeeded in

proving a lower bound including the Lee-Huang-Yang term, for short

range L1- potentials: The energy of dilute bose gases, Annals of

Mathematics, 192, 893–976, (2020).

Very recently the Yau-Yin proof of the upper bound has also been

simplified and extended to include L3-potentials: Giulia Basti, Serena

Cenatiempo, Benjamin Schlein, arXiv:2101.06222

The long history of research of the ground state energy of a dilute

Bose gas, starting with Lenz’s paper of 1929 shows the complexity of

the problem. It is therefore very interesting that a simplified approach

exists which, although it has not yet been made completely rigorous,

gives the correct formulas including the Lee-Huang-Yang term.
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The “simple equation” of E.H. Lieb (1963)

Almost 60 years ago Elliott Lieb suggested a highly original approach
to the ground state properties, including BEC, of dilute Bose gases in
the infinite volume limit.

It is not completely rigorous because it rests on plausible, but so far
unproven, assumptions about factorization of the ground state wave
function (“Independence at Large Distances”).

The starting point is the observation that the ground state wave
function Ψ0 is positive, so the function itself and not only its square
defines a probability measure on configuration space.

Lieb then defines and studies the following ”correlation function”:

g2(x1 − x2) = lim
N→∞,|Λ|/N=ρ

|Λ|2
∫

Ψ0(x1, x2, x3, . . . xN )dx3 · · · dxN∫
Ψ0(y1, . . . yN )dy1 · · · dyN
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The ILD assumption is that g2 tends to a constant at infinity, and more

generally, the functions gn(x1, . . . , xn) define in the same way as g2 by

integrating out all variables in Ψ0 except the first n, tends to gn−1 if

xn →∞.

The ILD assumption reduces the ground state energy problem to a

study of an integro-differential equation for this function on R3 instead

of the Schrödinger equation for the full wave function on R3N .

With u(x) := 1− g2(x) and e := 1
2ρ
∫

(1− u(x))v(x) the equation is

(−∇2 + v(x) + 4e)u(x) = v(x) + 2eρ(u ∗ u)(x).

Already in 1963 Lieb showed how this equation gives the first terms

for the ground state energy including the Lee-Huang-Yang term.
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Very recently Lieb has come back to this approach in collaboration with

E. Carlen, I. Jauslin and M. Holtzmann. They have both studied it both

analytically and numerically and found very good agreement with

Monte-Carlo calculation of energies and Bose Einstein condensation

fraction for the full problem, not only at low densities.

Among these results is a formula, known from Bogoliubov’s theory, for

the depletion δ = limN→∞ 1− (N0/N) of the condensate

δ = (8/3
√
π)
√
ρa3 (1 + o(1)).

In particular, it claims complete condensation in the ground state if

a3ρ→ 0.

Reference: E. Carlen, I. Jauslin, E.H. Lieb, and M. Holtzmann. A fresh

look at a simplified approach to the Bose gas, ArXiv:2011.10869,
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Gross-Pitaevskii Theory

Consider now the N -body Hamiltonian with an external Potential V ,

representing a confining trap,

HN =

N∑
i=1

{
−∇2

i + V (xi)
}

+
∑

1≤i<j≤N
v(|xi − xj |).

The external potential comes with a natural length scale LV = e
−1/2
V

where eV is the spectral gap of −∇2 + V .

Study the ground state properties of HN and in particular BEC, in the

Gross-Pitaevskii (GP) limit where N →∞ with a fixed value of the GP

interaction parameter

g ≡ 4πNa/LV ≈ e0(ρ)/eV .

with ρ = N/L3
V .
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Fixing g has the physical meaning of fixing the ratio between the

interaction energy per particle and the spectral gap in the trap.

Note also: a3ρ ∼ g/N2 = O(1/N2) if g is fixed, so the GP limit is a

special case of a dilute limit.

The GP limit can be achieved either by keeping a fixed and scaling the

external potential V so that L ∼ N , or, by keeping V fixed and taking

a ∼ N−1. The latter can formally be regarded as a scaling of the

interaction potential:

v(r) = N2v1(Nr)
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In the GP limit the N -particle ground state can be described by

minimizing a functional of functions on R3, the GP energy functional

EGP[ϕ] =

∫
R3

(
|∇ϕ|2 + V |ϕ|2 + g|ϕ|4

)
d3x

with the subsidiary condition
∫
|ϕ|2 = 1.

Motivation for the term g|ϕ|4: With ρ(x) = N |ϕ(x)|2 the local density,

we have

Ng

∫
|ϕ|4 = 4πa

∫
ρ(x)2,

and 4πaρ(x)2 is the interaction energy per unit volume by the previous

analysis of the ground state energy of a homogeneous, dilute gas.
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The minimizer of the GP functional is the unique, nonnegative solution

of the (time independent) Gross-Pitaevskii equation

(−∇2 + V + 2g|ϕ|2)ϕ = µϕ

with a Lagrange multiplier µ.

We denote the minimizer by ϕGP(x). The corresponding energy is

EGP
g = EGP[ϕGP] = inf{EGP[ϕ] :

∫
|ϕ|2 = 1}.
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The GP energy functional can be obtained formally from the many

body Hamiltonian by replacing v(xi − xj) by 8πaδ(xi − xj) and making

a Hartree type product ansatz for the many body wave function, i.e.,

writing

Ψ(x1, . . . ,xN ) = ϕ(x1) · · ·ϕ(xN ).

This is not a proof, however, and the true ground state is not of this

form. In particular, if v is a hard sphere potential, 〈Ψ, HΨ〉 =∞ for all

such wave functions. Finite energy can in this case only be obtained

for functions of the form

Ψ(x1, . . . ,xN ) = ϕ(x1) · · ·ϕ(xN )F (x1, . . . ,xN )

with F (x1, . . . ,xN ) = 0 if |xi − xj | ≤ a for some i 6= j. The upper

bound on the energy is, in fact, proved by using trial functions of this

form with a function F involving the zero-energy scattering solution of

the two-body problem.
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Basic results of GP theory are the following theorems (Lieb, Seiringer,

JY (2000), Lieb, Seiringer (2002)):

Theorem (Energy asymptotics)

If N →∞ with g fixed (i.e., a ∼ N−1L), then

EQM(N, a)

NEGP
g

→ 1

Theorem (BEC in GP limit)

If N →∞ with g fixed, then the 1-particle density matrix γ(1) converges
to the projector on ϕGP:

1

N
γ(1)(x,x′)→ ϕGP(x)ϕGP(x′).

Jakob Yngvason (Uni Vienna) BEC 26 / 52



Sketch of the proof of BEC in a box Λ of side length L:

Notation: X = (x2, . . . ,xN ), ψX(x) = Ψ0(x,X). The depletion of the

condensate is

1−N0/N = 1− (NL3)−1

∫ ∫
γ(1)(x,x′)dxdx′ =

∫
dX‖ψX − 〈ψX〉‖2

Simple Poincaré inequality:

‖f − 〈f〉‖2 ≤ CL2‖∇f‖2

where 〈f〉 = L−3
∫
f .

Generalized Poincaré inequality for Ω ⊂ Λ = Ω ∪ Ωc:

‖f − 〈f〉‖2 ≤ C1L
2‖∇f‖2L2(Ω) + C2|Ωc|2/3‖∇f‖2.
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Localization of the kinetic energy:

While ∫
dX‖∇ψX‖2 ∼ ρa(1 + o(1))

(by the energy estimate) it is implicit in the 1998 proof of LY that there

is an Ω ⊂ Λ such that |Ωc|/L3 = o(1) and

(ρa)−1

∫
dX‖∇ψX‖2L2(Ω) = o(1).

Hence:

1−N0/N ≤ L2ρa× o(1) =
Na

L
× o(1)→ 0

if N →∞ with g = Na/L fixed.

An inspection of the estimates reveals in that the o(1) factor is in fact

O(N−1/10). Hence it shows also BEC beyond the GP limit, namely for

a ∼ N−1+κ provided κ < 1/10.
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Refinements of the GP limit theorems

Since the first derivation of the GP equation for a BEC condensate

from the many body Hamiltonian many new developments have taken

place, in particular:

Bose gases in rotating traps. (Lieb, Seiringer (2006), Nam,

Rougerie, Seiringer (2016),...

Time dependent equation: Erdös, Schlein, Yau (2006)...; Pickl

(2008),...; Brennecke, Schlein (2017),...

BEC beyond the GP limit: Lieb, Seiringer (2002); Adhikari,

Brennecke, Schlein et al (2020); Fournais (2020); Hainzl (2020),...

Optimal rates of convergence: (Boccato, Brennecke, Cenatiempo,

Schlein, Schraven (2020-21); Nam, Napiórkowski, Ricaud, Triay

(2020),...
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The study of the GP equation for gases in rotating traps and the

associated vortices is a research area of its own: (Aftalion (2006),

Ignat, Millot (2008); Seiringer (2008), Correggi, Rougerie, JY, (2008...)

The study of time dependent problems employs different techniques

from those for the time independent case

For rigorous Bogoliubov theory and its implications for GP see the

notes of the lecture course of Benjamin Schlein!

One works here with the Hamiltonian in momentum space:

H =
∑
p∈Zd

p2a∗pap +
∑

p,q,k∈Z2

v̂(k)a∗p−ka
∗
q+kapaq

and controlled approximations of it, separating out terms containing a∗0,

a0 combined with sophisticated manipulations on the rest.
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GP limit at T > 0 in a harmonic trap

The first experiments exhibiting BEC in dilute gases were carried out in

harmonic traps at very low, but still nonzero, temperatures. It is

important to develop GP theory and prove BEC also in such traps for

T > 0.

A combination of a GP limit and a thermodynamic limit at T > 0 was

studied in the paper: A. Deuchert, R. Seiringer, JY, Bose–Einstein

Condensation in a Dilute, Trapped Gas at Positive Temperature,

Commun. Math. Phys. 368, 723–776 (2019).

The trapping potential is here V (x) = ω2|x|2 − 3
2ω with length scale

Losc = ω−1/2. The thermodynamic limit is the one appropriate for

harmonic traps meaning that N →∞, but
N

(L2
oscT )3

= const.
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With β := 1/T and ω = L−2
osc this means N(βω)3 = const.

Explanation of thermodynamic limit: While the 1-particle ground state

and the GP minimizer have an extension ∼ Losc = ω−1/2, the thermal

cloud has an extension Rth � Losc, determined by R2
thL
−4
osc ∼ T . This

gives Rth ∼ L2
oscT

1/2. The average particle distance in the thermal

cloud, ∼ N−1/3Rth, is comparable to the thermal length, T−1/2,

precisely under the condition N/(L2
oscT )3 = const. Note also that this

implies

Rth/Losc ∼ N1/6.

For the GP limit we assume the the interaction potential v is scaled so

that its scattering length a satisfies

aN/Losc = const.
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Goal: Prove this picture

Figure: Emergence of BEC inside the thermal cloud of Rubidium atoms

Anderson et al., Observation of bose-einstein condensation in a dilute
atomic vapor, Science 269, 198 (1995)
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Length scales

Length scale condensate: ω−1/2

Length scale thermal cloud: ω−1/2 1
(βω)1/2

� ω−1/2

Andreas Deuchert (IST Austria) BEC at positive temperature July, 2018 7 / 14



The main results concern the free energy

F (β,N, a, ω) = − 1
β ln

(
Tr e−βHN

)
,

and the 1-particle density matrix

γ(1)(x1, x2) =
1

Z
Tr
(
â∗(x1)â(x2)e−βHN

)
in a combination of the GP and the thermodynamic limit. They show in

particular complete BEC with the same transition temperature as for

the ideal gas.

We denote the free energy and 1-particle density matrix for the ideal

gas by F0 and γ(1)
0 respectively, and the normalized ground state

wavefunction of the harmonic oscillator by ϕ0. Also, N0(N, β, ω)

denotes the particle number in the condensate for the ideal gas.
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Theorem (GP+thermodynamic limit)

lim 1
ωN

∣∣F (β,N, a, ω)− F0(β,N, ω)− EGP(N0, a, ω)
∣∣ = 0.

lim 1
N

∥∥∥γ(1)
N −

(
γ

(1)
N,0 −N0|ϕ0〉〈ϕ0|+ |φGP

N0,aN
〉〈φGP

N0,aN
|
)∥∥∥

1
= 0.

lim 1
N

∥∥∥γ(1)
N − |φ

GP
N0,aN

〉〈φGP
N0,aN

|
∥∥∥ = 0

The proof makes essential use of the separation of scales expressed

by Rth ∼ N1/6Losc which leads to the following expectations in the

combined limit:

The thermal cloud of the ideal gas remains essentially intact.

BEC takes place for T < T 0
c and the condensate can be described

by the GP minimizer, residing close to the center of the trap.
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Although the separation of scales and the diluteness simplifies the

problem the proof still requires some work! Besides the techniques for

the ground state energy one employs i.a.

The Gibbs variational principle for the free energy,

F = minΓ Tr [HΓ + Γ ln Γ]

IMS localization and localization in Fock space to separate the

region of extension O(Losc) from the thermal cloud

Estimates for relative entropies

Remark: The fact that the transition temperature for BEC and the

condensate fraction for the interacting gas stay the same as for the

ideal gas relies essentially on the diluteness of the system. Otherwise

deviation from these values can be expected and have been seen in

experiments. Capturing these effects mathematically is an open

problem.
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GP limit at T > 0 in a box (homogeneous gas)

Recently it has become experimentally feasible to confine cold Bose

gases in box-like traps where the gas is approximately homogeneous.

The theoretical analysis of the GP limit is more complicated than in the

harmonic trap because the condensate and the thermal cloud are not

spatially separated.

It could nevertheless be carried out by A. Deuchert and R.Seiringer:

Gross–Pitaevskii Limit of a Homogeneous Bose Gas at Positive

Temperature, Arch. Rational Mech. Anal. 236 (2020) 121–1271.

The results are analogous to those for a harmonic trap, but the

methods of proof are different. They build partly on techniques from

earlier theorems about the free energy of a dilute, homogeneous gas

in a thermodynamic limit. (Lower bound: Seiringer, 2008, using

coherent states, upper bound Yin, 2010.)
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Comments:

Besides coherent states a new bound for relative entropies is

derived and used.

The upper bound is simpler than in Yin’s paper (5 pages instead of

55!) because the in GP limit the gas is much more dilute than in

the general dilute case considered by Yin (ρa3 ∼ N−2 rather than

just� 1.)

The BEC is proved by considering bounds for a the Hamiltonian

perturbed by the projector on the free ground state

HN → HN + λ|ψ⊗N0 〉〈|ψ⊗N0 |

and differentiating at λ = 0.
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Optical lattices

Since about 20 years it has become possible to trap cold atoms in

optical lattices consisting of the intersection points of crossing laser

beams.

In this way artificial lattice gases have been created. A remarkable

development was the observation of a reversible transition from a

Bose-Einstein condensate to a state with localized atoms as the

strength of the periodic, optical trapping potential was varied. This is

an example of a quantum phase transition.

This has been studied theoretically within the so-called Bose-Hubbard

model, but not yet on the level of a rigorous mathematical theorem.

Rigorous results can, however, be proved for a hard core lattice gas.
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BEC as a quantum phase
transition



Hard core lattice gas

A lattice gas of bosons with a hard core interactions can approximately

be realized experimentally in optical lattices. The grand canonical

Hamiltonian for this model is

H − µN̂ = −1
2

∑
〈xy〉

(a†xay + axa
†
y)− µ

∑
x∈Λ

a†xax.

Here 〈xy〉 denotes nearest neigbours in a periodic box Λ ⊂ Zd.
The creation and annihilation operators a#

x and a#
y commute for x 6= y

but for x = y satisfy the CAR

a2
x = a†x

2
= a†xax + axa

†
x = 0

reflecting the hard core condition.
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Grand canonical state

The Hilbert Hilbert space is H =
⊗

x∈Λ C2. and the grand canonical

state is

〈 · 〉 ≡ 〈 · 〉Λ,µ =
1

Ξ
tr
(
· e−[H−µN̂ ]/T

)
.

The creation and annihilation operators can be represented as 2× 2

matrices with

a†x ↔
(

0 1
0 0

)
, ax ↔

(
0 0
1 0

)
, a†xax ↔

(
1 0
0 0

)
,

for each x ∈ Λ. More precisely, these matrices are tensored with the

unit matrix at the other lattice sites than x.
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The Hamiltonian as an XY model

The Hamiltonian can alternatively be written with aid of of the spin 1/2

operators

S1 =
1

2

(
0 1
1 0

)
, S2 =

1

2

(
0 −i
i 0

)
, S3 =

1

2

(
1 0
0 −1

)
because a†x = S1

x + iS2
x ≡ S+

x , ax = S1
x − iS2

x ≡ S−x .

When written in terms of the spin operators the grand canonical

Hamiltonian (up to a constant) has the form of the ”XY model”

HΛ,µ = −
∑
〈xy〉

(S1
xS

1
y + S2

xS
2
y)− µ

∑
x∈Λ

S3
x.
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Gauge symmetry

The grand canonical state is invariant under rotations of the spin

operators in the 12-plane. This continuous U(1) symmetry correspond

to the gauge transformations

a†x 7→ eiθa†x, a†x 7→ e−iθa†x

and reflects the fact that the Hamiltonian conserves the particle

number.

It is an important fact that BEC is equivalent to spontaneous breaking

of gauge symmetry in the thermodynamic limit. Continuous

symmetries are notoriously hard to break because of thermal

fluctuations that tend to restore the symmetry. This partly explains why

proofs of BEC are so difficult to achieve.
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Gauge symmetry breaking

The standard way to test for symmetry breaking is to add to the

Hamiltonian a symmetry breaking term multiplied by a parameter that

is taken to zero after the thermodynamic limit.

In the case at hand we can take the ”magnetization” in some direction

~n in the 12-plane, i.e, add a term

ε~n · ~S = ε |Λ|1/2~n · ~̃S0

with
~S =

∑
x∈Λ

(S1
x, S

2
x).

and the Fourier transformed operators

S̃1,2
p = |Λ|−1/2

∑
x∈Λ

S1,2
x exp(ip · x).
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Gauge symmetry breaking (cont.)

Let 〈 · 〉 ≡ 〈 · 〉Λ,µ,ε denote the state with the symmetry breaking term.

For finite Λ and ε > 0 we have

〈~n · ~S〉Λ,µ,ε 6= 0

but, because 〈 · 〉Λ,µ,ε=0 is rotationally symmetric for Λ fixed,

lim
ε→0
〈~n · ~S〉Λ,µ,ε = 0.

Spontanous breaking of the symmetry means that

lim
ε→0

lim
Λ→Zd

1

|Λ|
〈~n · ~S〉Λ,µ,ε 6= 0.
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Gauge symmetry breaking (cont.)

In the particle picture it is natural to express the symmetry breaking

term through the creation and annihilation operators:

ε |Λ|1/2
(
eiθ ã†0 + e−iθ ã0

)
.

Gauge symmetry breaking is thus equivalent to

lim
ε→0

lim
Λ→Zd

|Λ|1/2〈ã0〉Λ,µ,ε 6= 0
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BEC and gauge symmetry breaking

ODLRO, implying BEC, means on the other hand that

lim
|Λ|→∞

1

|Λ|2
∑

Λ

∑
Λ

γ(x,y) = lim
|Λ|→∞

1

|Λ|
〈ã†0ã0〉Λ,µ,ε=0 > 0.

By Cauchy-Schwarz

|〈ã0〉|2Λ,µ,ε ≤ 〈ã
†
0ã0〉Λ,µ,ε

so symmetry breaking implies BEC.

But also the converse is true! This is a general fact that would be

obvious if ã0 were a c-number but a complication arises because the

symmetry breaking term does not commute with the Hamiltonian.

Using coherent states a rigorous proof is, however, possible so

BEC↔ breaking of gauge symmetry
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Reflection positivity

The value µ = 0 corresponds to N = 〈N̂〉 = |Λ|/2, i.e., half filling. At

this special value (and only for this value!) the grand canonical state

has the property of reflection positivity which can be utilized to study

BEC.

So far it is the only known method for proving ODLRO in the

thermodynamic limit for interacting systems with a continuous

symmetry.

Since reflection positivity is not stable under perturbations the method

applies only to special models and parameter values.
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Reflection positivity (cont.)

Reflection positivity was originally introduced in relativistic quantum

field theory by Osterwalder and Schrader in 1973. In 1976 Fröhlich,

Simon and Spencer used it to prove ODLRO in some classical spin

systems. This was generalized to quantum spin systems by Dyson,

Lieb, Simon in 1977.

To define RP we split Λ into two equally large parts ΛL and ΛR (”left”

and ”right”) by means of a hyperplane cutting through bonds between

lattice points.

Let AL and AR be the algebras of observables localized in ΛL and ΛR

respectively. There is a natural involution Θ mapping AL into AR.

Reflection positivity of a state means, by definition, that for F ∈ AL

〈FΘF̄ 〉 ≥ 0.
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BEC; infrared bounds

Utilizing reflection positivity one can prove for the hard core lattice gas:

BEC for sufficiently low T if d ≥ 3, no BEC for high T .

BEC in the ground state if d = 2, no BEC for T > 0.

(Dyson, Lieb, Simon (1977); Kennedy, Lieb, Shastry (1988)).

For d = 1 there is no BEC (Lenard (1964))

The role of reflection positivity in the proof is that the associated

Cauchy-Schwarz inequalities (for reflexions w.r.t. different hyperplanes

in Λ) lead to bounds for the occupation of states with momenta 6= 0

(“infrared bounds”). For sufficiently low temperatures these bounds

show that the state with momentum 0 must be macroscopically

occupied.
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A quantum phase transition

The Hamiltonian can be modified by a periodic external potential

λ
∑
x∈Λ

(−1)xa†xax = λ
∑
x∈Λ

(−1)xS3
x

still maintaining reflection positivity.

By varying λ it is possible to mimic a reversible quantum transition

between BEC and localized atoms in an optical lattice. In 2003

Aizenman, Lieb, Seiringer, Solovej and JY proved:

For small λ BEC survives.

For large λ there is exponential decay of correlations and BEC is

destroyed.

For the proof of the latter statement a representation of the 1-particle

density matrix in terms of an imaginary-time path integral à la

Feynman-Kac was employed.
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!

BEC

Mott insulator
(at low T)

exp. decay of correlations
no BEC



Concluding remarks

The focus in this lecture has been on results on BEC that have been

proved as mathematical theorems.

For this reason I have essentially said nothing about the very

remarkable path integral approach to BEC and superfluidity that

Feynman introduced in 1953. Although mathematical physicists have

certainly taken notice of it, it has so far not led to a proof of BEC for a

dense system like liquid Helium.

Its standing in the community of computational physics is, however,

very high as can be seen from the following quote:
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“The quantum mechanics of many-body systems is usually presented

as a difficult subject, and the phenomena of Bose condensation and

superfluidity are often characterized as ill understood. One of

Feynman’s early successes with path integrals is often neglected, his

mapping with pathe integrals of a quantum system onto a classical

model of interacting “polymers”. . . . This gives us a simple classical

picture of a superfluid. Not only is it simple but it is exact for all

thermodynamic properties.”

D. M. Ceperley, Path integrals in the theory of condensed helium,

Reviews of Modern Physics 67, 279 (1995).

I would really love to see a rigorous mathematical implementation of

this vision!
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