Neutrinos from Blazars – what we learned from the TXS0506+056 observations

Animation by Science Communication Lab & DESY

Anatoli Fedynitch

Deutsches Elektronen Synchrotron (DESY) Zeuthen, Germany

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

What is a blazar?

- Active core (nucleus) of a galaxy
- Energy extracted from the Super-Massive Black Hole (SMBH) drives a jet
- The jet is oriented towards the observer (us)
- Characteristic radiation pattern
 (SED)
- Emits bright flares every couple of years that last for weeks or months

Animations by <u>Science Communication Lab</u> and DESY: check out <u>https://multimessenger.desy.de/</u> for interactive version

Core region of an active galaxy

Dusty torus

- SMBH drives accretion disk
- The radiation from the disk heats the environment; BLR and Torus
- Accretion of matter drives jet (of galactic dimension ~ kpc)
- Turbulent flow and plasma instabilities in the jet form radiation zones (blobs)
- Electrons and protons accelerate to ~PeV energies
- Radiation off relativistic particles produces observed spectrum

AGN/Blazar types

- In fact there are many "blazars", but they are not necessarily called blazars
- If emission of messengers (Cosmic Rays and neutrinos) is not beamed then many more dim sources as known from gamma-ray catalogs
- Two interesting blazar types for high-energy observations are BL Lacs & FSRQs

a/M (?) spin Page 4

Radiation from the "blob"

$\gamma + \gamma \rightarrow e^+ + e^ \gamma + e \rightarrow \gamma + e$ (IC) Leptonic cascade $e + B \rightarrow e + \gamma$ (syn.) γ **e**⁺ **e**⁺ **e** Ambient γ

e

BL Lacs vs Flat Spectrum Radio Quasars (FSRQ)

Rodrigues, AF, Gao, Boncioli, Winter, ApJ 854 (2018)

Abdo+ 11

FSRQ:

25

- 1. Line, disk and thermal emission
- 2. High luminousity (high second peak)
- Low maximal photon energy 3.

(controversial) Blazar sequence: distribution of source classes

Multi-messenger implications of the blazar sequence

Neutrino production increases with the target photon density.

Neutrino observation points to one source of high-energy cosmic rays NSF

The real thing

RESEARCH ARTICLE

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverp...

+ See all authors and affiliations

RESEARCH ARTICLE

Science 13 Jul 2018: Vol. 361, Issue 6398, eaat1378 DOI: 10.1126/science.aat1378

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

IceCube Collaboration*,†

+ See all authors and affiliations

Science 13 Jul 2018: Vol. 361, Issue 6398, pp. 147-151 DOI: 10.1126/science.aat2890 Letter Published: 05 November 2018

Modelling the coincident observation of a high-energy neutrino and a bright blazar flare

Shan Gao, Anatoli Fedynitch 📉, Walter Winter & Martin Pohl

Nature Astronomy (2018) Download Citation 🕹

+ many other follow-up papers!

Theoretical challenges of the TXS0506+056 MM observation

Explain why the **neutrino** is detected **during flare and not during quiscence**

Source model

S. Gao, AF, W. Winter and M. Pohl Nature Astronomy, November 2018

- One or multiple emission regions (blob or plasmoid) is spherical in its rest frame
- Radiation and particle momenta assumed isotropic
- Injection of accelerated particles (no explicit simulation)
- Particles escape at constant rate
- Studied models with a one and two zones

Time-dependent hadro-leptonic code (AM³)*

*Astrophysical Modeling with Multiple Messengers

$$\partial_t n(\gamma, t) = -\partial_\gamma \{ \dot{\gamma}(\gamma, t) n(\gamma, t) - \partial_\gamma [D(\gamma, t) n(\gamma, t)]/2 \} - \alpha(\gamma, t) n(\gamma, t) + Q(\gamma, t)$$

- Numerically solves a set of coupled transport equations for
 - Photons
 - e+, e-
 - Protons and neutrons
 - pions + muons (implicit)
 - neutrinos

	injection	escape	synchrotron	inverse Compton $\gamma \gamma \leftrightarrow e^{\pm}$		Bethe-Heitler	$p\gamma$
e^{-}	$\rm Q_{e,inj}$	$lpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{e,syn}}, \mathrm{~D}_{\mathrm{e,syn}}$	$\dot{\gamma}_{\rm e,IC}, \ {\rm D}_{\rm e,IC}, \ \alpha_{\rm e,IC}, \ {\rm Q}_{\rm e,IC}$	$\alpha_{\mathrm{e,pa}}, \mathrm{Q}_{\mathrm{e,pp}}$	Q_{BH}	$ m Q_{e,p\gamma}$
e^+	—	$lpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{e,syn}}, \mathrm{~D}_{\mathrm{e,syn}}$	$\dot{\gamma}_{\mathrm{e,IC}}, \mathrm{~D_{e,IC}}, \mathrm{~\alpha}_{\mathrm{e,IC}}, \mathrm{~Q_{e,IC}}$	$\alpha_{\mathrm{e,pa}}, \mathrm{Q}_{\mathrm{e,pp}}$	Q_{BH}	${ m Q}_{ m e,p\gamma}$
γ	—	$\alpha_{ m f,esc}$	$\alpha_{\rm f,ssa}, {\rm Q}_{\rm f,syn}$	$lpha_{ m f,IC},~{ m D}_{ m f,IC}$	$\alpha_{\rm f,pp}, { m Q}_{ m f,pa}$	$lpha_{ m f,BH}$	$\alpha_{\mathrm{f},\mathrm{p}\gamma}, \ \mathrm{Q}_{\mathrm{f},\mathrm{p}\gamma}$
р	$\mathrm{Q}_{\mathrm{p,inj}}$	$lpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{p,syn}}, \mathrm{~D}_{\mathrm{p,syn}}$	$\dot{\gamma}_{\rm p,IC} \ {\rm D}_{\rm p,IC}, \ \alpha_{\rm p,IC}, \ {\rm Q}_{\rm p,IC}$	_	$\dot{\gamma}_{\mathrm{p,BH}}, \mathrm{~D}_{\mathrm{p,BH}}$	$\alpha_{\mathrm{p,p}\gamma}, \ \mathrm{Q}_{\mathrm{p,p}\gamma}$
n	—	$lpha_{ m f,es}$	_	_	_	_	$\alpha_{n,p\gamma}, Q_{n,p\gamma}$
ν	_	$\alpha_{ m f,es}$	_	—	_	—	$\mathrm{Q}_{ u,\mathrm{p}\gamma}$

Gao, Pohl, Winter, APJ 843 (2017)

- ~500 energy bins per species
- Energy "bandwidth" ~20 orders of magnitude (Radio-EeV)
- Very efficient: < 2 min to reach stationary solution of time-dependent simulation
- Photo-hadronic interactions following Hümmer et al., APJ 712, 2010

Common types of one-zone models

Gao, Pohl, Winter, APJ 843 (2017)

	First peak (eV-keV)	Middle range (keV-MeV)	Second peak (MeV-TeV)	Neutrinos
SSC	L	L	L	0
(Pure leptonic)	Primary e^- synchrotron	SSC	SSC	0
LH-SSC	L	Н	L	
(Lepto-hadronic)	Primary e^- synchrotron	Secondary leptonic	SSC by primary e^-	$L_{\nu} < L_{\gamma}$
$ m LH$ - π	L	Н	Н	
(Lepto-hadronic)	Primary e^- synchrotron	Secondary leptonic	Secondary leptonic or γ -rays from direct π^0 decay	$L_{\nu} = L_{\gamma}$
$\mathbf{LH} ext{-}\mathbf{psyn}$	L	Н	Н	1<
(Proton synchrotron)	Primary e^- synchrotron	Proton synchrotron or secondary leptonic	Proton synchrotron	$ UHE E_n \& E_p $

We test <u>all</u> current one-zone models for compatibility with TXS0506+056 observations

Scan for hadronic models with semi-analytics

see Gao, Pohl, Winter, ApJ (2017) for more details on the method

Hadronic model excluded $p\gamma \rightarrow \pi^0 \rightarrow \gamma\gamma$

... from fully time-dependent hadro-leptonic calculations

- Various constraints from proton-synchrotron, SSC emission, Bethe-Heiler, etc.
- Example (left) for overshooting Bethe-Heitler constrains
- No viable model in large parameter scans
- Hadronic model excluded

No obvious correlation between Fermi, TeV and v lightcurves!

Leptonic SSC fit of the flare

- We find a good fit through extensive parameter scan
- Remarkably simple assumptions r~10¹⁶ cm, B~0.16G and electrons with a $E^{-3.5}$ spectrum between $10^4 < \gamma < 6x10^5$
- If neutrino association is real, leptonic model is excluded

Hybrid lepto-hadronic one-zone model

- Dominant part of the SED originates from leptonic SSC
- Sub-leading hadronic component from proton injection with max. energy ~4.5 PeV
- **Reproduces neutrino energy** ~ 0.2 few PeV
- γγ self-absorption and EBL absorption (z=0.34) cascade down PeV photons to GeV energies
- X-Ray variability sensitive to hadronic component

Problem with energy constraints: exceeds Eddington luminosity by 10³

Boost ν efficiency with UHECR injection

 Instead of protons with E_{max} ~4.5 PeV we injected up to E_{max}~17 EeV

Target photon energy moves down and the density up the synchrotron peak

• Less power required for the interaction rate and almost identical SEDs (many other models use this fact)

 However, neutrinos production is at wrong energy and a very low rate < 10⁻³/yr expected

Two zone (core) model

- Large zone r~10^{17.5} cm for quiescent state
- Flare generated through formation of a compact core r_{core}~10¹⁶ cm during the short period of the flare
- To power the core 7xL_{Edd} needed to saturate X-ray flux, quiescent state is sub-Eddington
- Neutrino rate is ~0.3/yr, consistent with the observation of one neutrino during the flare

Two zone (core) model

- Large zone r~10^{17.5} cm for quiescent state
- Flare generated through formation of a compact core r_{core}~10¹⁶ cm during the short period of the flare
- To power the core 7xL_{Edd} needed to saturate X-ray flux, quiescent state is sub-Eddington
- Neutrino rate is ~0.3/yr, consistent with the observation of one neutrino during the flare

Time dependence of the core model

- TeV delay and flikering is natural
 - Neutrino rate limited by X-rays

- Leptonic processes react swiftly to changes in injection
- Neutrino emission needs sustained flare activity

Overview of other explanations for the MM flare

- Ansoldi et al. (MAGIC) (1807.04300): UHECR, spine-sheath
- Cerruti et al. (1807.04335): UHECR, proton-syn.
- Keivani et al. (AMON) (1807.04537): ext. field
- Murase et al. (1807.04748): ext. field
- Righi et al. 2018 (ADAF, "re-scattering with acc. disk")
- **H. Zhang** et al. (2018), UHECR, proton synchrotron

Spine-sheath models (non-thermal external radiation fields)

External fields disk, dust, BLR,.. (for Spine-Sheath can be synchr.) are boosted into jet frame \rightarrow more target photons more neutrinos

Proton-proton interactions?

- Liu et al. 2018, (1807.05113)
- Sahakyan (1808.05651)
- + others only qualitatively

Proton-proton interactions?

- Liu et al. 2018, (1807.05113)
- Sahakyan (1808.05651)
- + others only qualitatively

...but no obvious coincidence with flare, pp and pgamma emission can lie months or years apart

Theory challenges from 2014-2015 "historical" neutrino flare

A few gamma-ray photons can be interpreted as hardening

DESY. | TXS0506+056 | 2018/12/12 Colloquium GSSI, l'Aquila | Anatoli Fedynitch

typ. energies tens of TeV

Jet – star/cloud interaction, a possible scenario?

Ruoyu Liu, TeVPa 2018

M. Barkov et al. 2010, 2012; Khangulyan et al. 2013

Rate not well constrained

 In Barkov's models the ablated protons still need an additional acceleration mechanism

E (eV)

 Comptonized radiation T~10⁷ K "hides" GeV emission

Jet – star/cloud interaction, a possible scenario?

Ruoyu Liu, TeVPa 2018

M. Barkov et al. 2010, 2012; Khangulyan et al. 2013

Rate not well constrained

- In Barkov's models the ablated protons still need an additional acceleration mechanism
- Comptonized radiation T~10⁷ K "hides" GeV emission

Lepto-hadronic one-zone models in tension with observation

Fitting the SED

- Only 1.9 neutrinos if model is compatible with SED
- Strong overshoot of indirect X-ray constraints if fitting the neutrino number
- Any other viable alternative?

Fitting neutrinos

Compact core model v2

- Compact core model, as for the flare, produces 1.9 neutrinos and is limited by the gamma rays
- Low X-ray luminosity
- Hardening in gamma rays

External fields boosted into the jet frame

- **!8! neutrinos**, but gamma rays **too soft**
- Gamma rays in light tension @ 1.7 neutrinos
- Gamma rays compatible @ 0.4 neutrinos
- Very high energy gamma rays absorbed due to $\tau_{\gamma\gamma}$

What we learned from TXS 0506+056 observations

Multi-messenger flare:

□ TXS0506+056 can indeed be the **source of the one neutrino**, but detection is lucky

□ Most of the "elegant" one zone models excluded through observational constraints or energetics

- □ Additional mechanism (two zones) required to boost $p\gamma$ efficiency, either through a compact core, or spine-sheath structures, or external fields → more free parameters and insufficient experimental constraints \bigotimes
- Soft/hard X-ray's and TeV (+GeV) gammas are the strictest constraints, all calculations/authors (e.g. Keivani et al., Cerruti et al.) agree on that
- Historical flare:
 - **Real challenge** due to the lack of activity in gamma rays and **no proper X-ray measurements**
 - □ Jet-star/cloud interaction is a possible explanation, but requires lots of fine tuning

 $\hfill\square$ One and two zone models in 2σ tension with observations

TXS alone is not enough to understand why this particular blazar a neutrino source.

Proton synchrotron scenario

Requires UHECR energies

• Qualitatively **similar** constraints as in **UHECR case**

Results in neutrinos at wrong energy and thus in a negligible rate

MAGIC and VERITAS observations important (red line)

Model parameters

Parameter	Description	Fit	Hybrid		Hadronic
			Quiescent	Flare	Flare
\overline{z}	Redshift	fixed	0.34		0.34
$B'(\mathbf{G})$	Magnetic field		0.007	0.14	2.0
$R'_{\rm blob}~({ m cm})$	Blob size		$10^{17.5}$	10^{16}	10^{16}
$\Gamma_{ m bulk}$	Doppler factor		28.0		20.0
$L'_{e,\text{inj}}$ (erg/s)	Electron injection luminosity		$10^{40.5}$	$10^{40.9}$	$10^{41.3}$
$lpha_e$	Electron spectral index		-2.5	-3.5	-2.3
$\gamma_{e,\min}'$	Min. electron Lorentz factor		$10^{4.2}$		$10^{3.3}$
$\gamma'_{e,\max}$	Max. electron Lorentz factor		$10^{5.6}$	$10^{5.1}$	$10^{4.4}$
$L'_{p,\text{ini}}$ (erg/s)	Proton injection luminosity		$10^{44.5}$	$10^{45.7}$	$10^{47.0}$
$\gamma'_{p,\min}$	Min. proton Lorentz factor	fixed	10.0		10.0
$\gamma'_{p,\max}$	Max. proton Lorentz factor		$10^{5.4}$		$10^{5.6}$
α_p	Proton spectral index	fixed	-2.0		-2.0
$\eta_{ m esc}$	escape velocity of e^{\pm} and p		c/300	c/300	c/10
Results					
$L_{\rm Edd}$ (erg/s)	Eddington luminosity *		$10^{47.8}$		$10^{47.8}$
$L_{ m jet}/L_{ m Edd}$	jet physical luminosity (in $L_{\rm Edd}$)		0.4	6.2	62.8
$E_{\nu,\mathrm{peak}}, \mathrm{TeV}$	peak energy of neutrino spectrum		250		330
N_{ν}/yr	Expected neutrino rate in IceCube		$10^{-3.8}$	0.27	9.8

Increasing p & e⁻ injection by factor 3 explains flare

Increasing p & e⁻ injection by factor 3 explains flare

Ratio between QS and FS is x2.5 in optical and x6 in GeV supports SSC model