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DarkSide-20k

Dual phase TPC filled with 50 tons of
-underground Argon (depleted in the :

radioactive 3*Ar component).

Photodetectors based on the Silicon
- PhotoMultiplier (SiPM) technology, with :

a total instrumented surface ~ 28 m?Z.

Scintillation in Argon following a particle

interaction in the detector medium wiill

- form the signal for SiPM photodetectors
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Dark Matter signal in DarkSide-20k
DS-20k will search for high-mass WIMP
- DM particles which will produce nuclear
recoils in the energy range of 30 keV_to : _ 107"
200 keV,, :

A NR corresponding to a DM particle :
interaction will give rise to a few 100 -
1000 photons in the primary scintillation
éevent :
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_low in momentum transfer, there is a My (TeV/c?)
need for maximizing the light collection
. efficiency of the detector.
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Pulse Shape Discrimination (PSD) is a key feature of LAr detectors

e Rejection power (RP) larger than 108 against background events
e Atlow energy, RP is limited by statistical fluctuations of detected photons

My activity is intended to increase the LY impacting directly the physics reach of the
. experiment
: higher LY = lower threshold



A SiPM integrates a dense array of Single Photon
Avalanche Diodes (SPADs), each with its own
quenching resistor (R) (100 - 1000s of microcells
. per mm?) :
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Each SPAD is operated in the Geiger mode, and
. detects photons identically and independently. e

SiPM Photoelectron Spectrum
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The photocurrents from each microcell combine to
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Photon Detection EfflClency

. The Photon Detection Efficiency (PDE) of a SiPM is
defined as:

PDE = QE(A). P, (V). FF

trig

QE: quantum efficiency of Si

° ng triggering probability of an avalanche

e FF: fill factor, i.e. ratio of effective active area
and overall cell area

Need for wavelength shifting for efficient detection of
. LAr scintillation light as QE wavelength dependent.

Tetra-Phenyl-Butadiene (TPB) is the most common
- wavelength shifter used with an emission peak
-around 420 nm.

PDE (%)

65% |
60% F
55% F
50% F
a5% |
40% F
35% F
30% F
25% F

20% E
250

Arbitrary units

o 8 8 8 &8 8 8 3 8 8 8

-&-SF

-o-LFLowAP-0OV=3V
-o-LFLowAP-OV=6V
-o-LF LowAP-0OV=9V

-0V =3V

T=300K
Cell size =35 um

350 450 550 650

Wavelength (nm)

!: 1 (Emission)
)

N 8 !
TS |

fl'\m

150 200 250 300 350 400
Wavelength {nm)

450 500 550



PhotoDetector Modules (PDMs)

Light sensitive units of DarkSide-20k

O

O

24 SiPMs, each 12x8 mm? mounted on a tile (SiPM array)

Coupled with a front-end cryogenic pre-amplifier
®

O

Each PDM connected to a digitizer

Digital processing of the acquired waveform to extract the

photon arrival time and charge information.
®

O

Sum up the data on collected charges and time

Reconstruct the original shape of light emission to extract
information on the particle type and the physics of the
interaction process.
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SiPM Test setup in Argon (STAR) Detector
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Detector components

Detector side walls made up of light
reflectors and wavelength shifter
material (TPB)

Fully assembled detector with SiPM photodetector array
readout electronics



ADC counts

Raw waveforms from a SiPM tile
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s F BE Measurement of LAr
] scintillation light
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Detector Simulation Optical surface Model 1

normal

Fresnel
LAr-TPB '
;iiriljr::(tjric-dielectric TPB.ESR
(glisur, polish = 0.) Snell , dielectric-metal
ESR ' n/a polished

Reflectivity = Refl
LAr n:

TPB-FS
dielectric-dielectric FS-LAr
ground undefined
(glisur, polish = 0.) 'f\\ LAr n: total reflection
\ possible

Performed using GEANT4 simulation package.

Detector geometry defined and two different models for the optical surfaces used for
testing the hypotheses.



Detector Simulation
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Fig: Simulation run to obtain an estimate of the reflectivity of the light reflectors



Perspectives for the future work

Investigation of other wavelength shifters by carrying out a measurement of the
relative LY between TPB and PolyEthylene Naphthalate (PEN) by running two small
detectors in the same LAr chamber contemporarily. This is of primary importance for
the DS-20k veto.

Developing a prototype detector with a 4-pi SiPM readout, which is a plausible
solution to circumvent the pile-up from 3°Ar in future multi-ton scale detectors, thus

extending their physics reach.

Collaborating with the DS-Software group for the software development and its
application to Proto-1t, a one-ton scaled down prototype of DS-20k, which will start
data taking in the next year.
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The Dark Matter Puzzle

An unknown component of the universe,

- whose presence is inferred from observational

data at different length scales.

Key Observations: CMB temperature
anisotropies, Gravitational lensing, Galactic
. rotation curves

. Plausible explanations:

e Modified Newtonian dynamic models
Massive astrophysical compact halo
objects

e Dark Matter particles such as, sterile
neutrinos, WIMPs, Axions
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Search for the Dark Matter particle

e Production at particle accelerators
e Signals from annihilation and decay products

e Direct detection

X
A

Production
at colliders

p

Direct detection
> X

Indirect
detection

Y
P

Fig (1): Possible dark matter detection channels
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Experimental techniques for direct detection

Cryogenic Superheated
bolometers liquids

'PHONONS / HEAT

Scintillating cryogenic
. WIMP\ bolometers

Cryogenic bolometers
with charge readout

Germanium Scintillating
detectors crystals
CHARGE |__,zz======------ ~___ LIGHT
1 . . "
Liquid noble-gas -

Charge readout TPCs : dual-phase time ; ;'qu'd noble-gas

I o s I etectors

, Pprojection chambers |

Fig (2): Possible signals in direct detection experiments depending on the technology in use.
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Dual phase Time Projection Chambers (TPCs)

. Aliquified noble gas (Ar, Xe, Ne) used as T
. detector medium. =

Particle interaction in the medium emits
primary scintillation light pulse (S1)

Electrons generated are drifted towards a gas
pocket on the top, where they produce a
: second scintillation light pulse (S2)

Emitted S1 and S2 photons are detected by a
set of photodetectors at the top and at the
: bottom of the detector.
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Fig: Mechanisms of Scintillation in LAr
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