Lecture 6

Hydrogen atom

Step 1 - Construction of the Hamlitonizn
Classical model $(d=3)$

- es, p are pointwise particles
- $m_{p} \gg M_{e} \Rightarrow$ we conner the proton fixed, at the origin of the reference frame

$$
\begin{aligned}
& H_{e}^{\text {class }}=\frac{p^{2}}{2 \mu}-\frac{e^{2}}{|x|} \leftarrow \begin{array}{c}
\text { couloub } \\
\text { potentiz| }
\end{array} \\
& \mu=\frac{m_{p}+m_{e}}{m_{p} \cdot m_{e}} \text { reduced mass moth }
\end{aligned}
$$

Quantum Hzmetioniza: $H_{e}=\overbrace{-\frac{\hbar^{2}}{2 \theta^{2}} x}^{H_{0}}+V_{e}$ in $L^{2}\left(\mathbb{R}^{3}\right)$

Prop. Ve is a smell perturhetion w.r.t. tho, namely there exist $a \in(0,1)$ and bio s.t. $\forall \phi \in D(H 0)$
(*) $\|v e \phi\| \leq a \|$ Hop $\|+b\| \phi \| \Rightarrow$ By Keto-Rellich the. vi res v_{1} the, $D\left(t_{0}\right)$ is s.
Proof of $(*)$ Write $v_{e}=\tilde{v}_{e}^{2} \chi_{R}+\tilde{v e}_{e}\left(1-x_{R}\right)$
where $\left\|V_{1}\right\|^{2} \leqslant \int_{B_{R}} \frac{d^{3} x}{|x|^{2}} \leqslant c,\left\|V_{2}\right\|_{\infty} \leqslant \sup _{|x|>R} \frac{C}{|x|} \leqslant C$

$$
\left\|V_{e} \phi\right\| \leq\left\|V_{1} \phi\right\|+\left\|V_{2} \phi\right\| \leq\left\|V_{1}\right\|\|\phi\|_{\infty}+\left\|V_{2}\right\|_{\infty}\|\phi\|_{2}
$$

$y>0$

$$
\begin{aligned}
\| \phi(x) \mid & \left.\leq c \int d^{3} k \frac{|\hat{\phi}(k)|}{\left(k^{2}+\eta^{2}\right)}\left(k^{2}+\eta^{2}\right) \leq \iint d^{3} k|\hat{\phi}(k)|^{2}\left(k^{2}+\eta^{2}\right)^{2}\right]^{1 / 2}[\underbrace{\int \frac{d^{3} k}{\left(k^{2}+\eta^{2}\right)^{2}}}_{\eta^{-1}}]^{1 / 2} \\
& \leq c \eta^{-1 / 2}\left\|H_{0} \phi+\eta^{2} \phi\right\| \leq c \eta^{-1}\left\|H_{0} \phi\right\|+c \eta^{3 / 2}\|\phi\|
\end{aligned}
$$

For M shf- large $\mathrm{Cm}^{-1}<1$

RR, In the proof of s.2. we used $V=V_{1}+V_{2}$

$$
\begin{aligned}
& \left\|v_{1}\right\|_{2} \leq \infty,\left\|V_{2}\right\|_{c s} \leq \infty \\
& H=-\Delta+V \quad H, D\left(H_{0}\right) \text { is S.2. }
\end{aligned}
$$

RR 2 $H e, D(H 0) s .2 \Rightarrow e^{-i \frac{t}{\hbar} t_{e}}$ is well defined $\forall t \Leftrightarrow$ the sol. to the Schriep. is well defined

Differently, in the clessical case, for ter anpular momentum, one can chose intel conditions 1.t. the sol. of Newtons ep. I only for a finite time (fall in the center).
step 2 (Quslitative) Analysis of the spectrum
Prop. The spectrum of the is bounded from below $\exists \lambda_{0}>0$ st. inf $\sigma\left(H_{e}\right) \geqslant-\lambda_{0}$ (stability of $y^{s t}$ kinol)
Proof. We want to show that for do loge enough $\left(H_{e}+\lambda_{0}\right)^{-1}=R_{e}\left(-\lambda_{0}\right)$ is bounoled.
$\left\|V e R_{0}\left(-\lambda_{0}\right) \phi\right\| \leq a\left\|H_{0} R_{0}\left(-\lambda_{0}\right) \phi\right\|+b\left\|R_{0}\left(-\lambda_{0}\right) \phi\right\|$ $\leq\left(a+\frac{b}{\lambda_{0}}\right)\|\phi\|$
\Rightarrow for to wff-large the op. Ne Ron (-d) has norm less then one.
the Noumann series $\sum_{n=0}^{+\infty}(-1)^{n}\left[V_{e} R_{0}(-\lambda)\right]^{n}$
converges in norm to the bounded operator

$$
\left[\mathbb{1}+V_{e} R_{0}(-\lambda)\right]^{-1}
$$

Hence

Prop. (Weyl's theorem) let $A, D(A)$ and $B, D(B)$ be sc operators in X and $R_{A}(z)=(A-z)^{-1}, R_{B}(z)=(B-z)^{-1}$ If there exist $z \in \rho(A) \cap \rho(B)$ sit. $R_{A}(z)-R_{B}(z)$ is a compact opector, then

$$
\sigma_{\text {cess }}(A)=\sigma_{\text {ess }}(B)
$$

Show If A Nf. bree and $V_{e}=V_{1}+V_{2}$

$$
\begin{array}{cc}
n \\
l^{2} & i_{0} \\
\hline
\end{array}
$$

Proof We use the resolven identity for $\lambda \in \rho\left(H_{0}\right) \cap \rho\left(\right.$ Ho$\left._{0}+V_{e}\right)$

$$
\begin{aligned}
& \left(H_{0}+V_{e}+\lambda\right)^{-1}=\left(t_{0}+\lambda\right)^{-1}+\left(H_{0}+V_{e}+\lambda\right)^{-1} V_{e}\left(l_{0}+\lambda\right)^{-1} \\
\Rightarrow & R_{e}(-\lambda)^{-1}-R_{0}(-\lambda)^{-1}=\frac{R_{0}(-\lambda)\left(11+V_{e} R_{0}(-\lambda)\right)^{-1}}{} V_{e} R_{0}(-\lambda)
\end{aligned}
$$

$\Rightarrow \operatorname{Re}(-\lambda)^{-1}-R_{0}(-\lambda)^{-1}$ is compact if $V_{e} R_{0}(-\lambda)$ is corpzat
to show compactness of Vebo(-1) wewnte

$$
\begin{array}{ll}
V_{e}=\underbrace{v_{e} x_{n}}_{V_{n}}+\underbrace{V_{e}\left(1-x_{n}\right)}_{W_{n}} & V_{n} \in L^{2}\left(\mathbb{R}^{3}\right) \\
& W_{n} \in L^{\infty}\left(\mathbb{R}^{3}\right) \\
& \lim _{n}\left\|W_{n}\right\|_{\infty}=0
\end{array}
$$

Consider first $V_{n} R_{0}(-\lambda)$ is an integral opoctor with Kernel

$$
\left.V_{n}(x) \frac{2 \mu}{\hbar^{2}} \frac{e^{-\sqrt{\frac{2 \mu \lambda}{\hbar}}(x-y)}}{4 \pi|x-y|}\right\} \begin{aligned}
& R_{0}(-\lambda) \operatorname{con} \\
& \text { becomp. } \\
& \text { explect. }
\end{aligned}
$$

$\forall n$

$$
\begin{aligned}
& \forall n \\
& \forall d x d y\left|V_{n}(x)\right|^{2} \frac{e^{-c|x-y|}}{|x-y|^{2}} \leq c \int d x\left|V_{n}(x)\right|^{2} \int_{0}^{+\infty} \frac{e^{-c r}}{r^{2}} d r \not \mathbb{R}^{2} \\
&<\infty
\end{aligned}
$$

$\Rightarrow V_{n} R_{0}(-\lambda)$ is an thelbert-Schmit op \Rightarrow compact
Moreover

$$
\begin{aligned}
& \text { \| } V_{e} R_{0}(-\lambda)-V_{n} R_{0}(-\lambda)\|=\| W_{n} R_{0}(-\lambda)\|\leqslant\| W_{n}\left\|_{w}\right\| R_{0}(-\lambda) \| \\
& \Rightarrow V_{n} R_{0}(-\lambda) \text { is the lint in norm of a sequence }
\end{aligned}
$$ of compact operators and therefore is ompect.

Absence of positwe egenvalues

Tool Consider the following strongly cont. group of unitary operators in $l^{2}\left(\mathbb{R}^{3}\right)$ (DILATION GROUP)

$$
\left(D_{s} f\right)(x)=e^{\frac{3}{2} s} f\left(e^{s} x\right), s \in \mathbb{R}
$$

Properties

$$
\begin{aligned}
& \left\|D_{s} f\right\|^{2}=\|f\|^{2} \quad f \in D\left(H_{0}\right) \Rightarrow D_{S} f \in D\left(H_{0}\right) \\
& \text { from } \Delta \text { (D-sf) } \\
& \left(D_{s} t_{0} D_{-s} f\right)(x)=e^{-2 s}\left(H_{0} f\right)(x) \\
& \left(D_{s} V_{e}^{-\frac{1}{x_{1}}} D_{-s} f\right)(x)=e^{-s}(\operatorname{Vef})(x) \\
& \text { Dst } \frac{1}{|x|}\left(D_{-s f}\right)(x)
\end{aligned}
$$

Prop . let E is an eigenvalue of the, $D(t \mathrm{O})$ and $\psi \in D(t+0)$ $\|\psi\|=1$ is the corresp. egest. Then (Vinel theorem)

$$
E=-\left\langle\psi, \operatorname{Hol}_{0} \psi\right\rangle=\frac{1}{2}\left\langle\psi, V_{e} \psi\right\rangle<0
$$

Proof. Assume $(H e-E) \psi=0$ then

$$
\begin{aligned}
0= & \left.\left\langle D_{-S} \psi,\left(H_{e}-E\right) \psi\right\rangle=2 \psi, D_{S}\left(H_{e} D_{S}^{-1} D_{S}-E\right) \psi\right) \\
& \left.=\left\langle\psi,\left(\left(D_{S} H_{e} D_{S}^{-1}\right)-E\right) D_{S} \psi\right\rangle=2 \psi,\left(e^{-2 s} H_{0}+e^{-s} V_{e}-E\right) D_{S} \psi\right\rangle
\end{aligned}
$$

Also

$$
\begin{aligned}
& 0=\langle\langle H-E) \psi\rangle \text { NS } 4\rangle- \\
& \Rightarrow 0=\lim _{s \rightarrow 0}\left\langle\frac{\left.\left.1-\frac{e^{-2 s}}{S} H_{0}+\frac{1-e^{-s}}{s} V_{e}\right) \psi, D_{s} \psi\right\rangle}{\left.\Rightarrow 2 H_{0} \psi+V_{e} \psi, \psi\right\rangle}\right. \\
& \Rightarrow-\left\langle 4, \operatorname{ll}_{0} \psi\right\rangle=\left\langle\psi,\left(l_{0}+V_{e}\right) \psi\right\rangle=E
\end{aligned}
$$

Remark While the proof of Virial theorem is based on the fact that $\left(D_{s} V e D-s f\right)(x)=e^{-s}(\operatorname{Vef})(x)$ and $\left(D_{s} t_{0} D-s f\right)(x)=e^{-2 S}\left(H P_{f}\right)(x)$ and cannot be generalized to orbitrosy potentials, the absence of positive eigenvalues con be proved for a large class of Hamutonians th $+V$ with $\lim _{|x| \rightarrow 7+\infty} V(x)=0$ following different methools. (See Reed-Simon IV, Chapter XIII, Sect.13)

Existence of negative egenirelves
Prop the point spectum Pp ate) consists of $2 n 00$ sequence find of negative eigenvalues with finite moltiphaty where

$$
E_{n}<E_{n+1}, \quad E_{1}=\text { infoo(tle), } e_{n} E_{n}=0
$$

no spec.

Proof For $\psi \in D(t e o)$
$\left\langle D_{-s} \psi\right.$, He $\left.D_{-s} \psi\right\rangle=e^{-2 s}\langle 4$, Hos 4$\rangle+e^{-s}\left\langle\psi, V_{e} 4\right\rangle\langle 0$
then

$$
\gamma_{\sigma}=\inf \theta(\text { He e }) \underset{\substack{\lambda \\ \hline 2 . o p}}{\equiv \text { inf } \phi \|=1}<\phi, H e \phi><0
$$ for slope engr

Next step Show $\operatorname{Ran} E_{\text {He }}((-\infty, 0))=\operatorname{Ran} E_{\text {He }}([\infty, 0))$ is infinte $\rightarrow \nexists$ infinite tepueice of nepetive ergenvalue
We shou that $\neq \infty$ set. of linealy indep-vedors $\left\{\varphi_{n}\right\}$ $\varphi_{n} \in \operatorname{Ran} E_{H e}((-\infty, 0))$.
Conside $f_{n}=\left(D_{-s_{n} f}\right)(x)=3^{-\frac{3 n}{2}} f\left(3^{-n} x\right) \quad S_{n}=n \log 3$ with $f \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right),\|f\|=1$ spp $f \subset\left\{x \in \mathbb{R}^{3}: 1 \leq|x| \leq 2\right\}$
$\Rightarrow \quad \operatorname{sipp} f_{n} \cap \operatorname{supp} f_{m}=\phi \quad n \neq m \quad\left\{f_{n}\right\}$ orth.
Moreover $\exists n_{0} \in \mathbb{N}$ s.t. $n_{1} m>n_{0}$
$\left\langle f_{n}\right.$. He $\left.f_{m}\right\rangle=0$ if $n \neq m \&\left\langle f_{n}\right.$, tle $\left.f_{n}\right\rangle<0 \quad n=m$

Let X be the subspace geneoted by $\left.\delta f_{n}\right\}_{n=0, \ldots}$

$$
g \in x \Leftrightarrow g=\sum_{j=1}^{+\infty}\left\langle f_{j, g}\right\rangle f_{j}
$$

Prop. $g \in x: E_{\text {He }}(-\infty, 0) g=0 \Rightarrow g=0$
$\tau_{\text {the }}(-\infty, 0) g=0$

$$
\begin{aligned}
& \left\langle g, H_{\text {l }} g\right\rangle=\int_{\sigma(\text { the })} \lambda\left\langle E_{\text {He }}(\lambda) g \cdot g\right\rangle=\int_{[0,(\infty)} \lambda d\left\langle F_{\text {tee }}(\lambda) g \cdot g\right\rangle \geqslant 0 \\
& \left\langle g_{1} \mathrm{H}_{\mathrm{e}} \rho\right\rangle \stackrel{(\alpha)}{=} \sum_{j_{, e=}}^{+\infty} \overline{\left\langle f_{j}, g\right\rangle}\left\langle f_{e, g\rangle}\left\langle f_{j}, \text { the } f_{e}\right\rangle\right. \\
& =\sum_{j=1}^{+\infty}\left|\left\langle f_{j}, g\right\rangle\right|^{2}\left\langle f_{j}, t_{e} f_{j}\right\rangle \leqslant 0 \\
& \Rightarrow g=0 \quad \square
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \varphi_{j}=E_{H e}(-\infty, 0) f_{j} \in R_{2 n} E_{H e}(-\infty, 0) \\
& \begin{aligned}
0=\sum_{j=1}^{\infty} c_{j} \varphi_{j}=E_{H_{e}}((-\infty, 0)) \sum_{j=-}^{\infty} q_{j} f_{j} & \Rightarrow \sum_{j=1}^{\infty} g_{j} f_{j}=0 \\
g & \Rightarrow c_{0}=0 \quad \forall_{j}
\end{aligned}
\end{aligned}
$$

$\Rightarrow\left\{\varphi_{0}\right\}$ ase lineosly udep.
$\Rightarrow R_{2 n} E_{\text {tle }}(-\infty, 0)$ is ∞ dm.

Summery

ESTIMATE ON EI
lowe boud $\langle\psi, H e \psi\rangle=\frac{\hbar^{2}}{2 \mu} \int|\nabla \psi(x)|^{2} d x-e^{2} \int \frac{|\psi(x)|^{2}}{|x|} d x$
Herdy ine. $\geqslant \int\left(\frac{\hbar^{2}}{8 \mu x^{2}}-\frac{e^{2}}{|x|}\right)|\psi(x)|^{2} d x$

$$
\left.\int d|x| \nabla \psi(x)\right|^{2} \geqslant \int d x \frac{|\psi(x)|^{2}}{4 x^{2}} \geqslant \inf _{v \geqslant 0}\left(\frac{h^{2}}{8 \operatorname{ger}^{2}}-\frac{e^{2}}{r}\right)\|\psi\|^{2}
$$

Upper boad $\phi_{\alpha}(x)=A e^{-\alpha|x|}$

$$
E_{1} \leq \frac{\left\langle\phi_{\alpha}, t_{e}\left(k_{\lambda}\right\rangle\right.}{\left\|\phi_{\alpha}\right\|^{2}}=-\frac{2 \mu e^{\alpha}}{x^{2}}
$$

Explicet solution of the egenvelue problem
Obs the $=-\frac{\hbar^{2}}{2 \mu} \Delta-\frac{e^{2}}{|x|}$ is invenent under rotetions
this saggests to use spheial coordeves, ie to ctidy the prublen

$$
x_{s}=L^{2}\left((0, \infty), r^{2} d r\right) \otimes L^{2}\left(s^{2}\right)
$$

$$
\begin{aligned}
\| \in U_{L^{2}\left(t_{s}\right)}^{2}= & \int_{0}^{\infty} \sigma^{2} d r \int_{s^{2}} d \Omega|f(r, \theta, \varphi)|^{2} \\
U_{s}: L^{2}\left(\mathbb{R}^{3}\right) & \longrightarrow x_{s} \\
f\left(x_{1}, x_{2}, x_{3}\right) & \longrightarrow\left(U_{s} P\right)(r, \theta, \varphi)=f\binom{r \sin \theta \operatorname{cose},}{r \sin \theta \sin \varphi, r \cos \theta)}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{H}_{e}=U_{s} H_{e} U_{s}^{-1}=-\frac{\hbar^{2}}{2 \mu r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\theta}{\partial r}\right)+\frac{1}{2 g r^{2}} L^{2}-\frac{e^{2}}{r} \\
& L^{2}=-\frac{\hbar^{2}}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{\hbar^{2}}{\sin ^{2} \theta} L_{3}^{2} \quad \begin{array}{l}
\text { Angler } \\
\text { momentum } \\
\text { operelor }
\end{array} \\
& L_{3}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi} \quad \begin{array}{l}
z \text {-component of } \\
\text { the eepolor momentum }
\end{array}
\end{aligned}
$$

where $L^{2}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}$ with

$$
\begin{aligned}
& L_{1}=u_{s} \frac{\hbar}{i}\left(x_{2} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{2}}\right) u_{s}^{-1} \\
& L_{2}=u_{s} \frac{k}{i}\left(x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}\right) u_{s}^{-1} \\
& L_{3}=u_{s} \frac{k}{i}\left(x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}\right) u_{s}^{\prime}=\frac{k}{i} \frac{\partial}{\partial \varphi}
\end{aligned}
$$

Keyfect $\hat{H}_{e}, L^{2}, L_{3}$ commute \Rightarrow we can determine a common basis of egenudues

Strategy We first consider l_{3} and l^{2} in $l^{2}\left(S^{2}, \partial \Omega\right)=D_{l}$
Goal: find $F_{\lambda m} \in D_{L}, \| F_{\lambda m} K=1$

$$
\begin{align*}
& L_{3} F_{\lambda m}=\hbar_{m} F_{\lambda m} \tag{*}\\
& L^{2} F_{\lambda m}=\hbar_{1} \lambda F_{\lambda m}
\end{align*}
$$

The eigenvalue problem for l_{3} is trivial:

$$
\begin{gathered}
\left.\left.\hbar \frac{\partial}{i} \frac{\partial}{\partial \varphi} F_{\lambda m}(\theta, \varphi)=\hbar m F_{\lambda m} \right\rvert\, \theta, \varphi\right) \\
\Rightarrow F_{\lambda m}(\theta, \varphi)=e^{\min \varphi} G(\theta)
\end{gathered}
$$

To solve the eigenvalue problem for L^{2} one uses a method similar to the one for the harmonic oscillator, with sou table creation and annihilation operators. One can show that:

Prop Let Fam be solution of (x). then we have

$$
\begin{array}{ll}
\lambda=l(l+1) \quad l=0,1,2, \ldots & \left(k \lambda \text { eigenv. of } l^{2}\right) \\
-l \leq m \leq e & \left(k m \text { eqgenv. of } L_{3}\right)
\end{array}
$$

end the corresponoling elpenfunctions are given by the spherical harmonics Yen (θ, φ) which form a complete and orthonormal basis in $L^{2}\left(S^{2}, d \Omega\right)$.
$\Rightarrow L^{2}$ and L_{3} are self-adjoint operators in $L^{2}\left(S^{2}, d \Omega\right)$

RADIAL PROBLEM. Since the, L^{2}, l_{3} commute any $\psi \in J t s$ can be written as

$$
\left.4(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-e}^{e} f_{n e}(r) Y_{e m} \mid \theta, \varphi\right)
$$

where to determine $f_{n e}(r)$ is sufficient to solve an ODE. Let
value of L^{2} on the subspace

$$
f_{e}=-\frac{\hbar^{2}}{2 \mu r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)+\frac{\hbar^{2} e(e+1)}{2 \mu r^{2}}-\frac{e^{2}}{r}
$$

then we have to solve

$$
\begin{aligned}
h_{e} f_{n e} & =E_{n} f_{n \cdot e}, \quad f_{n e} \in D\left(h_{e}\right) \\
& \text { with }\left\|f_{n, e}\right\|^{2}=\int r^{2}\left|f_{n, e}(r)\right|^{2} d r=1
\end{aligned}
$$

Prop - the negative eganvolues of \hat{H}_{e} are

$$
E_{n}=-\frac{\mu e^{4}}{2 \hbar^{2} n^{2}} \quad n=1,2, \ldots \quad \text { Bohr energy } \quad \text { levels! }
$$

and the corresponding eigenvectors for n fixed are combination of the states

$$
\begin{aligned}
\text { Unem }=f_{n e}(r) \operatorname{Jem}(\theta, \varphi) \quad \begin{array}{l}
l
\end{array} \quad 0,1, \ldots, n-1 \\
m=-e, \ldots, e
\end{aligned}
$$

RK If $n=1, E_{1}$ is non degensate and the corresponding eigenfunction $\psi_{100}(r, \theta, \varphi)$ is called the ground state. the egenfunctions corresponding to $n>1$ are celled exalted states.

The GROUND STARE of the hydrogen atom is

$$
\psi_{100}(r)=\frac{1}{\sqrt{\pi} a^{3 / 2}} e^{-\sigma / a} \quad a=\frac{\hbar^{2}}{\mu e^{2}} \text { Bohr's } \begin{aligned}
& \text { Radios }
\end{aligned}
$$

Hence the probebiling to find the electron at distance $\left[-r_{1}, r_{2}\right]$ when t is in the ground state is given by:

$$
\begin{aligned}
& \int_{r_{1}}^{r_{2}} d r r^{2} \int_{s^{2}} d \Omega\left|\psi_{n 00}(r)\right|^{2}=4 \pi \int_{r_{1}}^{r_{2}} \frac{d r r^{2}}{\pi e^{3}} e^{-2 r / a r} \\
& =\int_{r_{1}}^{r_{2}} d r \underbrace{\frac{4 r^{2}}{Q^{3}} e^{-2 r / Q}} \\
& f(r)=\text { probeblity denying } \\
& \text { of an electron in the } \\
& \xrightarrow[a]{ } \xrightarrow{f(r)} \begin{array}{l}
\text { the prob. sensing } \\
\text { is mex. in } \\
\text { correspondence } \\
\text { of Born's }
\end{array} \\
& \text { ground state of hydrogenation }
\end{aligned}
$$

Redial probablity densities for different energy level (values of n) and values of the angoler momentum

RK the distance at which the prob. density is maximum becomes larger as n increases

RR If $n=2$ we have $l=0,1$ and if $l=1, m=0, \pm 1 \rightarrow 4$ orbitals

$3,0,0$

4,0,0

4,1,0

4,3,0

Hydrogen Probability Density
Series: $\mathrm{n}=1$ to 4
All 1 and +m combinations
1 nm

4,2,0
(ब)

4,3,1
4,3,2

- the orbitals corresponding
to $l=0$ are spherically gym. and called s-orbitals
- the orbitals corresponding to $l=1$ are celled p-orbitals

RR So fer we studied ONE PARTCle PROBGEMS.
A N -particle system in guentum mechanics is dessibed by

$$
\psi\left(x, \ldots, x_{n}\right) \in \underbrace{n}_{j=1} L^{2}\left(\mathbb{R}^{d}\right) \approx L^{2}\left(\mathbb{R}^{n d}\right)
$$

\neq in general

\rightarrow the many-perticle problem is much richer then the one-partide one, as we are going to see in the next two weeks!

References

Chapter 9 Teta's book
\rightarrow 9.1-9.6 qualitative analysis
\rightarrow 9.7-9.10 Eigenvalue problem for $-\Delta+V_{e}$ (only main ideas of the strategy in this class)

