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Why	(non-)	Gaussian?	

Gaussian	
free	(i.e.	non-interacting)	
field		

large-scale	
phase	coherence	

non-linear	gravitational	
dynamics	

The	Gaussian	paradigm	

How	to	motivate	non-Gaussian	initial	conditions?	



Going	beyond	the	Gaussian	
hypothesis	in	Cosmology	

Historical	outline:	
	
1977	Groth	and	Peebles	compute	the	3-pt	function	of	galaxies:	direct									
										evidence	that	the	LSS	is	non-Gaussian.	Is	this	only	the	effect	of	non-	
										linear	gravitational	clustering?		
	
1980	Strongly	non-Gaussian	initial	conditions	studied	in	the	eighties.	
	
2001	Determination	of	bispectrum	for	PSCz	(Feldman	et	al.	2001)	and	2dF	galaxies		
										(Verde	et	al.	2002)		
	
1990	New	era	with	fNL	non-Gaussian	(NG)	models	from	inflation	(Salopek	&	Bond		
										1991;	Gangui	et	al.	1994:	fNL~	10-2;	Verde	et	al.	1999;	Komatsu	&	Spergel	2001;		
										Acquaviva	et	al.	2002;	Maldacena	2002;	+	many	models	with	higher	fNL	).			
	
2000	Primordial	NG	(PNG)	gradually	emerged	as	a	new	“smoking	gun”	of	(non-standard)		
										inflation	models,	which	complements	the	search	for	primordial	gravitational	
										waves	(PGW).	PNG	probes	interactions	among	fields	at	the	highest	energy	scales.	
	
2013	Is	this	route	still	viable,	given	the	very	stringent	Planck	constraints?	



The	view	on	Non-Gaussianity		
…	circa	1990	

Moscardini, Lucchin, Matarrese & Messina 1991 



The	present	view	on		
Primordial	non-Gaussianity	(PNG)	
in	cosmological	perturbations	

ü  Alternative	structure	formation	models	of	the	late	eighties	
considered	strongly	non-Gaussian	primordial	fluctuations.		

ü  The	increased	accuracy	in	CMB	and	LSS	observations	has,	
however,		excluded	such	an	extreme	possibility.	

ü  The	present-day	challenge	is	to	either	detect	or	constrain	
mild	or	weak	deviations	from	primordial	Gaussian	initial	
conditions.	

ü  Deviations	of	this	type	are	not	only	possible	but	are	
generically	predicted	in	the	standard	perturbation	
generating	mechanism	provided	by	inflation.		



Late	nineties:	simple-minded		
NG	model		

							Many	primordial	(inflationary)	models	of	non-Gaussianity	can	be	represented	in	
configuration	space	by	the	simple	formula	(Salopek	&	Bond	1990;	Gangui	et	al.	1994;	
Verde	et	al.	1999;	Komatsu	&	Spergel	2001)	

                   Φ	=	φL	+	fNL	*	(	φL2	-	<φL2>)	+	gNL	*	(φL3	-	<φL2>	φL	)	+	…		

   where	Φ is	the	large-scale	gravitational	potential	(more	precisely	Φ	=	3/5	ζ	on	
superhorizon	scales,	where	ζ	is	the	gauge-invariant	comoving	curvature	perturbation),	
φL	its	linear	Gaussian	contribution	and	fNL	the	dimensionless	non-linearity	parameter	
(or	more	generally	non-linearity	function).	The	percent	of	non-Gaussianity	in	CMB	data	
implied	by	this	model	is	

   																																		
   																		NG	%	~	10-5		|fNL|	

   																												~	10-10	|gNL|	

<	10-5	from	

CMB & LSS 

<	10-5	from		CMB & LSS 

“non-Gaussian	=	non-dog”		
(Ya.B.	Zel’dovich)		



Non-Gaussianity	in	the	Initial	Conditions	



Testable	predictions	of	inflation	

q  Cosmological	aspects	
	

q  Critical	density	Universe	
q  Almost	scale-invariant	and	nearly	Gaussian,	adiabatic	
density	fluctuations	

q  Almost	scale-invariant	stochastic	background	of	relic	
gravitational	waves	

q  Particle	physics	aspects	

q  Nature	of	the	inflaton	
q  Inflation	energy	scale	



PNG	probes	physics		
of	the	Early	Universe	

•  PNG	amplitude	and	shape	measures	deviations	 from	standard	
inflation,	 perturbation	 generating	 processes	 after	 inflation,	
initial	state	before	inflation,	...		

•  Models	yielding	 the	same	predictions	 for	 scalar	 spectral	 index	
and	tensor-to-scalar	ratio	might	be	distinguishable	 in	terms	of	
NG	features.	

•  We	 should	 aim	 at	 “reconstructing”	 the	 inflationary	 action,	
starting	from	measurements	of	a	few	observables	(like	nS,	r,	nT,	
fNL,	gNL,	etc.	…),	just	like	in	the	nineties	we	aimed	reconstructing	
of	 the	 inflationary	 potential	 (see	 e.g.	 the	 revival	 of	 the	 latter	
industry	after	the	Bicep2	claim	of	PGW	detection,	...).	



NG	requires	going	beyond	the		
standard	power-spectrum	statistics	

n  The	simplest	statistics	(but	not	fully	general)	measuring	NG	is	the	3-point	function	
or	its	Fourier	transform,	the	“bispectrum”:	

																																		<φ(k1)φ(k2)φ(k3)>	=	(2π)3δ(3)(k1+k2+k3)	Bφ(k1,k2,k3)	

								which	carries	shape	information.	
n  In	our	simple	linear	+	quadratic	model	above,	the	bispectrum	of	the	gravitational	

potential	reads:	

																																			Bφ(k1,k2,k3)	=	2fNL	[Pφ(k1)Pφ(k2)	+	cyclic	terms]	
	
					(by	direct	application	of	Wick’s	theorem),	where			
	
																																																<φ(k1)φ(k2)>	=	(2π)3δ(3)(k1+k2)	Pφ(k1)	
	



Where	does	NG	come	from		
(in	standard	inflation)?	

§  Falk	et	al.	(1993)	found	fNL	∼ ξ ∼ ε2 (from	non-linearity	in	the	inflaton	
potential	in	a	fixed	de	Sitter	space)	in	the	standard	single-field	slow-roll	
scenario	

§  Gangui	et	al.	(1994),	using	stochastic	inflation	found	fNL	∼ ε, η (from	
second-order	gravitational	corrections	during	inflation).	Acquaviva	et	al.	
(2003)	and	Maldacena	(2003)	confirmed	this	estimate	(up	to	numerical	
factors	and	momentum-dependent	terms)	with	a	full	second-order	
approach.	Weinberg	extended	the	calculation	of	the	bispectrum	to	1-
loop.	One	of	these	terms	gives	rise	to	the	so-called	“consistency	
relation”,	according	to	which	found	fNL	=	-	5/12(ns-1)		It	has	been	shown	that	this	term	can	be	gauged	away	by	a	non-linear	rescaling	of	
coordinates,	up	to	sub-leading	terms.	The	only	residual	term	is	
proportional	to	ε i.e.	to	the	amplitude	of	tensor	modes.	See	however	
comments	on	this	point,	later	on.



Bispectrum	&	PNG:		
theoretical	expectations		

•  Primordial	NG	probed	fundamental	physics	during	inflation,	being	
sensitive	to	(self-)interactions	of	fields	present	during	inflation	(different	
inflationary	models	predict	different	amplitudes	and	shapes	of	the	
bispectrum)	

•  Standard	models	of	slow-roll	inflation	predict	only	a	tiny	deviation	from	
Gaussianity	(Salopek	&	Bond	‘90;	Gangui,	Lucchin,	Matarrese	&	
Mollerach	1995;	Acquaviva,	Bartolo,	Matarrese	&	Riotto	2003;	Maldacena	
2003),	arising	from	non-linear	gravitational	interactions	during	inflation.		

	
•  Searching	for	deviations	from	this	standard	paradigm	is	interesting	per-se,	

for	theoretically	well-motivated	models	of	inflation	and,	as	shown	in	
Planck		results,	can	severely	limit	various	classes	of	inflationary	models	
beyond	the	simplest	paradigm.	PNG	probes	interactions	among	particles	
at	inflation	energy	scales.	See	literature	on	probing	string-theory	via	
oscillatory	PNG	(Arkani-Hamed	&	Maldacena	2015	“Cosmological	collider	
physics”;	Silverstein	2017	“The	dangerous	irrelevance	of	string	theory”).	



Evaluating	NG:	from	inflation	to	the	
present	universe	

Evaluate	non-Gaussianity	during	inflation	by	a	self-consistent	second-order	
calculation	(or	equivalent	techniques,	…).	

Evolve	scalar	(vector)	and	tensor	perturbations	to	second	order	after	
inflation	outside	the	horizon,	matching	conserved	second-order	gauge-
invariant	variable,	such	as	the	comoving	curvature	perturbation	ζ(2)	(or	
non-linear	generalizations	of	it),	to	its	value	at	the	end	of	inflation	
(accurately	accounting	for	reheating).	

Evolve	them	consistently	after	they	re-enter	the	Hubble	radius	à	i.e.	
compute	second-order	radiation	transfer	function	for	CMB	and	second-
order	matter	transfer	function	for	LSS	(few	codes	already	available!) 



Starting	point:	the	curvature	
(gravitational	potential)	bispectrum	

NOTE:	The	tree-level	contribution	to	the	bispectrum	comes	from	second-order		
perturbation	theory,	just	like	linear	perturbation	theory	yields	the	tree-level		
contribution	to	the	power-spectrum.	Hence	one	needs	to	afford	GR		
second-order	perturbation	theory	during	and	after	inflation,	which	also	requires		
proper	handling	of	vector	and	tensor	modes.	



 
there are more shapes of non-Gaussianity from 

inflation than ... stars in the sky 
	



Models	behind	bispectrum	shapes		
(...	a	few	of	them)	

•  local	shape:	Multi-field	models,	Curvaton,	Ekpyrotic/cyclic,	etc.	...	

•  equilateral	shape:	Non-canonical	kinetic	term,	DBI,	K-inflation,	
Higher-derivative	terms,	Ghost,	EFT	approach	

•  orthogonal	shape:	Distinguishes	between	variants	of	non-canonical	
kinetic	term,	higher-derivative	interactions,	Galilean	inflation	

•  flattened	shape:	non-Bunch-Davies	initial	state	and	higher-
derivative	interactions,	models	where	a	Galilean	symmetry	is	
imposed.	The	flat	shape	can	be	written	in	terms	of	equilateral	and	
orthogonal.	

		
	



NG	shapes:	local	

Babich et al. astro-ph/0405356   

Bispectrum	peaks	for	squeezed	triangles	k1<<k2~k3			
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Non-linearities develop outside the horizon during or immediately after inflation 
(e.g. multifield models of inflation) 
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Bispectrum	peaks	for		equilateral	triangles:	k1=k2=k3	

NG	shapes:	equilateral	

Single	field	models	of	inflation	with	non-canonical	kinetic	term	L=P(ϕ,	X)	where		X=(∂	ϕ)2	
(DBI	or	K-inflation)	where	NG	comes	from	higher	derivative	interactions		of	the	inflaton	
field		
Example:		
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NG	shapes:	flattened	

Bispectrum	peaks	for	flattened	triangles	k2	=	k1+k3			

(typical	of	NG	from	excited	initial	states,	see	Meerburg	et	al.	arXiv:0901.4044;	Chen	et	al.	hep-th/
0605045;	Holman	&	Tolley	arXiv:0710.1302;	or	from	higher	derivative	interactions,	Fasiello,	Bartolo,	
Matarrese,	Riotto	arXiv:1004.0893)		



Non-Gaussianity	&	
Cosmic	Microwave	Background	(CMB)	



The scientific results that we present today are a product of 
the Planck Collaboration, including individuals from more 
than 100 scientific institutes in Europe, the USA and Canada   

Planck is a 
project of the 

European Space 
Agency, with 
instruments 

provided by two 
scientific 

Consortia funded 
by ESA member 

states (in 
particular the 

lead countries: 
France and Italy) 

with 
contributions 
from NASA 
(USA), and 
telescope 
reflectors 

provided in a 
collaboration 

between ESA and 
a scientific 

Consortium led 
and funded by 

Denmark. 

CITA – ICAT
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The	Planck	legacy	

Planck	collaboration	
2018	(legacy	paper)	



The	Planck	legacy	 Planck	collaboration	
2018	(legacy	paper)	



The	Planck	legacy	 Planck	collaboration	
2018	(legacy	paper)	

Constraints	on	Inflation	Models	



NG	CMB	simulated	maps	at	Planck	resolution	

Liguori,	Yadav,	Hansen,	Komatsu,	Matarrese	&	Wandelt	2007	Gaussian	 non-Gaussian	

temperature	

polarization	



Planck	2018	results	IX:	
Planck	collaboration,	in	preparation	(2019)	
PNG	Planck	project	(Coordinators:	S.	Matarrese	&	B.	Wandelt)	

	
•  Constrain	(with	high	precision)	and/or	detect	primordial	non-Gaussianity	(NG)	

as	 due	 to	 (non-standard)	 inflation	 (NG	 amplitude	 and	 shape	 measure	
deviations	 from	 standard	 inflation,	 perturbation	 generating	 processes	 after	
inflation,	initial	state	before	inflation,	...)		

•  We	 test:	 local,	 equilateral,	 orthogonal	 shapes	 (+	 many	 more)	 for	 the	
bispectrum	 and	 constrain	 primordial	 trispectrum	 parameter	 gNL	 (τNL	
constrained	in	previous	release).	

•  We	 are	 completing	 (delivered	 in	 a	 few	 more	 weeks)	 a	 final,	 Planck	 legacy	
release,	 which	 will	 improve	 the	 2015	 results	 in	 terms	 of	 more	 refined	
treatment	of	E-mode	polarization	(including		lower	and	higher	l.			



WARNING:	this	is	not	a	blind	search	for	PNG	

•  Detecting	non-zero	primordial	bispectrum	(e.g.	non-zero	fNL)	
proves	that	the	initial	seeds	were	non-Gaussian.	Similarly	for	
the	trispectrum,	etc.	…	

•  But:	not	detecting	non-zero	fNL	doesn’t	prove	Gaussianity!	

•  Indeed,	there	are	infinitely	many	ways	PNG	can	evade	
observational	bounds	optimized	to	search	for	fNL	and	similar	
higher-order	parameters.		



CMB	bispectrum	representation		
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Gaunt	integrals	
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Optimal	fNL	bispectrum	estimator	

The theoretical template needs to be written in separable form. This can be 
done in different ways and alternative implementations differ basically in terms 
of the separation technique adopted and of the projection domain. 

o    KSW (Komatsu, Spergel & Wandelt 2003) separable template fitting + Skew-Cl  

      extension (Munshi & Heavens 2010)  

o    Binned bispectrum (Bucher, Van Tent & Carvalho 2009) 

o    Modal expansion (Fergusson, Liguori & Shellard 2009) 



Bispectrum	shapes	(modal	representation)	

Local	 Equilateral	

Orthog.	 ISW-lensing	



The	Planck	bispectrum	(modal;	2015)	Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Fig. 3. CMB temperature and polarisation bispectrum reconstructions for Planck SMICA maps using the full set of polynomial modes with
nmax = 2001 and with signal-to-noise weighting. The top bispectra are the symmetric pure temperature TTT (left) plotted with `  1500 and
E-mode polarisation EEE (right) shown for 30  `  1100. Below are the mixed temperature/polarisation bispectra with TTE on the left (with E
multipoles in the z-direction) and TEE on the right (with T multipoles in the z-direction). All SN thresholds are the same.

Fig. 4. Comparison of CMB polarzation bispectrum EEE reconstructions for Planck NILC, SEVEM and Commander foreground-separated maps
with signal-to-noise weighting. Note that these results are not as internally consistent between the four methods, also comparing SMICA shown
in figure 3 which is closest to NILC. We will compare the underlying modal coe�cients below to demonstrate these di↵erences quantitatively.

17

TTT	 EEE	

TTE	 EET	

(S/N	
weighted)	



fNL	from	Planck	2018	bispectrum	(KSW)	



Evolution	of	CMB	constraints	on	
inflation	parameters	

Planck	collaboration	
2018	(legacy	paper)	



PNG	and	precision	cosmology	

•  PNG	is	currently	the	highest	precision	test	of	
Standard	Inflation	models.		

	
•  With	Planck:	

– PNG	constrained	at	better	than	~	0.01%	
– Flatness	constrained	at	~	0.1%	
–  Isocurvature	mode	constrained	at	~	1%.	



ISW-lensing	bispectrum	from	Planck	

The coupling between weak lensing and 
Integrated Sachs-Wolfe (ISW) effects is the 
leading contamination to local NG. We have 
detected the ISW-lensing bispectrum with a 
significance of ~ 3σ. This determination is also 
robust to SZ removal (2019). 

SMICA 

Skew-Cl detection of ISW-lensing signal 

Planck 2013 



Planck	constraints	on	primordial	
trispectrum	amplitudes	

•  In	the	2018	release	we	obtain	also	constraints	
on	3	fundamental	shapes	of	the	trispectrum	
(transform	of	4-pt	function)		

	



Standard	inflation	
	

•  single	scalar	field	(single	clock)	
•  canonical	kinetic	term	
•  slow-roll	dynamics	
•  Bunch-Davies	initial	vacuum	state	
•  Einstein	gravity	

	
predicts	tiny	(up	to	O(10-2),	or	even	less??)	primordial	NG	signal	
	
à	No	presently	detectable	PNG	

Standard	inflation	still	alive	…	and	kicking!	



Beyond	“standard”	shapes	

	
We	constrain	fNL	for	a	large	number	of	primordial	models	beyond	the		
standard	local,	equilateral,	orthogonal	shapes,	including	
	

ü  Equilateral	family	(DBI,	EFT,	ghost)	
ü  Flattened	shapes	(non-Bunch	Davies)	
ü  Feature	models	(oscillatory	bispectra,	scale-dependent)	
ü  Direction	dependence		
ü  Quasi-single-field	
ü  Parity-odd	models	

	
•  No	evidence	for	PNG	found	à	constraints	on	parameters	from	the	models	

above	



CORE:	CMB	bispectrum	forecasts	

from:	Finelli	et	al.	2018	



Primordial	Non-Gaussianity	(PNG)	&	the	
Large-Scale	Structure	(LSS)	of	the	Universe		

	
(=	primordial	NG	+	NG	from	gravitational	instability)	



PNG	vs.	Large-Scale	Structure	(LSS)	

ü  PNG	in	LSS	(to	make	contact	with	the	CMB	definition)	can	be	defined	through	a	
ü  potential	Φ defined	starting	from	the	DM	density	fluctuation	δ	through	Poisson’s	
ü  equation	(use	comoving	gauge	for	density	fluctuation,	Bardeen	1980)		

 
ü  Assuming	the	same	model	

 
     
     Φ	on	sub-horizon	scales	reduces	to	minus	the	large-scale	gravitational	potential,	

φL	 is	 the	 linear	 Gaussian	 contribution	 and	 fNL	 and	 gNL	 are	 dimensionless	 non-
linearity	parameters	(or	more	generally	non-linearity	functions).	

	
									CMB	and	LSS	conventions	may	differ	by	a	factor	1.3	for	fNL,	(1.3)2	for	gNL	

δ = −
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⎝
⎜

⎞
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2〉φL ) + ...



N-body	simulations	with	NG	initial	data	

DM

LLNLL

GazgT
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〉Φ〈−Φ+Φ=Φ

Grossi,	Moscardini,	Dolag,	Branchini,	Matarrese	&		
Moscardini	(2007)	

matter	transfer	function	

growth	suppression	factor	



Searching	for	PNG	with	rare	events	
•  Besides	 using	 standard	 statistical	 estimators,	 like	 (mass)	 bispectrum,	 trispectrum,	

three	 and	 four-point	 function,	 skewness,	 etc.	 …,	 one	 can	 look	 at	 the	 tails	 of	 the	
distribution,	i.e.	at	rare	events.		

•  Rare	 events	 have	 the	 advantage	 that	 they	 often	 maximize	 deviations	 from	 what	 is	
predicted	by	a	Gaussian	distribution,	but	have	the	obvious	disadvantage	of	being	rare!	
But	remember	that,	according	to	Press-Schechter-like	schemes,	all	collapsed	DM	halos	
correspond	 to	 (rare)	 high	 peaks	 of	 the	 underlying	 density	 field	 (note:	 density,	 not	
gravitational	potential	maxima).	

•  Analogous	 to	 hot	 and	 cold	 spots	 in	 CMB	 maps	 (Matarrese	 &	 Vittorio	 (2019,	 in	
preparation),	extending	previous	work	on	Gaussian	fields	(Vittorio	&	Juszkiewicz	1987).	

•  Matarrese,	Verde	&	 Jimenez	 (2000)	and	Verde,	 Jimenez,	Kamionkowski	&	Matarrese	
(2001)	 showed	 that	 clusters	 at	 high	 redshift	 (z>1)	 can	 probe	 NG	 down	 to	 fNL	 ~	 102.	
Many	 more	 analyses	 and	 predictions	 afterwards.	 Excellent	 agreement	 of	 analytical	
formulae	with	N-body	simulations	found	by	Grossi	et	al.	2009;	Desjacques	et	al.	2009;	
Pillepich	et	al.	2010;	…	and	many	others.		

•  Halo	 (galaxy)	 clustering	 2-point	 and	 higher-order	 correlation	 functions	 represent	
further	 and	more	 powerful	 implementations	 of	 this	 general	 idea	 (Dalal	 et	 al.	 2007;	
Matarrese	&	Verde	2008;	Giannantonio	&	Porciani	2010;	Baldauf	et	al.	2011).	



Bias:	halos	(hence	galaxies)	do	not	trace	
the	underlying	dark	matter	distribution		

•  Following	the	original	proposal	by	Kaiser	(1984),	introuced	for	
galaxy	clusters	and	later	for	galaxies,	we	are	used	to	parametrize	
our	ignorance	about	the	way	in	which	DM	halos	clusters	in	space	
w.r.t.	the	underlying	DM,	via	some	“bias”	parameters,	e.g.,	for	
Eulerian	bias	

																									δhalo	(x)	=	b1	δmatter	(x)	+	b2	δ2matter	(x)	+	…	

						or	via	some	non-linear	and	non-local	expression	(e.g.	as	a	function			
						of	the	Lagrangian	position	of	the	proto-halo	center	of	mass.		
•  The	resulting	non-linear	and	non-local	terms	affect	the	statistical	

distribution	of	the	halos	introducing	further	NG	effects.	
•  Bias	parameters	can	be	generally	dealt	with	either	as	purely	

phenomenological	ones	(i..e.	to	be	fitted	to	observations)	or	
predicted	by	a	theory	(e.g.	Press-Schecter	+	Lagrangian	PT).	



Dark	matter	halo	clustering	as		
a	powerful	constraint	on	PNG	

Dalal, Dore’, Huterer & Shirokov 2007 

Dalal et al. (2007) have shown that halo  
bias is sensitive to primordial non-
Gaussianity through a scale-dependent 
correction term (in Fourier space) 
 
                  Δb(k)/b  α  2 fNLδc / k2 

  This opens interesting prospects for  
  constraining or measuring NG in LSS but  
  demands for an accurate evaluation of the 
  effects of (general) NG on halo biasing. 

 δhalo = b δmatter 



Start from results obtained in the 80’s by 
Grinstein & Wise 1986 and Matarrese, 
Lucchin & Bonometto 1986 (see also 
Lucchin, Matarrese & Viittorio 1988), giving 
the general expression for the peak 2-point 
function as a function of N-point connected 
correlation functions of the background 
linear (i.e. Lagrangian) mass-density field  

 

 

 

 

(requires use of path-integral, cluster 
expansion, multinomial theorem and 
asymptotic expansion). The analysis of NG 
models was motivated by a paper by 
Vittorio, Juszkiewicz and Davis (1986) on 
bulk flows. 

Clustering	of	peaks	(DM	halos)		
of	NG	density	field	



Halo	bias	in	NG	models	
•  Matarrese	 &	 Verde	 2008	 applied	 this	 relation	 to	 the	 case	 of	 NG	 of	 the	

gravitational	 potential,	 obtaining	 the	 power-spectrum	 of	 dark	 matter	
halos	modeled	as	high	“peaks”	(up-crossing	regions)	of	height	ν=δc/σR	of	the	underlying	mass	density	field	(Kaiser’s	model).	Here	δc(z)	is	the	critical	overdensity	for	collapse	(at	redshift	a)	and	σR	is	the	rms	mass	fluctuation	
on	scale	R	(M	~	R3).	

•  Account	 for	motion	 of	 peaks	 (going	 from	 Lagrangian	 to	 Eulerian	 space),	
which	implies	(Catelan	et	al.	1998)		

					
																			1+	δh(xEulerian)	=	(1+δh(xLagrangian))(1+δR(xEulerian))	
	
				and	(to	linear	order)	b=1+bL	(Mo	&	White	1996)	to	get	the	scale-dependent	

halo	 bias	 in	 the	 presence	 of	NG	 initial	 conditions.	Corrections	may	 arise	
from	second-order	bias	and	GR	terms.	

	
•  Alternative	approaches	(e.g.	based	on	1-loop	calculations)	by	Taruya	et	al.	

2008;	Matsubara	2009;	 Jeong	&	Komatsu	2009.	Giannantonio	&	Porciani	
2010	 improve	 fit	 to	 N-body	 simulations	 by	 assuming	 dependence	 on	
gravitational	potential)	à	extension	to	bispectrum	by	Baldauf	et	al.	2011.	



Halo	bias	in	NG	models	
Matarrese	&	Verde	2008	

form	factor:	

factor	connecting	the	smoothed	linear	overdensity	with	the	primordial	potential:	

transfer	function:	
window	function	defining	the	radius	R	of	a		
proto-halo	of	mass	M(R):	

power-spectrum	of	a	Gaussian	
gravitational	potential		



Table 1: Forecasts for �fNL from the bispectrum of BOSS, eBOSS, DESI and Euclid, assuming the
fiducial values p = {b

fid
10 , b

fid
20 , f

fid
NL = 0}, as described in section 4.1. Forecasts from the power spectrum

are obtained considering only the tree-level, with the fiducial model p = {b
fid
10 , f

fid
NL = 0}. The results

with marginalisation over the bias factors are shown on the left columns (bias float), while those
without on the right (bias fixed). The numbers inside the parenthesis in the superscripts are the
predictions for �fNL considering the fiducial value for the non-linear bias to be b

fid
20 +1, while those in

the subscripts assume b
fid
20 � 1.

Power Spectrum Bispectrum
Sample �fNL �fNL �fNL �fNL

bias float bias fixed bias float bias fixed

BOSS 21.30 13.28 1.04(0.65)(2.47) 0.57(0.35)(1.48)

eBOSS 14.21 11.12 1.18(0.82)(2.02) 0.70(0.48)(1.29)

Euclid 6.00 4.71 0.45(0.18)(0.71) 0.32(0.12)(0.35)

DESI 5.43 4.37 0.31(0.17)(0.48) 0.21(0.12)(0.37)

BOSS + Euclid 5.64 4.44 0.39(0.17)(0.59) 0.28(0.11)(0.34)

We then performed idealised forecasts of �fNL , the accuracy of the determination of local fNL, that
could be obtained from measurements of the galaxy bispectrum using data from surveys like BOSS,
eBOSS, DESI and Euclid. Our findings suggest that the bispectrum of galaxies in current and future
surveys will provide competitive fNL constraints even if the covariance between triangle configurations
degrades our idealised forecasts by a factor of 5. In particular, current BOSS data should allow for
Planck-like constraints on fNL, while future surveys like Euclid and DESI will contain the statistical
power to shrink the bound by an additional factor of three.

We leave as a challenge for future work to obtain improved predictions for �fNL fully accounting
for the covariance: this will be necessary if we are to completely understand the power of bispectrum
measurements to constrain fNL compared to alternative approaches, such as the multi-tracer technique
or the position-dependent power spectrum.
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PNG	with	LSS:	Bispectrum	

•  Fisher	matrix	forecast.	Tree-level	bispectrum.	Local	NG	initial	conditions.	
					In	redshift	space.	Covariance	between	different	triangles	neglected	(optimistic).	

•  The	bispectrum	could	do	better	than	the	power-spectrum.	

•  fNL	~	1	achievable	with	forthcoming	surveys?	

•  Many	issues,	e.g.	full	covariance,	accurate	bias	model,	GR	effects,	survey		
					geometry,	estimator	implementation	…	Still,	great	potential:	3D	vs	2D	(CMB).	

	
	
	



GR	effects	in	the	PS	and	bispectrum	

•  In	 full	 generality	 GR	 effects	 (including	 also	 redshift-space	
distortions,	lensing,	etc	…)	have	to	be	taken	into	account	both	
in	 the	 galaxy	 power-spectrum	 and	 bispectrum,	 as	well	 as	 in	
the	DM	evolution.		

	
•  Bertacca,	 Raccanelli,	 Bartolo,	 Liguori,	 Matarrese	 &	 Verde	

(2017)	 have	 obtained	 for	 the	 first	 time	 the	 complete	 GR	
expression	for	the	galaxy	bispectrum	(which	is	obviously	VERY	
complex)	to	be	soon	compared	with	observations.	



LSS	initial	conditions	reconstruction		
to	constrain/detect	PNG	

•  PNG	in	LSS	is	contaminated	by	NG	arising	from	non-linear	
gravitational	evolution.	

	
•  Hence	one	can	hope	to	improve	PNG	S/N	by	tracing	LSS	back	in	

time	and	measure	e.g.	the	bispectrum	in	reconstructed	maps.	

•  Various	reconstruction	techniques	have	been	proposed	and	tested,	
since	the	earliest	proposal	by	Peebles	(1989).	For	an	application	to	
PNG,	see	also	Mohayaee,	Mathis,	Colombi	&	Silk	2006;	based	on	
MAK	(Frisch,	Matarrese,	Mohayaee	&	Sobolevski	2002).	

	
•  Based	upon	recent	results	(Sarpa	et	al.	2018)	aimed	at	

reconstructing	BAOs,	Sarpa,		Branchini,	Carbone,	Matarrese	&	
Schimd	are	going	to	apply	extended	FAM	algorithm	(Nusser	&	
Branchini	2000)	to	N-body	simulations	with	non-Gaussian	initial	
conditions.	







Controversial	issues	on	non-Gaussianity	
	



Observability	of	GR	non-linearities	
•  In	the	halo	bias	case	the	effect	is	unobservable.	Indeed,	as	pointed	out	by	

Dai,	Pajer	&	Schmidt	2015	and	de	Putter,	Doré	&	Green	2015,	a	local	physical	
redefinition	of	the	mass,	gauges	way	such	a	NG	effect	(in	the	pure	squeezed	
limit),	similarly	to	Maldacena’s	fNL	=	-	5/12(ns-1)	single-field	NG	contribution.	

•  This	is	true	provided	the	halo	bias	definition	is	strictly	local.	Are	there	
significant	exceptions?	Are	all	non-linear	GR	effects	fully	accounted	for	by	
“projection	effects”?	

•  However,	this	dynamically	generated	GR	non-linearity	is	physical	and	cannot	
be	gauged	away	by	any	local	mass-rescaling,	provided	it	involves	scales	
larger	than	the	patch	required	to	define	halo	bias,	but	smaller	than	the	
separation	between	halos	(and	the	distance	of	the	halo	to	the	observer).		

•  Hence	one	would	expect	it	to	be	in	principle	detectable	in	the	matter	
bispectrum.	Similarly,	the	observed	galaxy	bispectrum	obtained	via	a	full	GR	
calculation	must	include	all	second-order	GR	non-linearities	on	such	scales	
(only	as	projection	effects?)	



Concluding	remarks	



The	Next	Challenge	

•  Inflation	provides	a	causal	mechanism	for	the	generation	of	cosmological	
perturbations	

	
•  CMB	and	LSS	data	fully	support	the	detailed	predictions	of	inflation	

•  The	direct	detection	of:	

–  primordial	gravitational	waves		

–  primordial	non-Gaussianity	
	
							with	the	specific	features	predicted	by	inflation	would	provide	strong			
							independent	support	to	the	model.	

•  The	next	challenge	is	to	measure	fNL	~	10-2	
	


