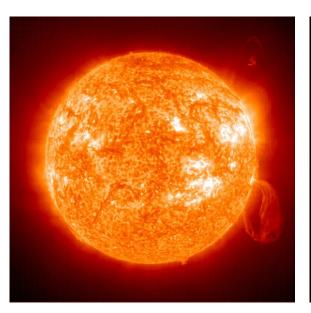
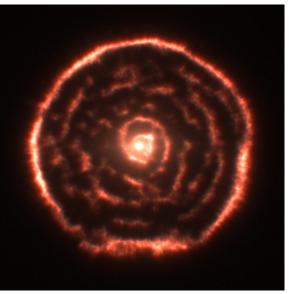
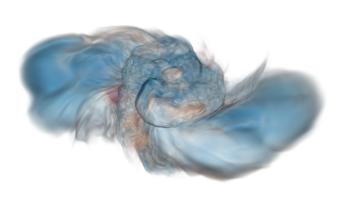
Nucleosynthesis of light and heavy elements across the Galaxy

Candidate: Diego Vescovi

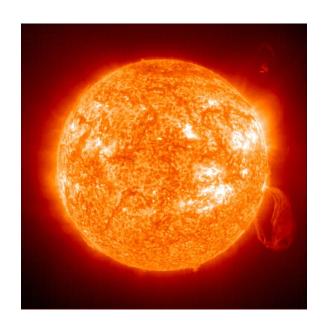
Advisors: Sergio Cristallo, Marica Branchesi

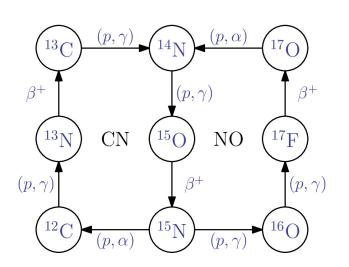


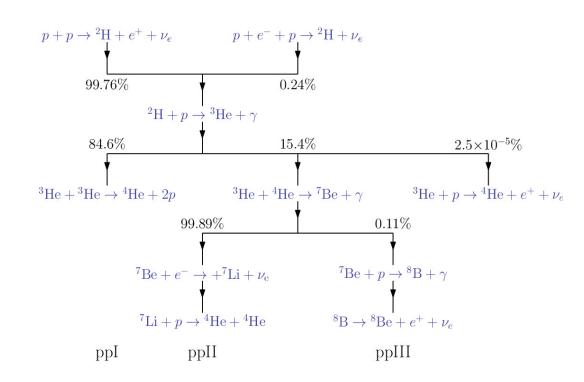




Outline

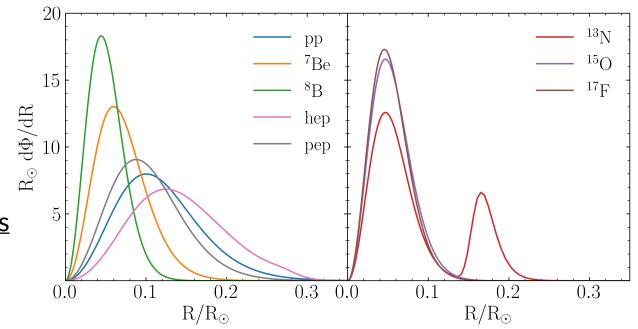

- Solar neutrinos and luminosity constraint in the era of precision solar physics
- Presolar grains and magnetic-buoyancy-induced mixing in Asymptotic Giant Branch (AGB) stars
- Kilonovae and production of very light elements in Neutron Star Mergers (NSMs)




Solar neutrinos and luminosity constraint in the era of precision solar physics

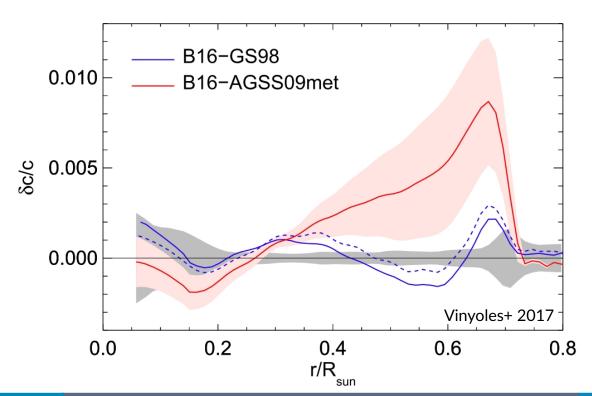
The Sun: nuclear processes and neutrinos

- The Sun is powered by nuclear reactions that transform H into ⁴He
- $4p + 2e^- \rightarrow {}^4{\rm He} + 2\nu_{\rm e} + 26.731\,{\rm MeV}$
- Two main sequences of reactions:
 - 1) pp chain
 - 2) CNO cycle


Products: neutrinos

→ pp, pep, hep, ⁷Be, ⁸B, ¹³N, ¹⁵C, ¹⁷F

Standard Solar Model (SSM)

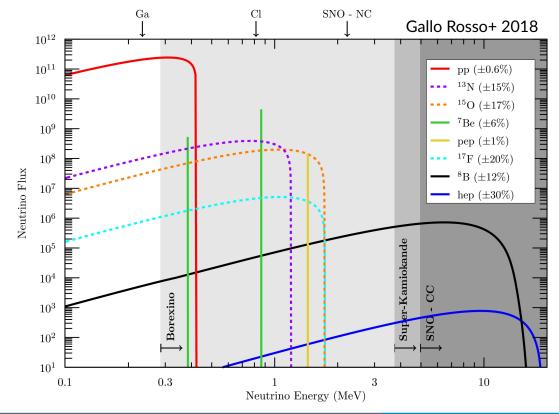

"A SSM is one which reproduces, within uncertainties, the observed properties of the Sun, by adopting a set of physical and chemical inputs chosen within the range of their uncertainties" (Bahcall, 1995)

- Evolve a model with 1 M_{\odot} starting from a chemically homogeneous model to present solar age with the best available micro- and macro-physics
- → Match R_o, L_o, and (Z/X)_o to better than one part in 10⁻⁵
- Predictions:
 - 1) Physical quantities
 - 2) Chemical profiles
 - 3) Helioseismic quantities
 - 4) Neutrino fluxes

SSM: the solar abundance problem

- SSM can be then <u>validated</u> by observational constraints → solar neutrino fluxes and helioseismic measurements
- New generation of spectroscopic studies yield a <u>solar metallicity lower</u> than older results
- Theoretical predictions of SSMs adopting low metallicity surface compositions fail in reproducing all helioseismic determinations of solar properties

SSMs: solutions?


- Solutions:
 - 1) Increase of the heavy-element admixture
 - 2) Increase of the radiative opacitiy at the base of the convective envelope

• The degeneracy between radiative opacity and solar composition can be removed by **measuring the neutrino fluxes produced in the CNO cycle**, i.e.

the CNO burning rate

 CNO neutrinos have low energies (~ MeV) and are produced in the same energy region of neutrinos from the pp chain

→ Experimental challenge

Constraints from neutrinos

• Experimental measured fluxes ($\Phi_i = \varphi_i \times 10^{\gamma_i} \ {
m cm}^2/{
m s}$) agree with SSM results

Vescovi+	, 51 110	2021			
T 1	γ_i	$arphi_i$		T 1	C
Flux		GS98	PLJ14	Experimental results	Source
$\Phi_{\sf pp}$	10	$5.99(1 \pm 0.01)$	$6.01(1 \pm 0.01)$	$6.1(1 \pm 0.1)$	BX
Φ_{pep}	8	$1.42(1 \pm 0.02)$	$1.43(1 \pm 0.02)$	$1.27(1 \pm 0.17)$	BX
Φ_{Be}	9	$4.73(1 \pm 0.12)$	$4.52(1 \pm 0.12)$	$4.99(1 \pm 0.03)$	BX
Φ_{B}	6	$5.52(1 \pm 0.24)$	$5.01(1 \pm 0.24)$	$5.41(1 \pm 0.016)$	SK
Φ_{hep}	3	$8.15(1 \pm 0.30)$	$8.28(1 \pm 0.30)$	$8(1 \pm 2)$	SNO
$\Phi_{ m N}$	8	$2.87(1 \pm 0.30)$	$2.58(1 \pm 0.29)$	_	
Φ_{O}	8	$2.13(1 \pm 0.36)$	$1.86(1 \pm 0.35)$	_	
Φ_{F}	6	$5.51(1 \pm 0.37)$	$4.04(1 \pm 0.36)$		
Φ_{CNO}	8	$5.06(1 \pm 0.32)$	$4.48(1 \pm 0.31)$	$7.0^{+3.0}_{-2.0}$	BX

- ⁷Be and ⁸B neutrino fluxes are probed with high precision → <u>solar core</u> temperature
- What about pp and CNO fluxes?
- Helpful instrument: luminosity constraint

The "standard" luminosity constraint

Nuclear fusion is responsible for the observed solar luminosity

→ Gravothermal energy negligible

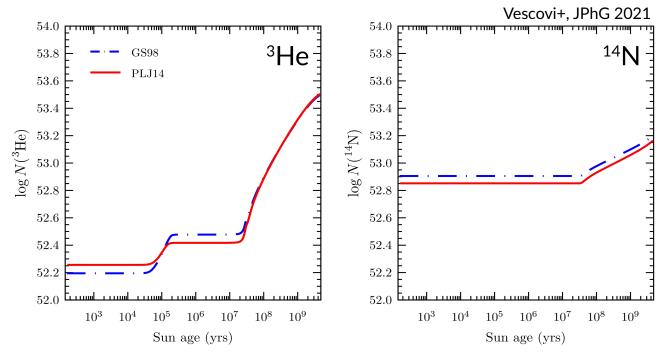
$$\longrightarrow L_{\odot} = L_{\text{nuc}} - L_{\nu}$$

→ Local nuclear equilibrium $4p + 2e^{-} \rightarrow {}^{4}\text{He} + 2\nu_{e} + Q_{A}$

$$\longrightarrow L_{\text{nuc}} = Q_4 \dot{N}(^4\text{He})$$

→ Lepton number conservation

$$\longrightarrow 4\pi au^2 \sum_i \Phi_i = 2\dot{N}(^4 \text{He})$$


$$L_{\odot} = Q_4 \frac{4\pi \text{au}^2 \sum_i \Phi_i}{2} - 4\pi \text{au}^2 \sum_i \langle E_i \rangle \Phi_i \longrightarrow \frac{L_{\odot}}{4\pi \text{au}^2} = \sum_i \left(\frac{Q_4}{2} - \langle E_i \rangle\right) \Phi_i$$

$$\dot{N}(^4\text{He}) \qquad L_{\nu}$$

$$\frac{L_{\odot}}{4\pi \mathrm{au}^2} = \sum_{i} \left(\frac{Q_4}{2} - \langle E_i \rangle\right) \Phi_i$$

Limits of the standard luminosity constraint

- The total number of both ³He and ¹⁴N nuclei in the whole Sun increases with the time
- In the Sun, the <u>gravothermal energy</u> is absorbed to produce an expansion against gravity on a timescale of few Myr

- The standard luminosity constraint is accurate to better than 1%
- Extremely precise determination of $L_{\odot}=3.8275\,(1\pm0.4\%)\times10^{33}{\rm erg/s}$ requires corrections to the "standard" form

A new version of the luminosity constraint

• Not only nuclear fusion is responsible for the observed solar luminosity

→ Gravothermal energy

$$\longrightarrow L_{\odot} = L_{\text{nuc}} - L_{\nu} - L_{\text{g}}$$

→ Production of more nuclei

$$\longrightarrow L_{\text{nuc}} = \sum_{j} Q_{j} \dot{N}(j)$$

→ Lepton number conservation

$$\longrightarrow 4\pi \text{au}^2 \sum_i \Phi_i = \sum_j c_j \dot{N}(j)$$

$$\longrightarrow \frac{1}{4\pi a u^2} \left(L_{\odot} + L_{g} + \sum_{j \neq {}^{4}\text{He}} L_{j} \right) = \sum_{i} \left(\frac{Q_4}{2} - E_{i} \right) \Phi_{i}$$

Where $L_j := \left(\frac{c_j Q_4}{2} - Q_j \right) \dot{N}(j)$ accounts for the corrections due to the isotope j

SSM computations

- By making use of SSMs, corrective terms can be evaluated!
- Two solar mixtures → high-metallicity (GS98) and low-metallicity (PLJ14)
- State-of-the-art opacities (OPAL05)
- Latest reaction rates (Solar fusion II + updates)

→ Relevant corrections: must be of the order of 0.4% $L_{\odot} \simeq 1.5 \times 10^{30} \text{ erg s}^{-1}$

Models	$\dot{N}(^{3}\mathrm{He})$	$\dot{N}(^{14}\mathrm{N})$	$L_{^3\mathrm{He}}$	$L_{^{14}\mathrm{N}}$	$L_{ m g}$
GS98 PLJ14	$3.29(1 \pm 0.07) \\ 3.42(1 \pm 0.07)$	$2.15(1 \pm 0.13) \\ 2.07(1 \pm 0.13)$	$3.39(1 \pm 0.07) 3.53(1 \pm 0.07)$	$0.57(1 \pm 0.13) \\ 0.55(1 \pm 0.13)$	$1.54(1 \pm 0.04) 1.52(1 \pm 0.04)$

 $\dot{N}(j)$ (units of 10^{35} s^{-1}) and L_j (units of $10^{30} \text{ erg s}^{-1}$)

 $ightharpoonup L_{^{14}\mathrm{N}}, \, \mathrm{and} \, L_{\mathrm{g}}$ do matter and have small uncertainties

A new version of the luminosity constraint II

$$1\pm0.4\,\%=\frac{1}{\mathcal{F}}\sum_i\left(\frac{Q_4}{2}-\langle E_i\rangle\right)\Phi_i$$
 Standard
$$\mathcal{F}=\frac{L_\odot}{4\pi\mathrm{au}^2}\qquad \mathcal{F}=\frac{L_\odot+L_{^3\mathrm{He}}+L_{^{14}\mathrm{N}}+L_\mathrm{g}}{4\pi\mathrm{au}^2}$$
 New
$$\mathcal{F}=8.4946\times10^{11}$$

$$\mathcal{F}(\mathrm{PLJ}14)=8.5070\times10^{11}$$

- Fixed solar luminosity (by observations) and the three new terms are all positive → number of expected neutrinos increased
- \mathcal{F} increases of ~1.5 %
- Negligible dependence on solar composition

Luminosity constraint and the search for CNO neutrinos

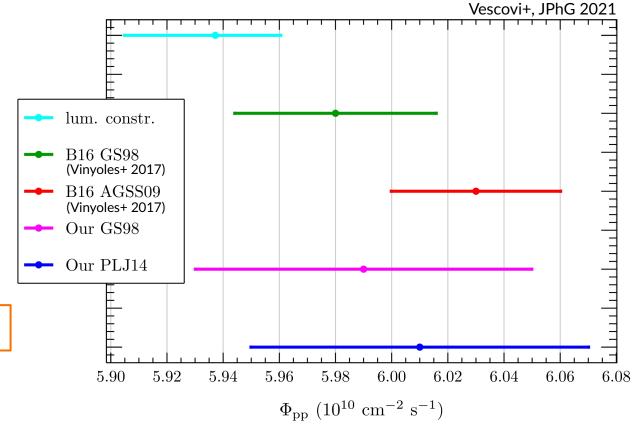
It is possible to obtain a constraint on the flux of pp and CNO neutrinos by:

- neglecting $\Phi_{\rm hep}$ (very small)
- adopting $\Phi_{
 m pep}/\Phi_{
 m pp}$ and $\Phi_{
 m O}/\Phi_{
 m N}$ from SSMs
- fixing Φ_{Be} and Φ_{B} to the experimental results known better than theory

$$\Phi_{\rm pp} + 1.654 \,\Phi_{\rm N} = k (1 \pm 2 \,\%) \times 10^{10} \,{\rm cm}^{-2} {\rm s}^{-1}$$

Corrective terms	GS98	PLJ14	Average	
None $L_{^{3}\text{He}}$ $L_{^{3}\text{He}} + L_{^{14}\text{N}}$ $L_{^{3}\text{He}} + L_{^{14}\text{N}} + L_{\text{g}}$	5.9994 6.0004	5.9996 6.0006	5.9936 5.9995 6.0005 6.0031	+1.5 ‰

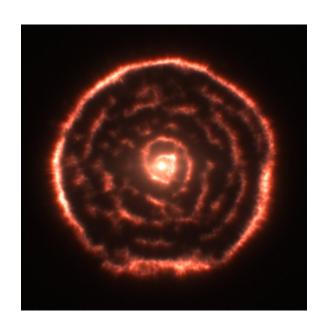
pp flux and CNO flux


In terms of $\Phi_{ ext{CNO}} = \Phi_{ ext{N}} + \Phi_{ ext{O}} + \Phi_{ ext{F}}$:

$$\Phi_{\rm pp} + 0.946 \,\Phi_{\rm CNO} = 6.003 \,(1 \pm 2 \,\%) \times 10^{10} \,{\rm cm}^{-2} {\rm s}^{-1}$$

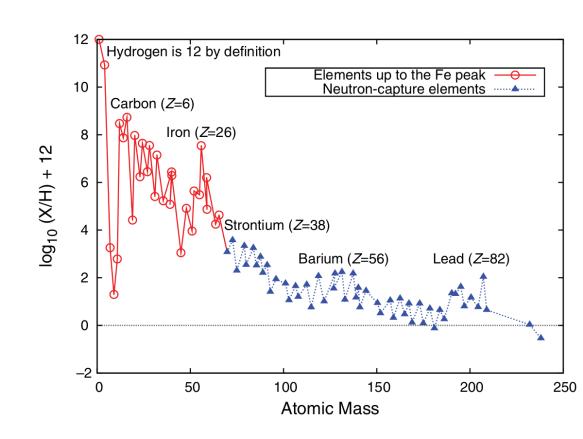
• Using $\Phi_{\rm CNO}$ measured by Borexino collaboration

$$\Phi_{\rm pp} = 5.937^{+0.023}_{-0.032} {\rm cm}^{-2} {\rm s}^{-1}$$



Summary I - Probing metals and CNO in the Sun

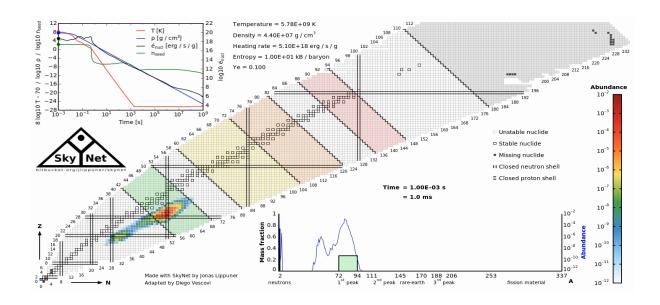
Location	Method	Precision	
Surface	Observation/ modeling	permil	
Convective/radiative interface	Helioseismology	permil	
Core	CNO neutrinos	percent	


- → CNO flux measurement may **solve** the longstanding solar abundance problem
- → It relies on the luminosity constraint which establishes the best available limits on the rate of creation of pp neutrinos
- → Development of a **new version** including corrective terms \rightarrow <u>non-equilibrium</u> <u>burning of ³He and ¹⁴N</u> abundances and <u>gravothermal energy</u>
- \rightarrow Simple relation linking in Φ_{pp} and Φ_{CNO} , independent from solar core metallicity
- \rightarrow $\Phi_{\rm pp}$ in better agreement with high-metallicity SSMs

Presolar grains and magnetic-buoyancy-induced mixing in Asymptotic Giant Branch stars

The origin of heavy elements in the Solar System

- Fusion reactions between charged particles
- Neutron capture processes :
 - → r(apid)-process
 - → s(low)-process

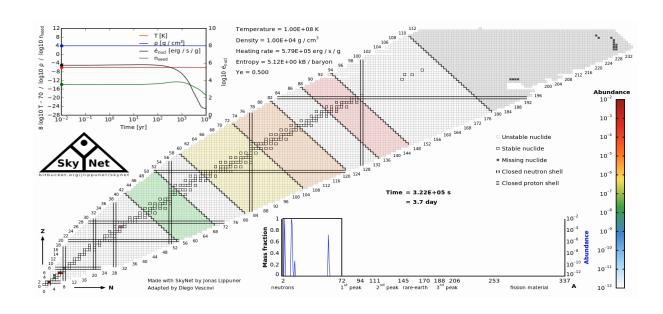

s- and r- process

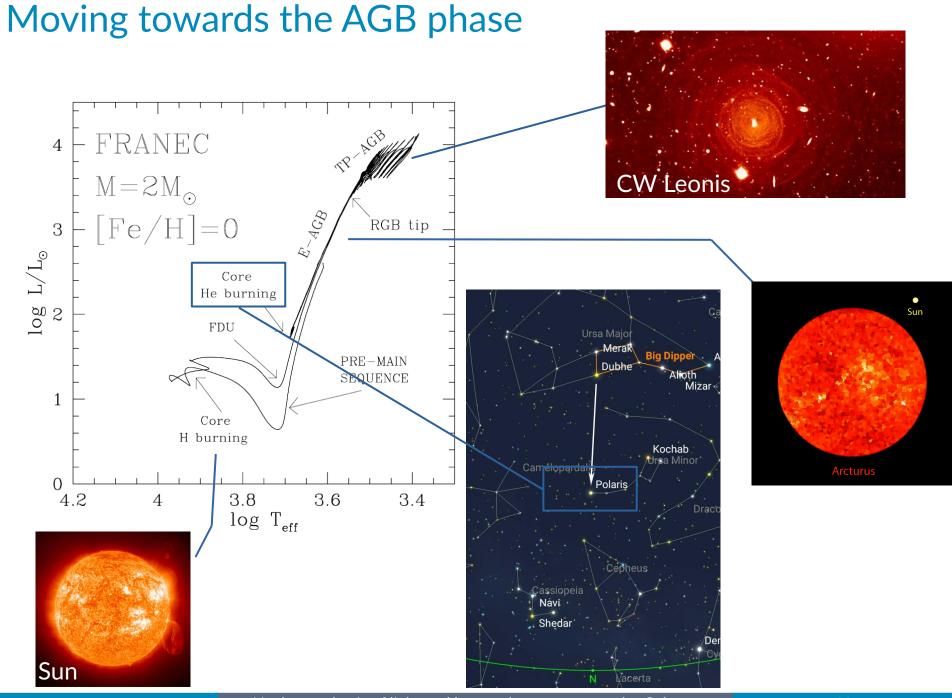
r-process

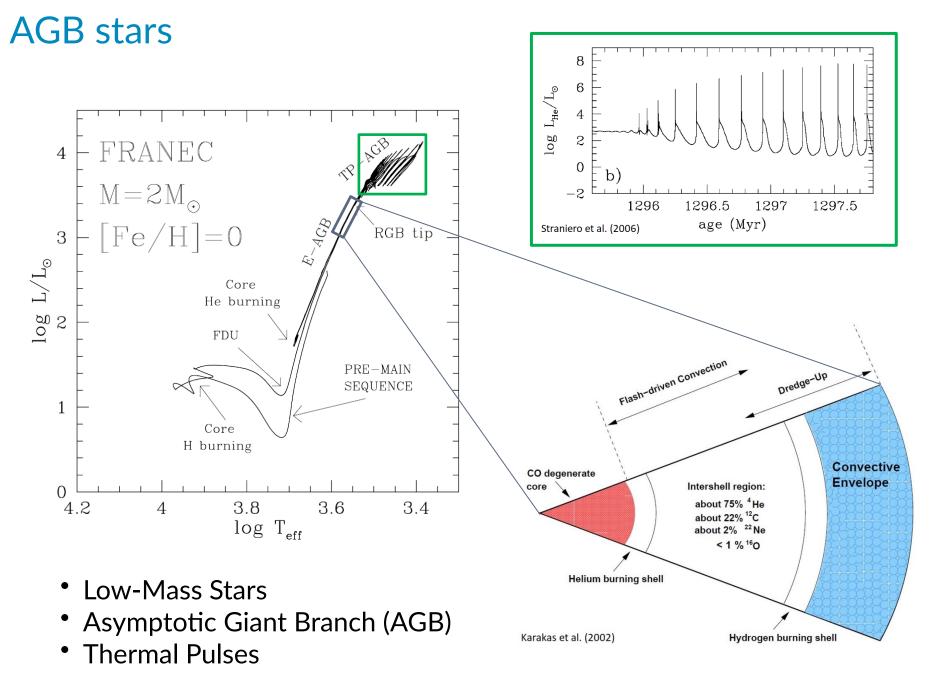
High neutron density n_n

$$\rightarrow \tau_{(n,\gamma)} << \tau_{\beta\text{-decay}}$$

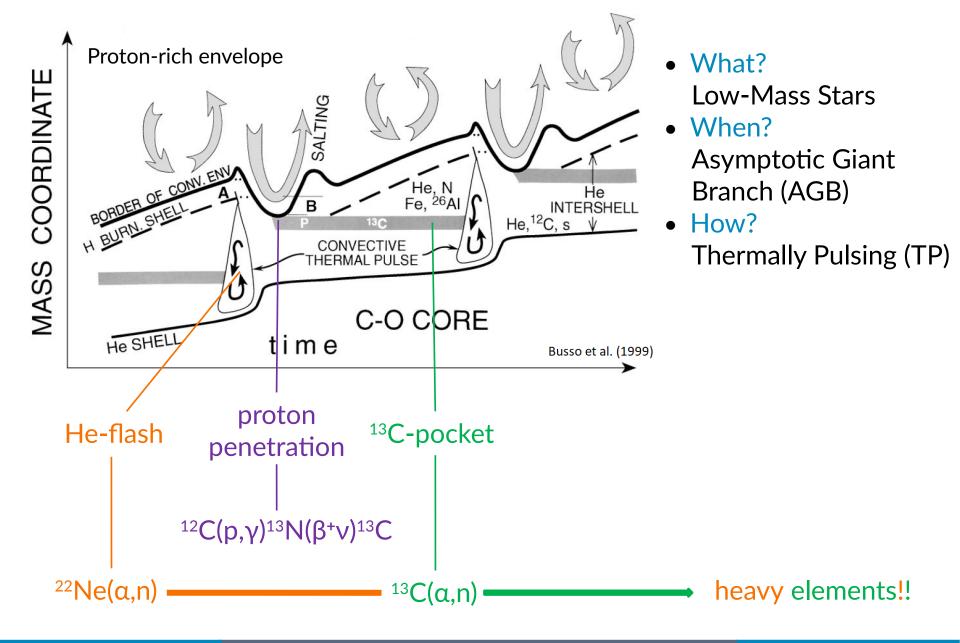
→ Supernovae and compact binary mergers




s-process

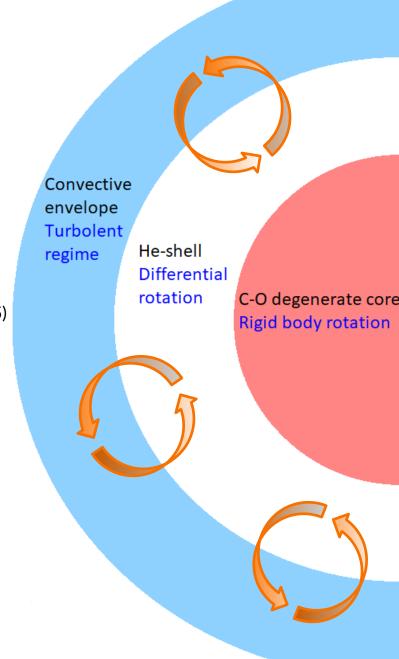

Mild neutron density n_n

$$\rightarrow \tau_{(n,\gamma)} \gtrsim \tau_{\beta\text{-decay}}$$

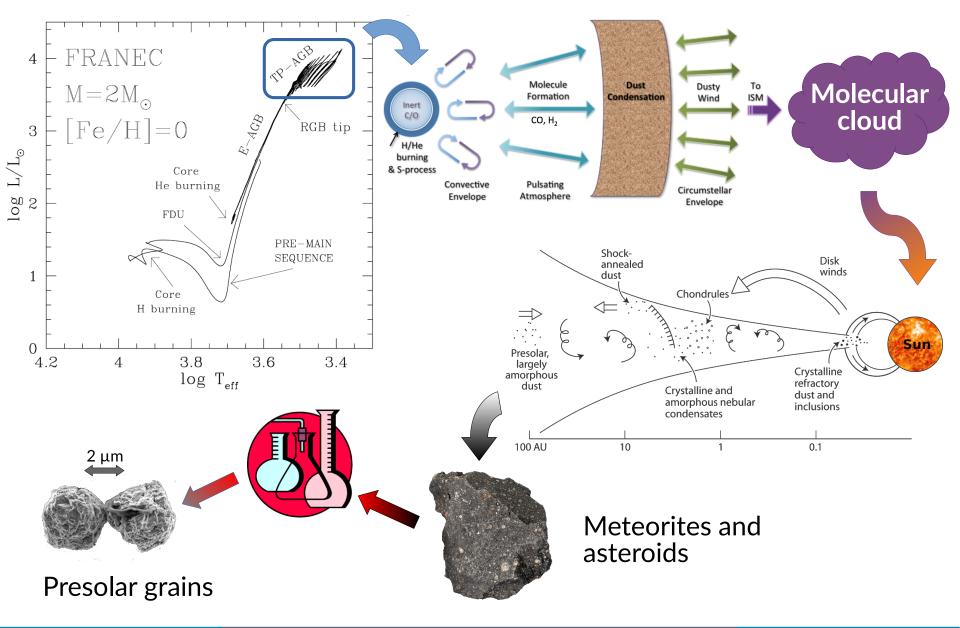

→ Asymptotic Giant Branch (AGB) and massive stars

H- and He-burning in TP-AGB stars

The ¹³C-pocket: formation


 Protons can penetrate into the He-rich region at each TDU (Third Dredge-Up) phenomenon

Which is the physical mechanism?


Classic models **assume** the ¹³C-pocket formation

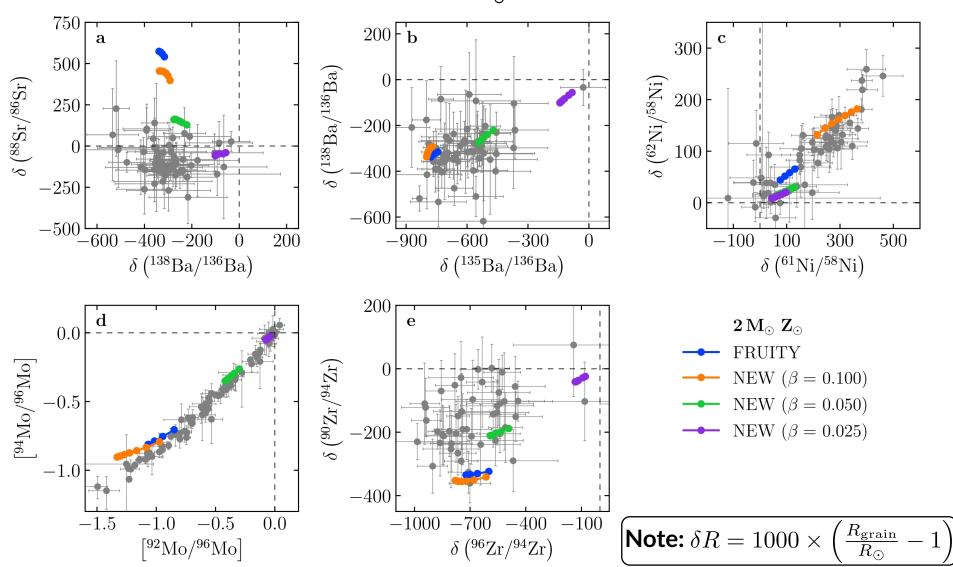
Many recent physical approaches:

- Opacity-induced overshoot (Cristallo+ 2009, 2011, 2015)
- Convective Boundary Mixing (Battino+ 2016)
- Magnetic fields (Trippella+ 2016; Palmerini+ 2018)
 - bottom-up mechanism through magnetic buoyancy
 - 1) Rotational shears promote magnetic fields
 - 2) Magnetic structures reach the envelope
 - 3) Protons are injested into the He-rich region

AGB stars and presolar SiC grains

FRUITY models with convective overshooting

- We considered convective overshooting only to the partial mixing of hydrogen.
- Exponential decay of the convective velocity $v = v_{\text{CE}} \exp \left(-\frac{\Delta r}{\beta H_P}\right)$ (Straniero+ 2006, Cristallo+ 2009)
- We considered **isotopic data** including Ni, Sr, Zr, Mo and Ba isotope ratios in **presolar SiC grains** → 10% uncertainty


• One stellar model: $2 M_{\odot}$ and $Z = Z_{\odot}$

• Updated solar-scaled mixture, mass-loss, EOS, nuclear reaction rates

Different values of β

SiC Grains I

- Isotopic data including Ni, Sr, Zr, Mo, and Ba isotope ratios in presolar SiC grains
- Stellar models with same initial mass (2 M_o) and solar metallicity

Magnetic buoyancy

- MagnetoHydroDynamics (MHD) solutions (Nucci & Busso 2014):
 - → No numerical approximations (exact analytic solution)
 - → Simple geometry: toroidal magnetic field

Equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) - \nu_m \Delta \mathbf{B} = 0$$

$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} - c_d \mathbf{v} + \nabla \Psi \right] - \mu \Delta \mathbf{v} + \nabla P + \frac{1}{4\pi} \mathbf{B} \times (\nabla \times \mathbf{B}) = 0$$

$$\rho \left[\frac{\partial \epsilon}{\partial t} + (\mathbf{v} \cdot \nabla) \epsilon \right] + P \nabla \cdot \mathbf{v} - \nabla \cdot (\kappa \nabla T) + \frac{\nu_m}{4\pi} (\nabla \times \mathbf{B})^2 = 0$$

Solutions:
$$v_r = v_p \left(\frac{r_p}{r}\right)^{k+1}$$
 $B_{\varphi} = B_{\varphi,p} \left(\frac{r}{r_p}\right)^{k+1}$

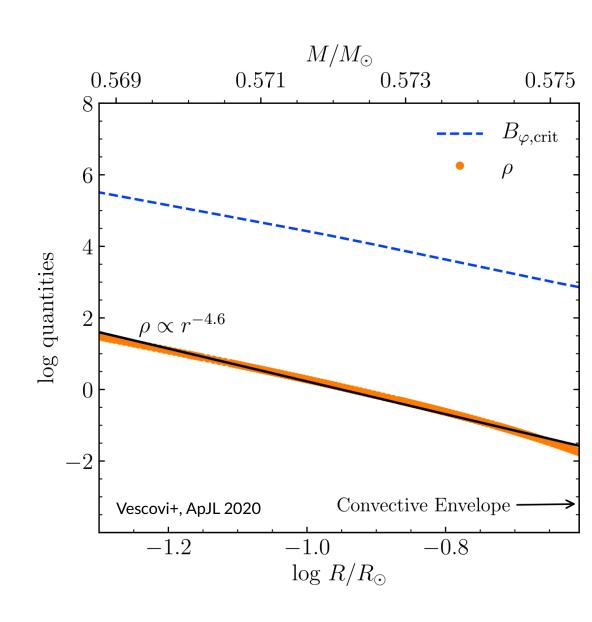
$$B_{arphi} = B_{arphi,p} igg(rac{r}{r_p}igg)^{k+1}$$

where k is the exponent of the density distribution:

$$\rho(r) = \frac{\rho_p}{r_p^k} r^k$$

Magnetic-buoyancy-induced mixing

→ Magnetic contribution (Vescovi+ 2020) to the dowflow velocity \mathbf{v}_d , acting when the density distribution is $\rho \propto r^k$:


$$\longrightarrow$$
 $v_d(r) = u_p \left(\frac{r_p}{r}\right)^{k+2}$

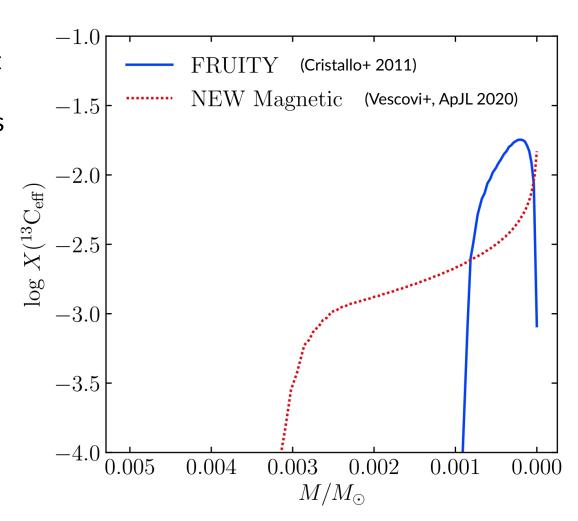
Parameters:

- Layer "p" at the deepest coordinate from which buoyancy starts
 (can be identified from the corresponding critical toroidal B_o value)
- Starting velocity \mathbf{u}_{p} of the buoyant material
- → <u>Calibration</u> is needed!
- → We ran various tests with different parameter values:
 - $u_n = 1, 3, 5, 8, 12 \times 10^{-5}$ cm/s
 - $B_{00} = 2, 5, 10, 15 \times 10^{4} \text{ G}$

Critical toroidal B-field

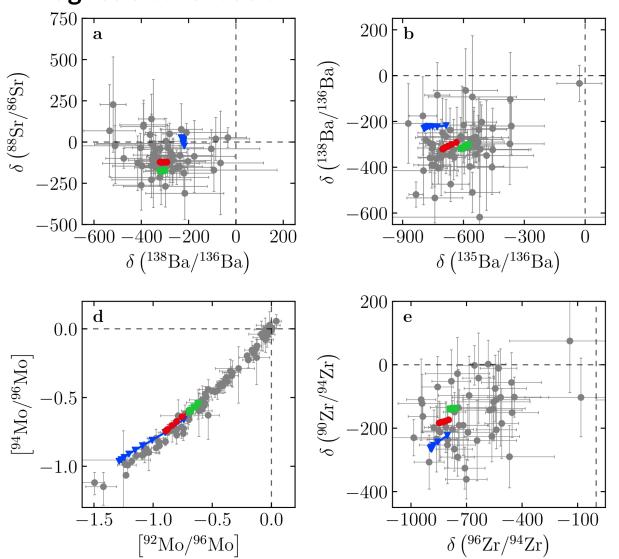
- Stellar model: $2 M_{\odot} Z = Z_{\odot}$
- The critical B_{φ} necessary for the onset of magnetic buoyancy instabilities, in radiative zone below the convective envelope varies from ~10⁴ G to ~10⁶ G
- Different values of B_{φ} correspond to different values of r_{p}
- The strength of B_φ
 determines the extension of the mixed zone and, in turn, of the ¹³C-pocket

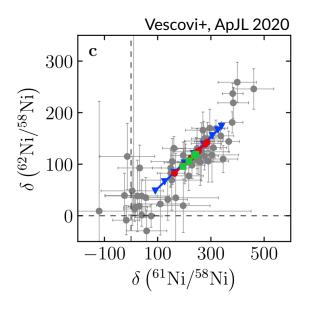
SiC Grains II


- Magnetic contribution accounts for SiC data!!
- Best fit for $u_p = 5 \times 10^{-5}$ cm/s and $B_{\omega} = 5 \times 10^4$ G

The ¹³C-pocket: shape

→ Effective ¹³C in the ¹³C-pocket region -> i.e. the difference between the number fractions of ¹³C and ¹⁴N in the pocket


→ New "Magnetic" pocket presents are more extended and flatter



SiC Grains III

• Stellar models with same initial mass (2 M_{\odot}) and close-to-solar metallicity

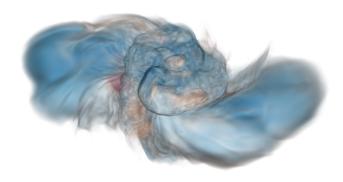
 $2\,\mathrm{M}_\odot$ FRUITY Magnetic

$$Z = 0.01$$

$$Z = Z_{\odot}$$

$$Z = 0.02$$

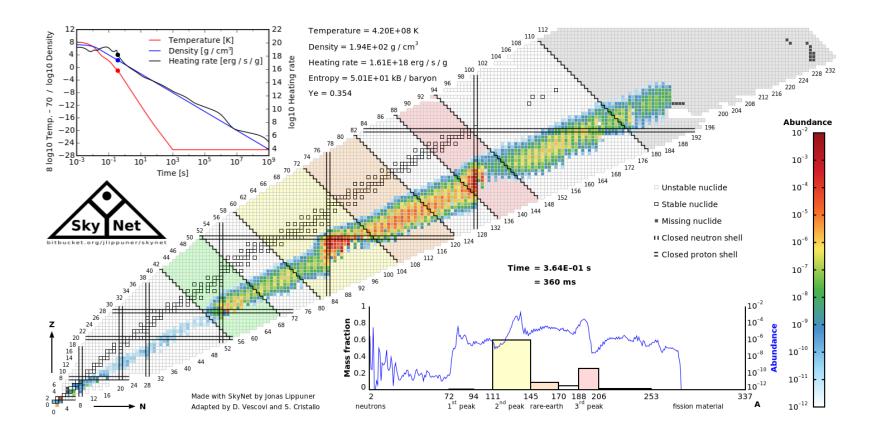
BEST FIT


$$u_p = 5 \times 10^{-5} \text{ cm/s}$$

 $B_{\varphi} = 5 \times 10^4 \text{ G}$

Summary II

- → First numerical simulations of the formation of a magnetically induced ¹³C-pocket in a stellar evolutionary code with fully coupled nucleosynthesis
- → Magnetic fields of the order of 10⁵ G (like in the solar tachocline) can induce the formation and buoyant rise of magnetic flux tubes in the Heintershell of AGB stars.
- → Such tubes are fast enough to guarantee, by mass conservation, the downward penetration of sufficient protons to form a sizable ¹³C-pocket
- → Unique choice of the field strength and initial buoyant velocity
- → New magnetic models provide a <u>consistent</u> explanation to the <u>majority of</u> the heavy-element isotope data detected in presolar SiC grains from AGB stars


33

Kilonovae and production of very light elements in Neutron Star Mergers

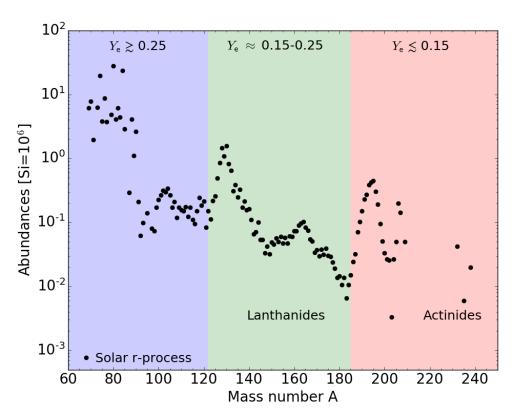
r-process: basic ideas

- key reactions: $(A, Z) + n \leftrightarrow (A + 1, Z) + \gamma$
- r-process requires initial high n_n and T
 - → high n_n : $\tau_{(n,\gamma)} << \tau_{\beta-decay}$
- equilibrium freeze-out: n_n drops and β -decays take over

Neutron star mergers as r-process site

r-process nucleosynthesis in depends mainly on three physical quantities:

- 1) entropy $s \sim T^3/\rho$
- 2) Electron fraction $Y_e \sim n_p / (n_n + n_p)$
- 3) Dynamical expansion timescale τ_{dyn}


	high entropy <i>r</i> -process	low entropy r-process
Possible scenarios	hot CCSN winds	BNS and BHNS mergers MHD supernovae

First evidences of *r*-process nucleosynthesis in kilonova from GW170817

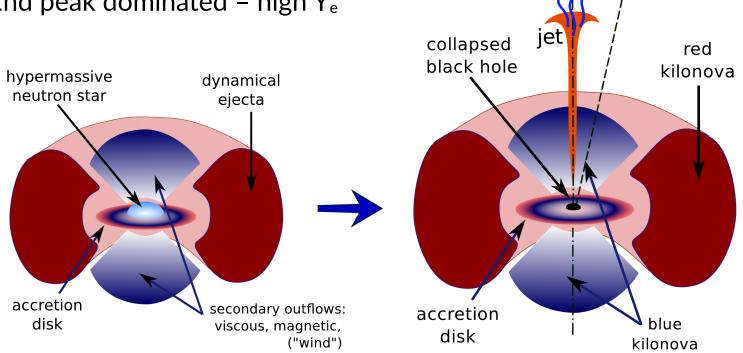
r-process nucleosynthesis in BNS mergers

Y dominant parameter

- Y_e < 0.15: <u>robust</u> r-process, due to several <u>fission cycles</u>
- $Y_p \leq 0.25$: 2nd and 3rd *r*-process peaks, but no first
- $Y_e \ge 0.25$: up to 2nd *r*-process peak

Production of lanthanides dramatically changes photon opacity κ_{ν}

- no lanthanides: low opacity ($\kappa_{v} \lesssim 1 \text{ cm}^{2}/\text{g}$)
- presence of lanthanides: increased opacity (κ_ν ≥ 10 cm²/g)

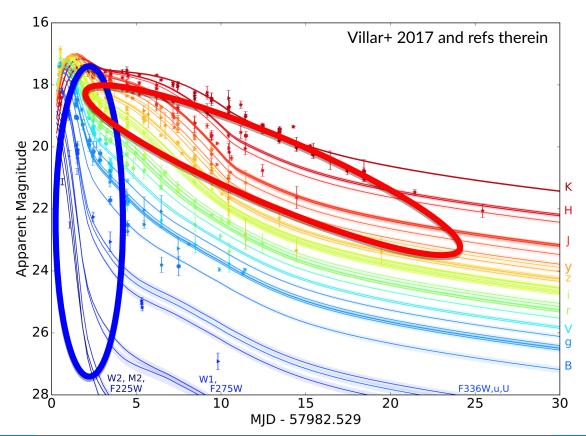

BNS merger + kilonova

- Red emission:
 - → Tidal ejecta
 - → Peak luminosity at days 1 week after the merger
 - → Lanthanide dominated low Y_e
- Blue emission:

→ Polar ejecta

→ Peak luminosity at 1-2 days after the merger

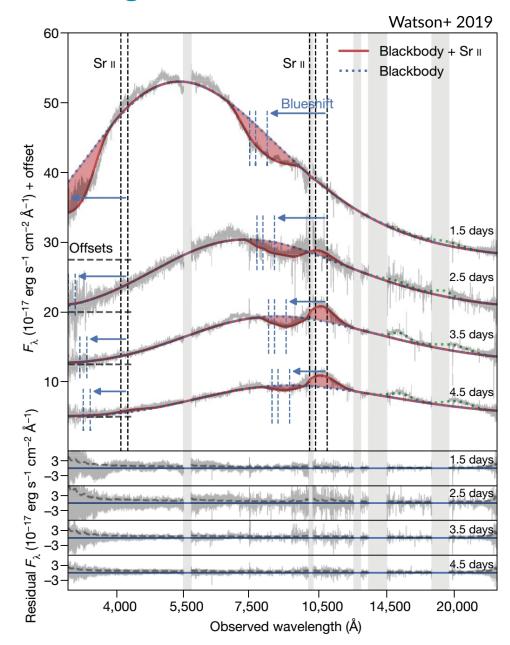
→ 1st/2nd peak dominated – high Y_e


 γ -rays

Courtesy of O. Korobkin

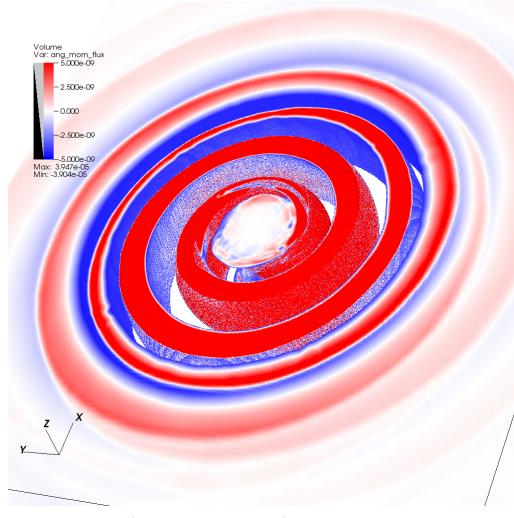
observer

Properties of GW170817/AT2017gfo


- 17/08/17, GW+EM detection of an event compatible with BNS merger (LVC PRL 2017)
- Blue component
- Red component
- Thermal emission by radiocative decay of heavy elements synthesized in multicomponent (2-3) ejecta

Properties of GW170817/AT2017gfo

Spectral analysis <u>hampered</u> due to:


- Heavy elements have forest of lines hence strong blending
- Relativistic velocity makes for extremely broad lines (multicomponents and different velocities)
- Atomic data are <u>incomplete and</u> <u>uncertain</u>
- → The analysis of the spectrum at 1.5 days suggested the presence of strontium (Watson +2019)

Production of very light elements in kilonovae

- What about very light elements?
- The dynamical ejecta and spiralwave wind are the earliest and fastest ejecta
 - → transparent within the very first days and possibly providing key spectral features
- we investigated the production of light elements (Z < 20)
- connecting the thermodynamics conditions for their production to the binary properties (mass ratio and EOS)

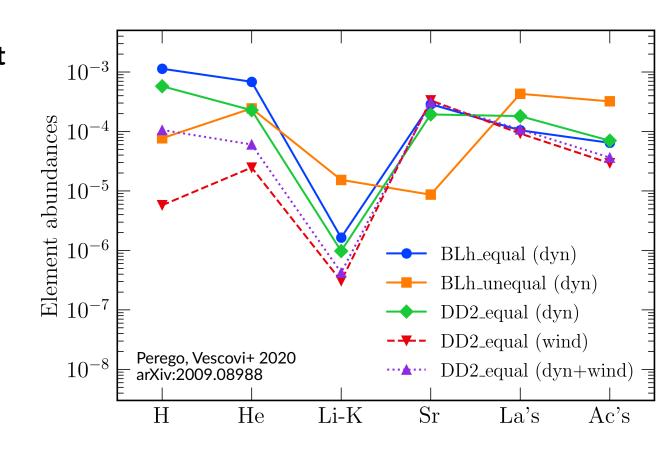
Spiral-wave wind (Nedora+ 2019, 2020)

Production of very light elements in kilonovae

• Three simulations:

1)
$$M_1 = M_2 = 1.364 M_{\odot}$$

Soft EOS (BLh)

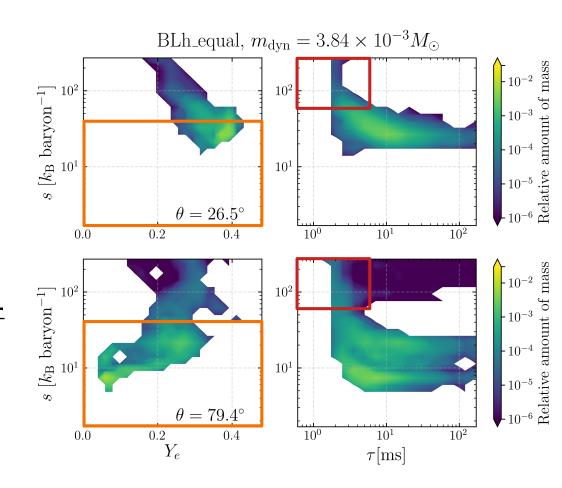

2)
$$M_1 = 1.856 M_{\odot}$$
, $M_2 = 1.020 M_{\odot}$
Soft EOS (BLh)

3)
$$M_1 = M_2 = 1.364 M_{\odot}$$

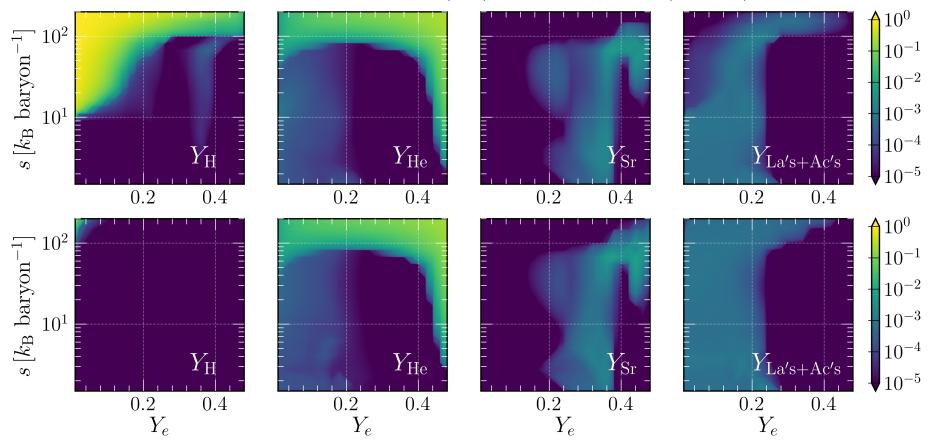
Stiff EOS (DD2)

- from each BNS simulations we extract mass distributions of the ejecta in the s, Y_e , τ_{dyn} space
- time-dependent abundances from their <u>convolution</u> with the yields tabulated with SkyNet (Lippuner & Roberts 2017)

Production of very light elements in kilonovae

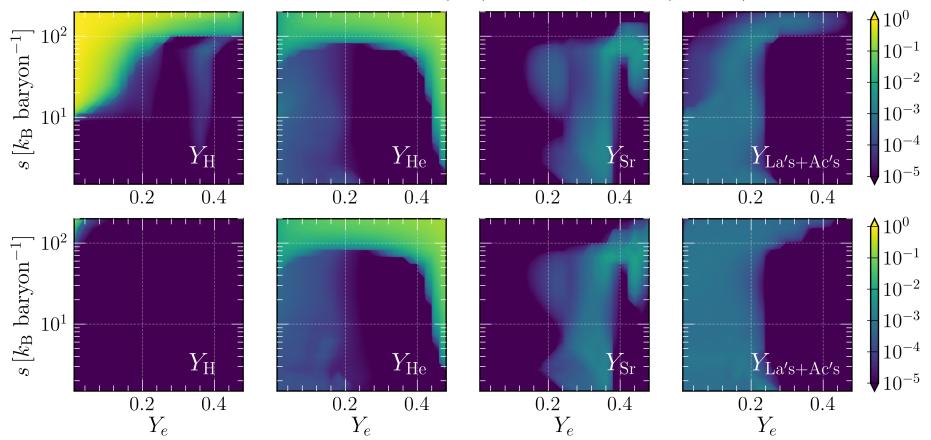

- → H and He are the most abundant species, comparable to Sr, lanthanides, and actinides
- → elements between lithium and potassium are usually several orders of magnitudes less abundant

43


Conditions of the ejecta from BNS merger simulations

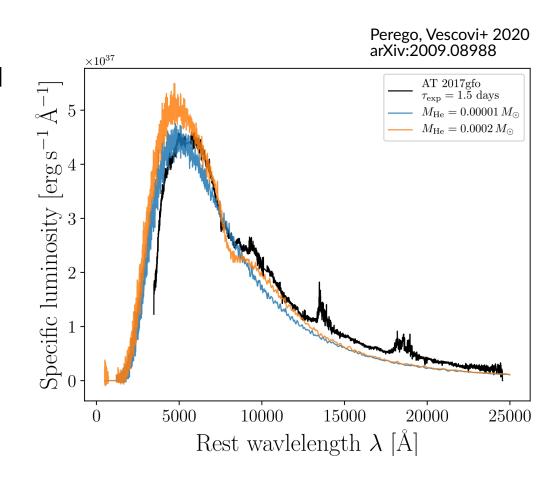
- The bulk of the ejecta has <u>low</u> entropy (s < 40 k_B baryon⁻¹) and is <u>neutron rich</u>
- Equatorial ejecta are usually characterized by lower Y_e and lower entropy
- However, at both angles a <u>high-entropy</u> tail (with s > 60 k_B baryon⁻¹) expanding at <u>high speeds</u> (τ <~ 5 ms) is visible

Origin of H, He, and Sr


Abundances at 2 days for $\tau = 1.0$ ms (top) and $\tau = 11.4$ ms (bottom) trajectories

- Abundances for individual trajectories characterized by different (s, Y_e , τ) sets
- For Ye ≥ 0.22 **Sr is robustly produced** for all entropies

Origin of H, He, and Sr


Abundances at 2 days for $\tau = 1.0$ ms (top) and $\tau = 11.4$ ms (bottom) trajectories

- The presence of H in the ejecta is related with high-s and low-Y_e
- He production can happen both in association or in the absence of heavy elements

Detecting H, He, and Sr in kilonova spectra

- The amount of Sr predicted by <u>ab-initio BNS</u> models is <u>consistent</u> with the one required by the analysis reported in Watson+ 19
- He and then H could recombine in atomic form after a few hours
- However, they probably never contribute to the kilonova spectrum
- Presence of H/He lines
 - → Supernovae

Summary III

→ We considered results of Numerical Relativity (NR) simulations of BNS assuming different mass-ratio and EOS

→ In BNS mergers H, He, and Sr can be synthesized

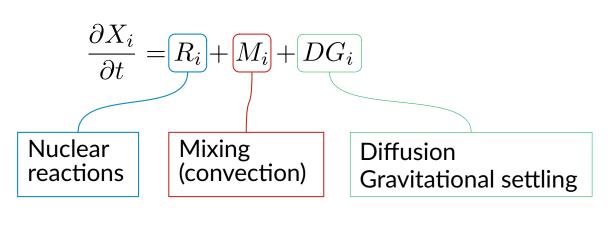
→ The amount of Sr is consistent with the one required to explain early spectral features in the kilonova of GW170817

→ H and He probably never contribute to the kilonova spectrum formation unless strong non-LTE effects appear or a dramatic EOS softening boosts the presence of fast expanding, high-s matter

→ Key result to organize and prioritize future observational campaigns for the electromagnetic counterparts of GW events

Backup Slides

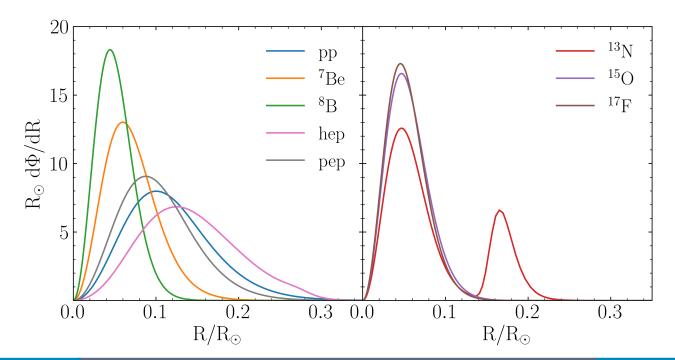
Standard Solar Model (SSM)


• Stellar model obtained by numerical integration of the equations describing the physical and chemical structure of the Sun as well as its time evolution

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \varrho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$$

$$\frac{\partial l}{\partial m} = \varepsilon_{\rm n} - \varepsilon_{\nu} - \varepsilon_{\rm g}$$


$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla$$

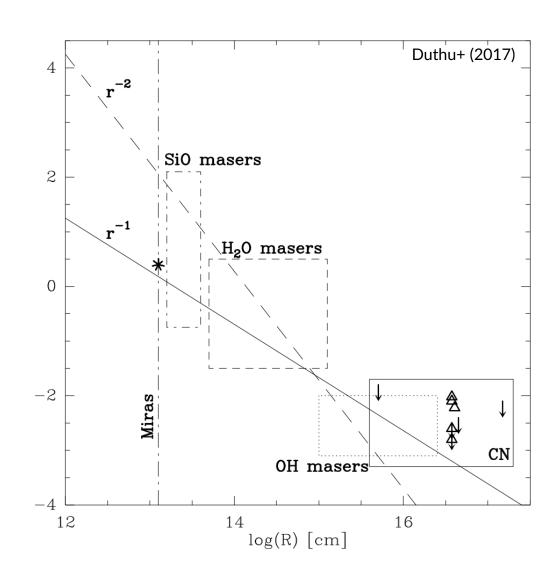
- Evolve a model with 1 M_{\odot} starting from a chemically homogeneous model to present solar age with:
 - 1) good microphysics (reaction rates, equation of state (EOS), opacity)
 - 2) assumed mixing length (α_{ml}), initial helium (Y_{ini}) and metal (Z_{ini}) abundances
- → Match R_o, L_o, and (Z/X)_o to better than one part in 10⁻⁵

SSM: predictions

- Physical quantities: temperature, pressure, density, luminosity, mass...
- Chemical profiles: X(r), Y(r), $Z_i(r) \rightarrow$ electron density profiles
- <u>Helioseismic quantities</u>: surface helium abundance, depth of the convective envelope, sound speed
- Neutrino fluxes: production profiles and integrated values

Sun's core metallicity

$$Z_{\odot}^{\rm c} = 0.400 imes rac{\Phi_{
m CNO}}{10^{10} {
m cm}^{-2} {
m s}^{-1}}$$
 (Gough 19)



$$Z_{\odot}^{c} \left(\Phi_{\text{CNO}}^{\text{BX}} \right) = 0.028_{-0.008}^{+0.012}$$

Source	$Z_{ m c}$
GS98	0.0203 ± 0.0026
PLJ14	0.0179 ± 0.0021

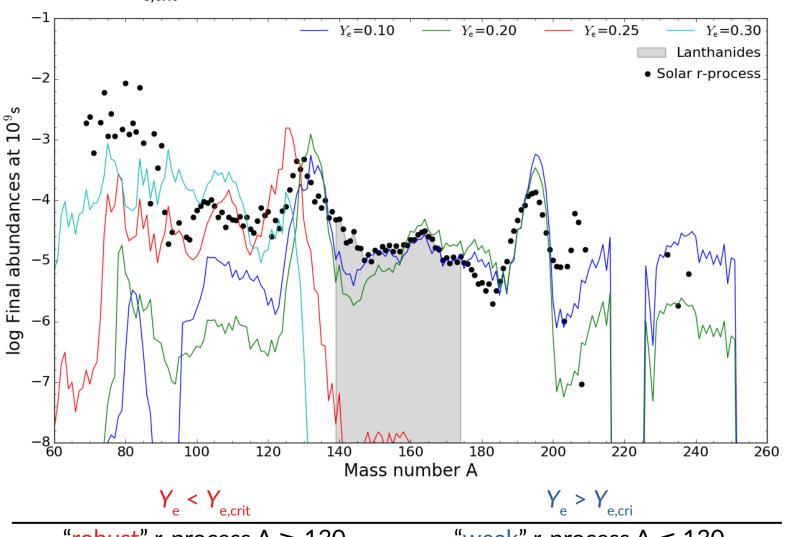
Magnetic field in O-rich and C-rich AGB stars

- Generally, AGB magnetic field measurements come from <u>maser polarization</u> <u>observations</u> (SiO, H2O and OH) (e.g. Vlemmings+ 2012)
- These have revealed a <u>strong magnetic field</u> <u>throughout the circumstellar</u> <u>envelope</u>
- B-field at surface ~ few G
- Although the maser observations trace only oxygen-rich AGB stars, recent CN Zeeman splitting observations (Duthu+ 2017) indicate that similar strength fields are found around Crich stars

Generation of a toroidal B-field in the He-intershell

- Stellar model: 2.5M_o Z=Z_o
- Stretching of a preexisting poloidal field can generate a toroidal field

- <u>Differential rotation</u> in the Heintershell?
- An additional <u>artificial viscosity</u> of around 10⁷cm²s⁻¹ provides a sufficient transport of angular momentum to match the core and envelope rotation rates for core He-burning stars (den Hartogh + 2019a,b)
- The critical polidal B_p would be


$$\rightarrow B_{\rm p} \sim B_{\varphi}(\Omega q \Delta t)^{-1}$$

A rough (preliminary) estimate gives a B_p few hundreds times
 lower than B_ω ⇒ B_p ≤ 1kG

Final abundances vs. electron fraction Y

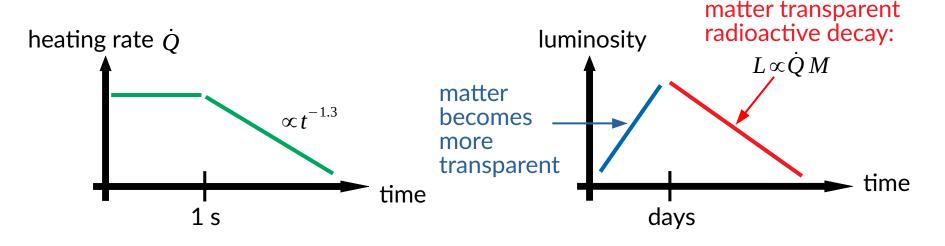
→ Threshold value $Y_{e,crit} \approx 0.25$

"robust" r-process A ≥ 130

"weak" r-process A $\lesssim 130$

insensitive to details of trajectory

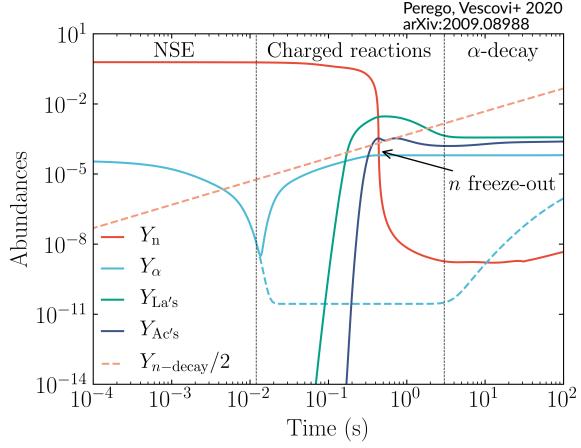
sensitive to details of trajectory


Nuclear heating rate

 Radioactive decays of r-process elements release nuclear energy

$$\dot{Q}_{r-process} = \sum_{i \in reactions} Q_i \lambda_i$$

with $Q = M_{initial} - M_{final}$ and $\lambda = decay \ rate$


Y _e ≥ 0.25	Y _e ≤ 0.25
weak <i>r</i> -process (A<130)	robust <i>r</i> -process (A>130)
"blue transients" peaking after ~ 1 day	"red transients" peaking after ~ 1 week

- key physics ingredients:
 - 1) ejecta mass, velocity, $Y_e \longrightarrow$ astrophysics
 - 2) opacity $\kappa_{v} \longrightarrow$ atomic physics
 - 3) radioactive heating rate $\dot{Q} \longrightarrow$ nuclear physics

Origin of He

- Free neutrons are abundant and provide an almost steady supply of free protons (through <u>n-decay</u>) and the efficient formation of deuterium (d) and tritium (t).
- Y_{α} increases through charge reactions such as $t + t \rightarrow 2n + {}^{4}\text{He}$ and $d + t \rightarrow n + {}^{4}\text{He}$
- At later times (t >~ 2 s), α decay of translead nuclei
 becomes significant and Y_{α} increases further

Trajectory with $s = 10 \text{ k}_{\text{B}} \text{ baryon}^{-1}$, $\tau = 10 \text{ ms}$ and $Y_{\text{e}} = 0.15$