

Magnetic field in intergalactic space

Martin Pohl

with Sergei Vafin, Iman Rafighi, and Jacek Niemiec

Introduction

- TeV-scale gamma rays produce pair cascades in cosmic voids
- In some cases the cascade emission is not observed
- Possible explanation: Magnetic field at fG level
- Alternative explanation: Plasma instabilities

Introduction

B=few μG

Neronov 2009

Millenium simulation

Let's shine light on it ...

Blazars

TeV gamma-ray sources

Observable out to z~1

Collimated jets

Beamed gamma-ray emission

3C273 in X rays (Credit: NASA)

Electromagnetic cascade

Is it seen? No!

EBL spectrum known reasonably well 10^{-11} 1ES 0229+200 Deabsorbed 10^{-12} srj emission Upper limits/68% containment v Լ(۸) [nW m² 2017 ICRC 10^{-11} 1ES 0347-12 Cascade ss. Gilmore 2012 Fiducial emission 10 [er 10 10^{-11} **Upper limit** 1ES 1101-232 10^{-12} 10 10^{9} 10^{10} 10^{11} 10^{12} 1 10^{8} 10^{13} λ [µm] E [eV]

Neronov & Vovk 2010

Wavelength

Now what?

Magnetic deflection \rightarrow fG fields required

Deflected signal

Broderick et al. 2018:

Search for isotropized cascade emission from radio galaxies

 Nothing seen
→ argues against magnetic deflection

Now what?

Energy losses through plasma instabilities?

The question

Cascade emission not always seen

Intergalactic magnetic field?

Profound consequences for magnetogenesis

Plasma instabilities

Would have to be faster than Compton scattering

Compton scattering

Compton scattering of CMB Cascade emission at 4 GeV Primary gamma rays	ε=5.e-4 eV γ=3.e6 ε=6 TeV	Electron Lorentz factor
Photon mean free path is Compton cooling length	λ=100 Mpc l _c =0.3 Mpc	We are in voids!!
Pair density ~ photon density	~ 1/D ²	Fiducial distance D=50 Mpc

Test dominance of plasma instabilities \rightarrow use uncooled pair spectrum

Pair beams

Fiducial blazar, spectral index -1.8

EBL spectrum

Plasma instability

Longitudinal instability

Velocity resonance

k_{par} fixed

Maximum growth in oblique direction 1D treatment is dangerous

We need saturation level!

Need to be in the right regime! Simulation must be carefully designed! Rafighi et al. 2017

Linear growth rate Real parameters

Pair-beam simulation

Particle-in-cell simulations

Analytically estimated growth rate

Pair-beam simulation

Growth to saturation level

Saturation process is analytically modelled Nonlinear Landau damping and modulation instability

Extrapolation to reality

Simulation too short to capture energy loss

Understanding of saturation allows scaling to real pair beams

Saturation level W_k reflects equilibrium between driving and damping

Can calculate energy loss rate $\propto \int d^3k \, \omega_I W_k$

Plasma instabilities are ten times faster than Compton scattering

Cascade emission is suppressed!

Vafin et al. 2018

Extrapolation to reality

Does the analytical handling of the saturation work?

Nonlinear Landau damping

Numerical treatment Vafin et al. 2019

→ no constant saturation level

Extrapolation to reality

ightarrow no constant energy loss rate

Subdominant processes matter!

Adding collisions increases the total energy loss by a factor 10

What else do we miss??

Summary

Cascade emission following pair production of TeV radiation not seen

Interpretation as magnetic deflection requires strong fields in cosmic voids

We find that plasma instabilities can cool the pairs and suppress cascading, alleviating the need for a strong magnetic field

Substantial uncertainties in the estimate

Can we trust analytical treatment of saturation?

A fully time-dependent calculation for specific objects is needed.