SiPMs for future Dark Matter Experiments

- Priyanka Kachru (GSSI, PhD Student - Cycle 34)

Supervisors : Dr. Alessandro Razeto (LNGS), Prof. Cristiano Galbiati (GSSI, Princeton)

Astronomical Evidences

Colliding galaxies

Cosmic Microwave Background

rotation curves of the galaxies

Strong Gravitational lensing

DarkSide-20k and Beyond

- With the 100 t yr exposure, 1.6 NR events are expected from coherent scattering of atmospheric neutrinos making DarkSide-20k first ever dark matter detector to achieve that milestone
- After DS-20k, GADMC is planning build Argo detector with 300 ton fiducial volume for ultimate Dark Matter search with exposure of 3000 t yr over 10 years neutrino floor reach
- Due to the increased detector active volume, it will undergo huge pileup (due to the background events) limitation of the size of dual TPC gives poor position reconstruction

Dual Phase Time Projection Chamber

- XY position reconstruction can be studied with the spatial distribution in the top array by S2 signal
- The position reconstruction starts to diminish when pileup becomes dominant in large volume detector
- Precise timing resolution becomes an important feature for position reconstruction in future large volume detectors
- DarkSide-20k will be become the first dark matter detector to mass employ SiPM detector arrays as photodetector modules.

Why SiPMs over PMTs?

- SiPMs can exhibit Photon Detection Efficiency upto 50%
- High geometrical fill factor and low power consumption
- As per DarkSide-20k requirements, a 20% more light yield than DarkSide-50 1. SiPM Photo-Detection Modules (PDM) will have 25 cm² area. 2. Each module should produce total noise < 250 Hz 3. The single photon resolution for SiPMs is 2% whereas PMTs is 20%

Challenges with the SiPMs

- As the size of TPC can not be increased beyond 100 tons due to the intense pileup of signals accuracy in timing resolution can provide stringent time-of-flight measurements
- This will facilitate Particle Identification through pulse shape discrimination to estimate cuts for background event rejection
- To gain enhanced timing results for the applications in future experiments, SiPMs under study at LNGS are 1 cm² in area which are sensitive to NUV wavelengths.

Importance of Timing Resolution and PDE

- In low energy particle physics and medical applications, to determine time-of-flight and position reconstruction, timing resolution is a key factor
- Alongwith timing resolution, precise PDE of the detector will provide energy reconstruction to give strong pulse shape discrimination
- The goal is to study these properties of SiPMs (at room and cryogenic temperatures) to establish best results for the future detector performances
- With large active area for detection, SiPM produce bad timing and energy resolution
- To mitigate this challenge, zero-pole cancellation filter is implemented in the form of digital signal processing.

Zero-Pole Cancellation technique

Under constant low intensity light and temperature, threshold

Time Jitter distribution =

Time_{lasertrigger} – Time_{Si}PMsignal

Results

SPTR at 300 K of different preamplifiers

0.35 *Risetime* = bandwidth

$=\frac{Risetime}{SNR}$ *Th*_{jitter}

Results

SPTR at 70 K with different preamplifiers

Future Prospects

Optimising PDE at cryogenic temperatures

- Continuing the characterisation of SiPMs, PDE measurements at cryogenic temperatures need to be carried out to have conclusive estimates for the performance of future experiments.
- The current SiPMs are suitable for light detection at room temperature and loose their performance at cryogenic temperatures
- Studying PDE at cryogenic temperatures will create a profile of SiPMs customised for low-energy event reconstruction
- This can be done by studying the absorption length and thickness of the depletion region over different wavelengths.
- With optimum profiling, we aim to achieve PDE upto 60%

Future Prospects

Back illuminated SiPMs for low mass Dark Matter detection

- An optimised electronics and PDE, may lead to innovative low mass Dark Matter detector for masses < 1 GeV
- Low ionisation potential of Silicon makes it ideal target for low mass Dark Matter search
- The possibility to design a SiPM-based detector with 1 kg Silicon having sensitivity of $10^{-42} cm^2$ at mass of 1 GeV
- This will push the low energy threshold to 100 eV
- Back illuminated SiPMs will make bulk region of the SiPM as target and setup will have Liquid Nitrogen to act as a veto

Thank you

DarkSide-50 delivered a zero-background and the best limit with the Argon target.

A low analysis threshold of DarkSide-50 enabled to study very low energy events at 100 $eV_{\rho\rho}$.

With powerful pulse shape discrimination to have high electron recoil background rejection factor 10^7 ,

With the 100 t yrexposure, 1.6 NR events are expected from coherent scattering of atmospheric neutrinos making DarkSide-20k first ever dark matter detector to achieve that milestone.

After DS-20k, GADMC is planning build Argo detector for ultimate Dark Matter search with exposure of 3000 t yr over 10 yr

The goal of Argo design is to combine the precise position / energy reconstruction of events from the dual phase TPC principle and detection of only primary scinitillation signal to measure the time-of-flight for position reconstruction.

Both these techniques will be combined to mitigate backgrounds in the Argo design phase to increase the sensitivity by factor 1000.

- ulletlimit accumulation of pulses.
- As a result, it produces sharper pulses with improved Signal-to-Noise Ratio at room temperature.

Output waveform (LT)

$$O(\omega) = F(\omega) * \left(1 + \frac{j\omega}{\omega_0}\right)$$

This technique produces a high pass filter that eliminates the long exponential tail of the signal in order to

Output waveform (Inverse FT)

$$O(t) = f(t) + \frac{f'(t)}{\omega_0}$$

Astronomical Evidences

- Fritz Zwicky in 1930's studied Coma Cluster which was 350 million light years away from Earth.
- Performed two types of measurements: estimation of total mass of galaxies from total luminosity, measurement of Doppler shift of the light emitted to determine radial velocities.
- Surprisingly!!! Fast radial velocities were observed for the galaxies which implied that cluster should have "EVAPORATED".
- Conclusion: Presence of invisible mass called "DARK MATTER" which has a gravitational pull but does not contribute to galaxy luminosity.

DARK MATTER = 500 * (Visible Mass)

Source: Coma Cluster, NASA/JPL-Caltech/SDSS

- The single photon timing resolution of the detector is an important parameter that influences the detector response
- In low energy particle physics and medical applications, to determine time-of-flight and position reconstruction, timing resolution is a key factor
- It can be described as the precision on the arrival time of the single photon initiated signal.
- Alongwith timing resolution, precise PDE of the detector will provide energy reconstruction to give strong pulse shape discrimination
- The goal is to study these properties of SiPMs to establish best results for the future detector performances
- At room temperature, SiPM suffers issue of pile up resulting in bad SNR and energy resolution
- To mitigate this challenge, zero-pole cancellation filter is implemented in the form of digital signal processing.

- An optimised electronics and PDE, may lead to innovative Dark Matter detector for masses < 1 GeV
- Low ionisation potential of Silicon makes it ideal target for low mass Dark Matter search
- GeV
- as a veto
- detection in Liquid Argon seems promising with extremely low noise characteristics
- Silicon has proven to be optimal target for low mass dark matter searches at low recoil energies
- achieving very low threshold of 100 eV
- the target) and submerged in Liquid nitrogen acting as a veto
- The setup with 1 kg of Silicon target will be sensitive to WIMP masses <1 GeV and will be able to achieve sensitivity upto $10^{-42} cm^2$

• The possibility to design a SiPM-based detector with 1 kg Silicon having sensitivity of $10^{-42} cm^2$ at mass of 1

• Back illuminated SiPMs will make bulk region of the SiPM as target and setup will have Liquid Nitrogen to act

• From the recent GADMC results, the possibility of developing SiPM array with 25 cm^2 large area photo-• With this idea, the design for an SiPM based Silicon target detector is proposed which will be capable of

• In this setup the SiPMs will be illuminated from the the back side (close to the bulk region that will behave as

What is Dark Matter?

- Dominant matter in the universe is Non-Baryonic in nature.
- When ordinary visible matter in vicinity of it, clumps it together — Weak Lensing Effect on ordinary matter.
- Neutral and Non-luminous
- Interact weakly (new kind of weak force) or gravitationally with Baryonic Matter

SiPM working

PDE @ 4.5 V OV: technology comparison

For DarkSide requirement: NUV SiPMs are the best choice due to the PDE performance at 420 nm

SiPM working and properties

DCR introduces huge pile up signals -> understanding the limit of NUV SiPMs for applications at room and cryogenic temperature

- SiPMs can exhibit Photon Detection Efficiency upto 50%
- High geometrical fill factor and low power consumption
- As per DarkSide requirements, a 20% more light yield than DarkSide-50
 - 1. SiPM Photo-Detection Modules (PDM) will have 25 cm² area.
 - 2. PDE of a module > 40 %
 - 3. Timing resolution needs to be of the order of 10 ns
 - 4. Each module should produce total noise < 250 Hz
 - 5. Dynamic range from each module should be > 50 p.e

oto 50% mption <mark>yield than DarkSide-50</mark> will have 25 cm^2 area.

ler of 10 ns e < 250 Hz ld be > 50 p.e

Zero-Pole Cancellation technique

- limit accumulation of pulses.
- As a result, it produces sharper pulses with improved Signal-to-Noise Ratio at room temperature.

This technique produces a high pass filter that eliminates the long exponential tail of the signal in order to

Measurement Setup

Pulse generator

